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Comprehensive evaluation and characterisation of
short read general-purpose structural variant
calling software
Daniel L. Cameron 1,2, Leon Di Stefano 1 & Anthony T. Papenfuss 1,2,3,4,5

In recent years, many software packages for identifying structural variants (SVs) using

whole-genome sequencing data have been released. When published, a new method is

commonly compared with those already available, but this tends to be selective and

incomplete. The lack of comprehensive benchmarking of methods presents challenges for

users in selecting methods and for developers in understanding algorithm behaviours and

limitations. Here we report the comprehensive evaluation of 10 SV callers, selected following

a rigorous process and spanning the breadth of detection approaches, using high-quality

reference cell lines, as well as simulations. Due to the nature of available truth sets, our focus

is on general-purpose rather than somatic callers. We characterise the impact on perfor-

mance of event size and type, sequencing characteristics, and genomic context, and analyse

the efficacy of ensemble calling and calibration of variant quality scores. Finally, we provide

recommendations for both users and methods developers.
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Structural variants (SVs) are polymorphisms involving a
segment of DNA that differs between individuals, or in
cancer, between somatic and a normal sample, for example,

ref. 1. SVs are typically defined to be events that are >50 bp in
size2. These include large insertions (including transposons),
inversions, balanced or unbalanced translocations, amplifications,
deletions and complex rearrangements, which do not fall neatly
into any of these categories3. Understanding structural variation
is important in the study of population diversity and disease4,5,
including cancer, for example, refs. 3,6,7 and is increasingly
important in the clinic.

Detecting SVs using short read sequencing is a challenging
problem, as the evidence for SVs resembles common sequencing
and alignment artefacts. Typically, SVs are detected by
looking for changes in read depth (RD), identifying clusters of
discordantly aligned paired-end (PE) reads or split reads (SRs),
constructing some form of assembly or a combination of these
approaches. PE and RD approaches8–29 can detect breakpoints,
but unlike SR or assembly-based approaches cannot
achieve single-nucleotide resolution. SR approaches can be fur-
ther classified by whether they identify SRs based on upstream
read alignment24,29,30, partially aligned soft-clipped (SC)
reads15,21,22,26,29,31–35 or targeted re-alignment of one-end
anchored read pairs in which only one read in the pair is map-
ped18,20,26,36–39. Assembly approaches perform alignment of
assembled contigs to identify SVs40, with a number of specialised
SV assemblers having been developed28,29,31,41,42 to avoid the
computational burden of whole-genome de novo assembly.

Different SV callers support different study designs. Most
general-purpose SV callers only analyse a single sample at a time,
making them applicable to the analysis of normal DNA or cancer
samples lacking matched normal samples (such as cell lines). In
contrast, there are dedicated somatic SV callers designed to work
only on matched tumour and normal pairs43,44. Some general-
purpose tools also support optional somatic calling or the joint
analysis of multiple-related samples, enabling somatic analyses
through post processing (e.g. cortex, GRIDSS). Due to the lack of
large, publicly available, high-quality somatic truth sets, we have
focused on general-purpose SV callers rather than somatic
mutation callers, although the computational challenges are not
unrelated.

With over 40 short read-based general-purpose SV callers
published since 2010 (Supplementary Table 1), there is a need for
a comprehensive benchmark comparing a variety of SV calling
approaches and implementations across of a range of datasets.
Although a number of reviews have been published describing the
theoretical advantages and weaknesses of different SV calling
algorithms45–53, comparative evaluation and benchmarking of
software implementations has been limited. With the exception
of small indels (≤50 bp) and CNVs, which we exclude here due
to the existence of several benchmarking studies54–60, publica-
tions incorporating more general SV benchmarking have
primarily focused either on benchmarking frameworks or on new
callers61–63. But with newly published callers invariably reporting
favourable performance, it is difficult to discern whether the
results of these studies are representative of robust improvements
or due to the choice of validation data, the other callers selected
for comparison, or over-optimisation to specific benchmarks.

To address these shortcomings, we have undertaken large-scale
benchmarking across a range of SV callers that were selected
using a careful process and represent different approaches, as well
as using both real and simulated data. Our simulated data is
designed to test the full range of parameters typically encountered
in model organism re-sequencing studies. We have used multiple
reference datasets with high-quality truth sets. We explore
the impact of sequence context and show which repeat classes

cause the most significant problems to SV callers. We examine
the performance of quality scores. We also comprehensively
evaluate simple ensemble calling approaches based on the inter-
section and union of different callers, showing only minor
improvements in performance over the best tools. Based on these
benchmarks, we provide a set of recommendations for developers
and users of SV calling software.

Results
Method selection. We first undertook a rigorous SV caller
selection process. More than 40 SV callers, most published after
2010, were initially considered (Supplementary Table 1). We
excluded specialised callers for matched tumour-normal pairs due
to the lack of appropriate public validation data for these meth-
ods. Of these initial callers, we identified 14 that were highly cited
and represented a cross-section of different detection approaches
(indicated in Supplementary Table 1). Callers were run using the
recommended parameters and results were obtained from the
following 10 methods: BreakDancer, cortex, CREST, DELLY,
GRIDSS, Hydra, LUMPY, manta, Pindel and SOCRATES (see
Methods for details).

Overall performance on well-characterised cell lines. We next
set out to determine the overall performance of callers using four
cell line datasets with orthogonal validation data: NA12878,
HG002, and CHM1 and CHM13 separately and merged as a
synthetic diploid dataset. NA12878 is a well-studied Genome in a
Bottle (GIAB) human cell line from the Ceph family, sequenced
using 50× coverage 2 × 101 bp whole-genome sequencing (WGS)
data64 with 319 bp median fragment length. Variant calls were
evaluated against the hg19 Parikh et al.65 call set. Only deletion
events were considered: despite NA12878 being the de facto
standard sample for benchmarking and the publication of mul-
tiple reference call sets7,65–67, a comprehensive ‘gold standard’
exists only for high-confidence single-nucleotide polymorphisms
(SNPs), indels and homozygous reference regions68. HG002 is a
second GIAB cell line for which a high-confidence SV call set has
been produced by consensus calling using multiple sequencing
technologies. This dataset uses 60× coverage WGS with a 555 bp
median fragment length. Only calls falling within high-confidence
regions of the HG002 truth set were evaluated. CHM1 and
CHM13 are two haploid human cell lines, which have been
sequenced to 40× coverage using 2 × 151 bp reads with 263 and
345 bp median fragment lengths, respectively, and for which a
high-quality truth set is available based on PacBio long read
sequencing69. The SVs found in these haploid cell lines are
homozygous, leading to generally higher coverage of SVs in the
short read data, as there are no reads ‘lost’ to heterozygosity or
cellularity. This makes SV calling relatively easier than in het-
erozygous samples, or impure or heterogeneous cancers. Argu-
ably, the primary determinant of this is simply coverage of the
SV, as for most SV callers, the reads that support the reference
allele have little to no impact on the SV calling. The abundant
homozygous SVs in these cell lines still span many sequence
contexts and allow meaningful testing of SV callers. CHM1 and
CHM13 short read SV calls were evaluated against the hg38
Huddleston el al truth set (see Methods). These cell lines were
also merged in silico to produce a synthetic diploid dataset with
80× coverage 2 × 151 bp WGS data with a 310 bp median frag-
ment length.

Overall performance was considered using precision and the
number of true positives called/recall. The ideal performance has
high precision (low false discovery rate) and high recall (Fig. 1).
Across the three samples, the assembly-incorporating callers,
GRIDSS and manta, consistently performed well. Pindel has the
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most variable performance: on the 2 × 101 bp reads from
NA12878 (aligned to hg19), the overall precision of Pindel is
very low. On HG002, the strong manta and Pindel results are
driven by their high sensitivity to events under 200 bp
(Supplementary Fig. 8) and their superior sensitivity on variants
with long (30+ bp) micro-homology, and in low complexity
regions. The sensitivity of BreakDancer and Hydra dropped
dramatically on both CHM1/CHM13 and HG002 relative to
NA12878 but for different reasons. These are pure PE-based
methods, and thus require read alignments to span the break-
point. On CHM1/CHM13, shorter fragments and longer read
lengths reduce the likelihood of this happening and thus PE-
based caller performance is degraded. On HG002, the long
fragment lengths prevented the calling of shorter events and thus
reduced sensitivity. The unusual behaviour of the performance
curves for DELLY in CHM1/CHM13 can also be attributed to the
same phenomenon, as DELLY first performs calling based on SR
refinement of PE calls and only after making all such calls does it
considers calls supported by SRs only. The performance of each
caller on CHM1/CHM13 at 80× coverage is comparable to each
of the haploid CHM1 and CHM13 results at 40× coverage
(Supplementary Fig. 9). This indicates that, unlike single-
nucleotide variant (SNV) calling, SV callers are robust to variant
zygosity and that variant haplotype coverage is the determining
factor for SV calls. The large differences in recall between the
datasets can be attributed to the relative comprehensiveness of the
truth sets used.

Performance on idealised data. We next developed a compre-
hensive, multi-dimensional simulation to determine how the
best-case performance of each caller varied across differing event
sizes, event types, and sequencing parameters. We simulated
10,000 intra-chromosomal translocations and 18,000 of each
other simple SV type (heterozygous insertions, deletions, inver-
sions and tandem duplications) up to 64,000 bp in size on chr12
(hg19). We repeated this for a range of read lengths (35, 50, 75,
100, 150, 250), fragment sizes (150, 200, 250, 300, 400, 500) and
coverage levels (4×, 8×, 15×, 30×, 60× and 100×).

For the most part, simulation results recapitulate what one
might expect based on the algorithmic approach of each caller

(Supplementary Fig.s 1–6). De novo assembly is required to
detect large insertions, and the detection of small events requires
SR analysis or assembly. The interplay between read length and
fragment size for PE-based callers is complex: increasing the read
length, decreasing the median fragment length and narrowing the
fragment size distribution all enable the detection of events of a
smaller size, but this is counteracted by a precipitous drop in
ability to detect any events as paired reads start overlapping.
BreakDancer is particularly problematic in this regard, as
reducing fragment size from 300 to 150 bp with 2 × 100 bp reads
reduces sensitivity from over 90% to <20%, while the total size of
the call set remains largely unchanged. Overall, coverage above
30× generates only marginal improvements in sensitivity for non-
insertion events, while a reduction in coverage below 30× reduces
sensitivity. The maximal insertion sensitivity is not reached until
at least 60× coverage.

Several tools do not report all event types. For example,
CREST, DELLY, HYDRA and LUMPY do not detect insertions
and cortex does not call inversions or tandem duplications.
DELLY’s poor performance on long reads/short fragments is
consistent with its approach of using PEs first then SRs, but the
failure to call deletions or duplications under 300 bp is hard
coded into the implementation. In contrast to this, some tools are
liberal in reporting certain classes of events. For example,
BreakDancer, Pindel and DELLY report an inversion event even
if only one of the two constituent breakpoints are present.

Several tools exhibited behaviour that appears to be
unintended. Neither cortex nor CREST achieves particularly
good sensitivity for any event type or size, while Pindel failed to
detect 1 kb deletions and 2 kb duplications (see Supplementary
Fig. 3).

Impact of sequence context and event size on precision. In
order to determine the causes of false positives in real data, we
returned to the cell line data and classified variant calls by event
size, number of SNVs or indels within 50 bp of the breakpoint
and sequence context using RepeatMasker70 and tandem repeats
finder (TRF)71 annotations (Fig. 2). For deletion calls, precision
peaked at 300–500 bp event size for all callers. Precision is poor
for calls smaller than 100 bp, with a false discovery rate (FDR)
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over 25% for all callers, although this is less pronounced in
CHM1/CHM13 (Supplementary Fig. 7) and HG002 (Supple-
mentary Fig. 8). Across all callers, the presence of SNVs or indels
near the call breakpoint is associated with poor precision: calls
with two or more small flanking variants have a considerably
higher FDR than those without flanking variants. Similarly, calls
occurring in low complexity, simple or short tandem repeat
(STR) regions have low precision for all callers. Despite some
variability, callers are generally unaffected by DNA, LINE and
SINE element repeats, have an elevated FDR in LTR repeat
regions and are seriously impaired only in the remaining 2% of
the genome marked by RepeatMasker or TRF.

Caller concordance and ensemble calling. A common strategy
when calling variants is to use ensembles of callers72. By requiring
a call to be made by at least m of n callers (typically 2 of 3, or 2 of
4), it is thought that sensitivity or specificity can be improved
compared with using any one caller in isolation. To investigate
this, we analysed the overlap among the callers’ true and false
positives, and evaluated synthetic ensemble call sets for all pos-
sible m-of-n rules (see Methods online).

For the NA12878 call set, most true variants are called by three
or more callers, but only a small proportion of variants are called
by all 10 callers (Fig. 3a). Unfortunately, identifying the
remaining true variants from the large number of false positives
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is difficult due to the considerable overlap among callers’ false
positives—four of the ten callers shared more false variant calls
with at least two other callers than they made true variant
calls (Fig. 3a, b). Overall, while simple ensemble calling does
sometimes improve on the performance of the best individual
callers (Fig. 3c), it is highly sensitive to the callers chosen for the
ensemble. All ensembles that outperformed the best individual
caller in any dataset (measured by F score) contained at least one
of the assembly-based callers (manta or GRIDSS). No single
ensemble consistently outperformed the best individual callers
across all three datasets.

Quality scoring. With the total number of calls made by each
caller varying by over two orders of magnitude, the choice of
which calls to consider for downstream analysis is non-trivial,
especially if callers do not make use of the VCF FILTER field to
provide a default set of high-confidence (pass) calls. A simple but

widely used form of filtering requires that calls be supported by a
certain number of reads (or read pairs), or that the caller-reported
quality score be above some chosen threshold. A low threshold
results in a sensitive call set at the cost of reduced precision,
whereas a high threshold trades reduced sensitivity for increased
precision. To determine the effectiveness of such filtering, we
stratified calls by supporting read count or quality score, where
available.

Greater support (or a higher quality score) generally corre-
sponds to higher precision, with the exception of very highly
supported calls, which tend to have low precision (Fig. 4). Manta
is an exception to this trend, as it filters calls with very high read
counts. Most callers have relatively few of these well-supported
false positives, although BreakDancer does make hundreds of
such calls on CHM1/CHM13 (Supplementary Fig. 10), but not on
NA12878. Since HG002 calls were filtered to only the high-
confidence regions of the genome included in the GIAB NIST
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truth set, the lack of precision for very high score variants
exhibited in the other datasets is not present for HG002
(Supplementary Fig. 11). Of the callers reporting quality scores,
only manta showed an approximately monotone behaviour across
all datasets, although the majority of calls have a quality score
value of 0 or 1000 (the minimum and maximum scores assigned
by manta). These results further highlight the importance of
considering genomic context when assessing the quality of a given
SV call.

Runtime performance. Runtime performance of variant callers is
measured for all simulated datasets (see Methods online), with
execution time and CPU usage varying by over two orders of
magnitude (Supplementary Fig. 12). Excluding the computa-
tionally expensive tools CREST and Pindel, single-source callers
are the fastest, followed by multi-source callers, with the de novo
assembly standing out as the most computationally expensive
approach. In some cases, poor relative runtime performance can
be attributed to the computational expense of the underlying
algorithm (e.g. cortex’s implementation of de novo assembly) but
in the case of CREST, the poor performance is due to the reliance
on external tools: the use of CAP3 assembly combined with BLAT
re-alignment of soft clips means the CREST assembler runs over

an order of magnitude slower than either the Manta or GRIDSS
assemblers.

Discussion
Following a careful procedure, we selected 10 general-purpose
callers that use different approaches to SV detection and bench-
marked these tools. We used simulations to test the behaviour of
each method on idealised data across a wide variety of sequencing
parameters. Our simulations were designed to be as extensive and
efficient as possible, while still avoiding interference between
breakpoints calls. To our knowledge, this is the largest SV
simulation undertaken and revealed surprising features in some
of the callers. These simulations are a powerful tool allowing the
evaluation the best-case detection capability across a range of
event types and sizes. Knowing the limitations of each caller is
critical to ensuring that a caller with poor detection performance
on the events of interest is not used. However, simulated data is
unrealistic and far too simple for accurate benchmarking, thus we
have emphasised the use of reference datasets derived from cell
lines with large-scale truth sets or orthogonal validation data. Our
general approach is to run each caller using default parameters
and visualise results using receiver operating characteristic
(ROC)-like plots for each dataset. This allows exploration of the
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Fig. 4 Calls with the highest read depth or quality score are often false positives. For each caller, the results for the NA12878 dataset were separated into
100 bins by either (log) read count or quality score, as indicated. For each bin, the precision (upper plot) and number of calls falling within the bin (lower
plot) was calculated. Grey bars indicate 95% binomial confidence intervals for the precision. Bins with 10 or fewer calls are coloured grey and confidence
interval bar omitted
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sensitivity and precision trade-off up to the default quality score
threshold, and exhaustively on unfiltered calls from those meth-
ods that also report all variants. Benchmarking on three datasets
identified a few callers that consistently performed well across the
multiple reference datasets.

We next explored other features of caller more carefully. We
examined the impact of genomic sequence context, which high-
lighted that the performance of most SV callers is only marginally
impacted for rearrangements in SINEs, LINEs, LTRs and DNA
repeats, but is substantially impacted by simple tandem repeats
and low complexity sequence. This suggests the current need to
also run more specialised tools and develop approaches to inte-
grate these calls and identifying possible future directions for
improvement. We also examined the concordance of multiple
callers and comprehensively assessed the utility of simple
consensus-based methods. Finally, we considered the behaviour
of the quality scores of each method. This revealed that calls with
the highest quality scores from most methods are usually false
positives. The exception is manta which demonstrated much
better behaviour for these calls.

There are two main shortcomings to our general approach.
First, as previously noted, due to the current lack of large-scale,
high-quality reference datasets for somatic SVs, benchmarking is
limited to general-purpose callers that do not require matched
tumour-normal samples, although some of the methods tested do
support somatic calling. For many approaches, particularly
general-purpose tools that can be applied to multiple samples, the
computational challenges are not unrelated and some insights
may carry over. However, it is not straightforward to extrapolate
to the somatic case. A separate study based on high-quality
reference data from matched tumour-normal samples with large-
scale validation of SVs using either an orthogonal sequencing
platform or sequencing of replicate samples is needed. Second, by
using default parameters, users are not able to explore calls on
these reference datasets beyond the sensitivity provided by these
parameters, except where the method also provides the unfiltered
call set, although they can view the behaviour for more specific
threshold selection in the ROC-like plots.

We have also assumed that most types of studies (e.g. popu-
lation studies, cohorts, clinical genomics, n= 1 studies) have
similar requirements, and that high sensitivity and specificity is
desirable. Some users may adopt different approaches or be
forced to apply tools differently by the features of their particular
dataset (e.g. the fragment length). We have also assumed that
most users will rely on the default parameters of a caller. For
some clinical applications, the need for high specificity may
outweigh the need for high sensitivity (e.g. identifying a druggable
target); however, the specific disease context can make this more
or less of a requirement. Outside the context of cohort studies, the
ability to dig down into lower confidence calls may be desirable,
so reporting all calls and scoring or labelling pass calls is an
attractive feature.

Variant detection is an essential part of the analysis of genome
sequencing data and sensitive, specific, usable, reliable, publicly
available variant detection software is enormously valuable.
Through comprehensive benchmarking of well-cited, general-
purpose SV calling software spanning a range of variant detection
approaches, we have shown that there is wide variation across all
of these traits. To aid in the selection of callers, and the devel-
opment of better SV calling software, we provide the following
recommendations for users and developers:

User recommendation: Choose a caller that uses multiple sources
of evidence and assembly. Use a recent state-of-the-art method
that makes use of multiple signals of structural variation and
supports single-nucleotide resolution calls (i.e. uses SR evidence).
Methods that incorporate some form of assembly at breakpoints

outperform other methods. Ideally, use a method that can detect
micro-homology, non-templated sequence insertions. Manta and
GRIDSS are strong candidates satisfying all these criteria.

User recommendation: Choose a caller capable of calling all
relevant events. Some SV callers are designed to detect only cer-
tain types of rearrangements and will consequently ignore or mis-
classify other types of events. Deletion detection is ubiquitous
amongst general-purpose SV callers, but each other event type is
only detectable by a subset of callers, with many callers restricted
to intra-chromosomal events due to software design. GRIDSS,
HYDRA, and SOCRATES address this by reporting breakpoints
and leaving the interpretation to downstream analysis (e.g.
CLOVE73). On the other hand, BreakDancer, DELLY and Pindel
will report inversion events even when only one of the two
breakpoints required for an inversion are present. Such mis-
reporting makes these callers unsuitable for analysing complex
events. To detect variants in regions of the genome where
general-purpose SV callers perform poorly (such as micro-satel-
lites), specialised callers such as HipSTR74 should be used.

User/developer recommendation: Ensemble calling is not a
panacea. Our exhaustive testing of simple ensemble callers shows
that while ensembles can produce improved results compared to
individual callers, no single ensemble outperforms the best indi-
vidual callers on NA12878, CHM1/CHM13 and HG002. It is
clear that users should not adopt simple ensemble approaches on
an ad hoc basis, as an ensemble of poorly chosen callers will be
easily outperformed by a single well-performing caller. The
optimal ensemble requires many callers, the number and choice
of which will vary between datasets, but the best ensembles
include recent assembly based callers such as GRIDSS and manta.
Conservative ensembles can lead to disastrously poor sensitivity,
while unions of all calls can have staggeringly high false-positive
rates. The main virtue of ensembles is robustness to problems
with specific datasets or to errors arising in updates, including
dependencies on aligner versioning.

An alternative approach to generating ensemble calls is to use
assembly to integrate the results of multiple callers75,76. There is
also the potential to integrate multiple callers using more
sophisticated approaches than simple heuristic union/intersection
rules, such as machine learning. These approaches may be more
promising, but are not yet well developed and suffer the same
inefficiency as other ensemble methods, that is, if the same evi-
dence is being reused multiple times by each caller. Our results
suggest that the incorporation of additional signals, and not
merely the aggregation of multiple call sets based on the same
underlying evidence, will drive performance improvements in
these sophisticated ensemble callers.

For developers, we propose that developing single methods that
make better use of the raw evidence, possibly in conjunction with
information about genomic context, is a more efficient approach
to improving sensitivity and specificity of calls.

User recommendation: Do not use pure read-pair-based callers.
Methods relying only on PE evidence are now far from the state-
of-the-art. Such callers face a significant trade-off: longer reads
and shorter fragments allow the detection of smaller events, but at
the cost of reduced signal strength. Critically, when reads from
the same fragment start overlapping—that is, when the fragment
size is less than twice the read length—the performance of PE-
exclusive methods drops precipitously, as seen in Fig. 1. This
behaviour is contrary to the expectation that improved sequen-
cing technology will result in better variant calling, and there is no
obvious indication of this instability in the output call set.
Formalin-fixed paraffin-embedded samples are particularly sus-
ceptible to such errors, as for typical 2 × 100 bp the sequencing
library fragment size distribution is such that the majority of read
pairs overlap. The longer read lengths available from MiSeq and
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NovoSeq instruments leads us to strongly recommend against
using a purely PE-based caller except for the historical <100 bp
read datasets they were designed for.

User recommendation: Calls with unusually high read counts
are likely to be reference genome/alignment artefacts. For all
callers (with the exception of manta), calls with very high-quality
scores and supporting read counts were overwhelmingly false
positives. Such calls are typically caused by reference genome
alignment artefacts, and users would do well to be sceptical of
high-coverage outliers, either manually examining the local
alignment or filtering very high-coverage calls. Although we have
used coverage as a proxy for call quality when a score is not
reported by the caller, this is not ideal. While some callers did
report variant quality scores, they were likely not well calibrated
as probabilities.

User/Developer recommendation: Do not consider simulation
results representative of real-world performance. Simulated results
should not be considered representative of performance on real
data, but rather an upper bound on actual performance. Simu-
lations are a useful tool for debugging callers, identifying the
limits of detection of algorithms on idealised data, and under-
standing how these limits vary with typical sequencing para-
meters: read length, sequencing depth, and library fragment size,
but they are no substitute for extensive testing on real data.

User/Developer recommendation: Use specialised algorithms for
simple, tandem and low complexity repeats. Although Pindel and
manta are notably better than other callers at detecting small
events with long homology, current general-purpose SV callers
cannot yet reliably detect variants in simple or tandem repeats,
and specialised algorithms are required for this. Users that require
variant call information, such as microsatellite repeat expansions,
in such regions should use a specialised caller. Developers should
consider how to improve caller performance in simple/tandem
repeat sequences, provide user guidance on caller detection lim-
itations in these regions and provide recommendation on
complementary tools.

Developer recommendation: Benchmark using real data. Most
methods perform well on simulated data, which is useful for
detecting the theoretical limits of a method or implementation,
but is too simple compared to messy real data. Claims made
about caller performance should be based on actual sequencing
data not simulations. The NA12878 cell line is typically used as a
validation set, even though the official GIAB NIST variant call set
does not yet include SVs. With the availability of comprehensive
SV call sets for CHM1/CHM13 and HG002, developers should
include benchmarking results from these datasets when pub-
lishing new methods. Detailed manual investigation of false-
positive and false-negative calls in the benchmarking samples
should be used to refine the variant caller and improve
performance.

Developer recommendation: Beware of incomplete truth sets,
overfitting methods to a single dataset, or training and testing
methods on the same variant set. Some methods achieved excel-
lent performance on only a subset of the datasets. There are many
possible explanations of this, but one alarming possibility is that
methods are overfitted to one or few reference datasets. This may
particularly be an issue with older or potentially incomplete
reference datasets, such as NA12878. As more comprehensive
truth sets become available, it is imperative that developers
benchmark new tools against multiple datasets to ensure that
certain classes of events are not overlooked. Developers should
benchmark their tools to improve variant calling, but it is
important to establish separate training and testing datasets to
avoid the problem of overfitting. Tools should be tested on
multiple diverse datasets using the most comprehensive truth sets
available.

Developer recommendation: Implement sanity checks for invalid
inputs. Implement sanity checks for inputs to prevent egregious
misuse of software on inappropriate data. For PE-based callers,
refusing to process sequencing data with overlapping reads, as is
done by GASV-Pro and CLEVER, is a better outcome than
reporting incorrect results. Similarly, checking the inferred frag-
ment size distribution and read-pair orientation will prevent a
tool designed for read-pair sequencing from reporting non-
sensical results when run on a mate-pair library.

Developer recommendation: Usability matters! Usability is an
important consideration for publicly released tools designed for
general usage. Although the command-line execution of most
programmes is relatively straightforward (1–2 commands, with
an average of seven parameters), this is not universal. Avoiding
unnecessary parameters (e.g. library fragment size distribution,
which can be computed from the input file), providing meaning
defaults and useful error messages, and having up-to-date doc-
umentation and a user guide not only improve the user experi-
ence but also significantly reduce the developer support burden.

Developer recommendation: Use standard file formats such as
SAM and VCF. Using standard file formats such as SAM/BAM
for input of aligned reads and VCF/BCF for variant calls.
Adoption of standardised formats allows users’ to more easily
replace an existing tool with your software, simplifies the
downstream analysis of the called variants and reduces the like-
lihood of users’ misinterpreting the meaning of fields in the
custom format (such as misinterpreting the genomic interval
reported by BreakDancer as the breakpoint interval). SAM/BAM,
VCF and fasta libraries are available in many languages and allow
your programme to support such formats with minimal effort.

Developer recommendation: Follow software development best
practices. All software, including bioinformatics software, can
benefit from following software development best practices.
Although many best practices are language-specific, others such
as using version control system, unit testing, continuous inte-
gration, documentation and user guides, and explicit versioning
of software releases are universally applicable.

Developer recommendation: Report non-templated sequence
insertions and micro-homologies. Methods using only coverage or
read-pair evidence cannot produce variant calls with base pair-
level accuracy. While SR- and assembly-based methods are in
theory capable of base pair-accurate calling, many callers do not
detect and report non-templated sequence insertions. This is a
problem for the clinically relevant task of determining the func-
tional impact of a variant: knowing the full nucleotide sequence
across the breakpoint is critical to correctly reconstructing amino
acid-level changes. Similarly, reporting breakpoint micro-
homology allows downstream tools to account for the inherent
ambiguity in the breakpoint position.

Developer recommendation: Use all available evidence, includ-
ing assembly. Unsurprisingly, our benchmarking has demon-
strated that SV callers that utilise multiple signals outperform
calls based on a single signal. Incorporation of some form
assembly is particularly important as it allows weaker evidence,
such as SC reads that are not able to be split-read aligned, to be
incorporated in variant calling. We predict that incorporating RD
information in an existing SR/PE/assembly-based method will
lead to further improvements.

Developer recommendation: Produce meaningful and well-
behaved quality scores. Although common for SNV and small
indel callers, we are not aware of any SV callers that reports a
quality score that adheres to the VCF file format definition of the
phred-scaled likelihood of the variant being true. The lack of
calibrated quality scores is problematic for users as without first
performing a benchmarking comparison such as this, it is very
difficult to determine what threshold use. By reporting a sensitive
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call set with meaningful quality scores, the user is given a
meaningful choice as to the relative undesirability of Type I and
Type II errors. Note that such scores do not necessarily have to be
incorporated into the variant caller itself. For sufficiently well-
annotated variant calls, quality score calculation and calibration
can be performed independently using the ‘raw’ variant calls as
an input.

For tool developers, there is still room for improvement of SV
detection from short read sequence using more sophisticated
approaches, as well as opportunities to incorporate long read or
linked read data. Unfortunately, the development of such tools is
hampered by the scarcity of comprehensive benchmarking SV call
sets. This scarcity is particularly acute for non-deletion and
somatic events. To overcome this, we need more benchmarking
datasets, particularly for somatic analysis, and spanning multiple
rearrangement types.

For users, the number of SV callers to choose from will only
continue to grow. Our benchmarking indicates that for human
studies with typical sequencing parameters, manta and GRIDSS
or more recent callers that include assembly with all other forms
of evidence are likely to be the best-performing caller.

Methods
Selection of SV callers. The choice of SV callers chosen is critical to the evaluation
process. To ensure tools were evaluated based on their intended usage, only
general-purpose DNA-sequencing SV callers were considered, with specialised
callers such as transposable element, viral insertion, SNV/small indel or RNA-
sequencing gene fusion callers excluded from consideration. To ensure that popular
tools were included and that the callers selected were a representative cross-section
of the algorithmic approaches used for SV detection, multiple criteria were used for
the selection of callers. First, Web of Science citation counts were used as a proxy
for tool popularity. Citation counts were retrieved for each tool and variant callers
were included if amongst the 20% most highly cited, or amongst the 20% with the
highest yearly citation rate. Second, the algorithmic approach of each caller was
determined (Supplementary Table 1) and the tool with the highest yearly citation
rate for each approach was added to the list. For tools with multiple publications
such as GASV/GASV-Pro, VariationHunter/VariationHunter-CR/Var-
iationHunter-CommonLAW and HYDRA/HYDRA-Multi, only the most recently
published version was selected.

Using these criteria, the following SV callers were selected: VariationHunter-
CommonLAW 0.0.4, GASV-Pro 20140228, Pindel 0.2.5b6, BreakDancer 1.3.5,
HYDRA-Multi 0.5.2, CREST 0.0.1, DELLY 0.6.8, cortex 1.0.5.14, SOCRATES 1.13,
LUMPY 0.2.11, CLEVER 2.0rc3, GRIDSS 0.11.5, SOAPsv and manta 0.29.6.
Although highly cited, BreakPointer was excluded, as dRanger, the upstream
calling software required for usage of BreakPointer was not publicly available.

Variant calling pipeline. For each dataset, the paired FASTQ input files were
aligned to the relevant human reference genome (hg19 or hg38) using bwa mem
(versions 0.6.1 (NA12878), 0.7.10 (simulations), 0.7.13 (HG002, CHM1, CHM13)),
bowtie2 (version 2.3.2), and mrFast (version 2.6.0.1). BAMs sorted by chromosome
and read name were generated for each output BAM.

For each variant caller and dataset, a driver script was generated
programmatically. Using the input format required by the variant caller (paired
FASTQ, chromosome sorted BAM, read name sorted BAM, or mrFast DIVET),
variants were called based on the recommended settings. Recommended settings
were taken from the usage message received when executing the programme with
invalid arguments, the user guide, README, software website or publication in
that order of preference. For variant callers that do not output VCF files, a python
conversion script was created to convert the output format to VCFv4.2. Runtime
performance was measured using the Unix time command on the variant calling
shell script. Scripts were executed on a dual socket Xeon E5-2690v4 with 512GB of
memory.

In line with the expected usage, software authors were not contacted directly
regarding recommended settings. If a fatal error was encountered prohibiting the
successful execution of the software, a message was posted to a publicly usable
mailing list and an issue was raised on a publicly usable issue registry. Read-only
issue registries (such as those hosted on Google Code and not migrated to Github)
were not considered publicly usable. For each programme, a professional software
engineer was allocated 2 days to generate the variant calling script and create any
reference files required by that programme. If after 2 days a working script could
not be created, the programme was deemed to have insufficient usability for
widespread usage and was excluded.

VCF variant calls were converted to sets of breakpoint calls using the R
StructuralVariantAnnotation package (http://github.com/PapenfussLab/
StructuralVariantAnnotation) and matching was performed on the constituent

breakpoints. Breakpoints were considered matching if both the start and the end
breakpoint position were within 200 bp of the true positions, and the event sizes
differed by at most 25%. These criteria were selected to ensure that PE callers were
not penalised for reporting the position inaccurately (particularly BreakDancer),
and that our evaluation did not report spurious false positives due to unrelated
overlapping events (e.g. 400 bp deletion call would not be matched with a 50 bp
deletion). The two breakpoints composing inversion events were matched
independently. When the called variant position was ambiguous due to micro-
homology or inexact calling by PE-based callers, the breakpoint was considered
matched if any position in the interval of ambiguity was within the 200 bp window.
As BreakDancer does not report the breakpoint orientation of variant calls,
breakpoints were considered to match even if their orientations did not. Variant
calls written to the primary output file with ‘.’ or ‘PASS’ in VCF FILTER column
were included in the ‘PASS-Only’ call set. Note that this definition of a matching
call is not commutative. The CHM1/CHM13 synthetic diploid truth set was
constructed by taking the union of the CHM1 and CHM13 truth sets.
Homozygous/duplicate calls in the truth set were handled by calculating the
overlap between truth set calls using the above-matching logic and adjusting the
total used to calculate recall accordingly.

Inter-chromosomal variants and variants under 50 bp were excluded from
analysis. For the hg19 NA12878 dataset, breakpoints with either breakend within
200 bp any of the intervals listed in the ENCODE DAC blacklist were excluded
from analysis.

Nearby SNVs and indel were calculated with bcftools version 1.3.1 using the -m
multi-allelic bcftools call command-line option. No SNV or indel filtering was
performed. SNVs/indels were considered near an SV breakpoint if the SNV/indel
position was within 50 bp of the nominal SV position. Sequence micro-homology
and imprecise breakpoint intervals were not considered when determining the
number of nearby SNVs/indels.

Breakends were annotated according to their top-level RepeatMasker repeat
class, with all classes other than DNA, LINE, SINE, LTR, Low_complexity and
Simple_repeat collapsed into Other. Breakends in Simple_repeat regions or
overlapping a TRF region (using “HG19 − 2,3,5,50 v2 Full Genome_repeats.bed”
or “Homo sapiens HG38 (2,5,7,50, centr. excluded) Full Genome_repeats.bed”
from the tandem repeats database http://tandem.bu.edu/cgi-bin/trdb/trdb.exe), but
not a RepeatMasker region were labelled as Simple/Tandem.

For true-positive events, the variant length was considered to be the length of
the variant in the truth set, and for false positives, the variant length was considered
to be the length reported by the caller. As HYDRA reports all event as >500 bp,
using the true variant length resulted in an apparently perfect specificity for <500
bp events, but using the variant-reported length resulted in an apparent sensitivity
in to 500–1000 bp range greater than that of any other caller. HYDRA results were
excluded from the final panel of Fig. 2 to prevent any confusion or
misrepresentation caused by inaccurate reporting of variant length by HYDRA.

Cell line evaluation. For the Coriell Cell Repository NA12878 reference cell line,
50× coverage PCR-free 2 × 101 bp WGS reads from a HiSeq2000 were obtained
from Illumina Platinum Genomes projects (https://basespace.illumina.com/s/
Tty7T2ppH3Tr).

CHM1 and CHM13 cell line 40× coverage 2 × 100 bp Illumina WGS reads
were obtained from the ENA short read archive (ENA accessions ERR1341794,
ERR1341795), and the associated truth VCFs from http://eichlerlab.gs.
washington.edu/publications/Huddleston2016/structural_variants. The
synthetic diploid CHM1/CHM13 dataset was generated by merging the
sequencing data from the individual cell lines. The synthetic diploid truth set
was obtained by merging the individual truth sets. Callers were run on the 80×
coverage merged data. CHM1/CHM13 variants were considered true positives if
a match could be found in either the CHM1 or CHM13 truth set. For
consistency with the truth sets used, hg19 was used as the reference genome for
NA12878, and hg38 was used for CHM1 and CHM13. Pindel CHM1/
CHM13 synthetic diploid results were excluded due to Pindel hanging on chr2.
Attaching gdb to the running process indicates it was executing an O(n2) nested
for loop with n over 3,000,000.

The hg19 HG002 truth set was obtained from ftp://ftp-trace.ncbi.nlm.nih.
gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/
HG002_SVs_Tier1_v0.6.vcf.gz with sequencing data obtained from ftp://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/
NIST_HiSeq_HG002_Homogeneity-10953946/NHGRI_Illumina300X_AJtrio_
novoalign_bams/HG002.hs37d5.60X.1.bam. Variant calls with either breakend
falling outside the high-confidence Tier 1 regions defined in ftp://ftp-trace.ncbi.
nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_
v0.6/HG002_SVs_Tier1_v0.6.bed were excluded from analysis.

Ensembles call sets were generated for all combinations of callers and all n-of-m
inclusion rules. The call set for each caller was compared to the truth set and to
each other caller using the call matching logic previously outlined, giving a call
overlap matrix. Since the matching logic allows for errors, call overlaps are
symmetric but not necessarily transitive. This makes the determination of an
ensemble call set ambiguous when chains of non-transitive calls are present. To
overcome this ambiguity, we determined the precision and recall of the ensemble
call set by first removing any call made by an ensemble caller that did not
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overlapping at least n callers in the ensemble, then counting the remaining calls as
either true positive or false positive based on their overlap with the truth set, and
dividing the totals by m, the number of callers in the ensemble. This was performed
for all calls, as well as the PASS-Only subset of call for each ensemble.

In silico datasets. Five variant types were simulated: insertions, deletions, inver-
sions, tandem duplications, and unbalanced intra-chromosomal translocations. To
allow precision and recall to be calculated per variant type, each dataset contained
only heterozygous events of a single type. For insertion, deletion, inversion and
tandem duplication events, 500 SVs of sizes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 20, 24,
28, 32, 48, 64, 80, 96, 112, 128, 160, 192, 224, 256, 288, 320, 512, 1024, 2048, 4096,
8192, 16,384, 32,768, and 65,536 base pairs (bp) were inserted for a total of 18,000
SVs of each type. SVs were placed in order of the lowest coordinate genomic
position with at least 2500 bp separation from any other event or ambiguous
reference base (N). Translocations were simulated by fragmenting chr12 into 2500
bp fragments and randomly reassembling 10,000 of the resulting fragments. Var-
iants under 50 bp were ignored.

Since not all variant callers are capable of the detection of inter-chromosomal
events, all events were simulated on a single chromosome. Human hg19
chromosome 12 was chosen as it has close to the median chromosome size and GC
content of the human genome, is rich in oncogenes, has been previously used for
similar simulations, and all auxiliary reference files required by the variant callers
were available for hg19.

Art 1.5177 using a MiSeq error profile was used to generate simulated PE reads
of lengths 36, 50, 75, 100, 150, and 250 bp at RDs of 4, 8, 15, 30, 60, and 100× mean
coverage, from fragment sizes of 150, 200, 250, 300, 400, and 500 ± 10% base pairs.
While reads were simulated exclusively from hg19 chr12, reads were aligned
against the full hg19 reference genome.

When a result for a variant caller is presented without specifying an aligner, the
result corresponds to the result for the most sensitive aligner for the given caller,
event type, RD, read length and fragment size.

Quality scores and read counts. Variants were ranked according to the caller-
reported quality score or, if no quality score was reported, by the total number of
reads reported by the caller as supporting the variant.

Confidence intervals in Fig. 4 were calculated using the binom.confint function
in R, using the exact method.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets that support the findings of this study are: The NA12878 dataset is available
from https://basespace.illumina.com/s/Tty7T2ppH3Tr. The CHM1 and CHM13 dataset
is available from the ENA repository (accessions ERR1341794 and ERR1341795). The
CHM1 and CHM13 SV dataset is available from http://eichlerlab.gs.washington.edu/
publications/Huddleston2016/structural_variants. The HG002 dataset is available from
NCBI (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/
HG002_NA24385_son/NIST_HiSeq_HG002_Homogeneity-10953946/
NHGRI_Illumina300X_AJtrio_novoalign_bams/HG002.hs37d5.60x.1.bam) and the
HG002 SVs are available from ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/
AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/HG002_SVs_Tier1_v0.6.vcf.gz.

Code availability
All code is available at http://github.com/PapenfussLab/sv_benchmark.
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