The genetic network controlling plasma cell differentiation
Details
Publication Year 2011-10, Volume 23, Issue #5, Page 341-349
Journal Title
SEMINARS IN IMMUNOLOGY
Publication Type
Journal Article
Abstract
Upon activation by antigen, mature B cells undergo immunoglobulin class switch recombination and differentiate into antibody-secreting plasma cells, the endpoint of the B cell developmental lineage. Careful quantitation of these processes, which are stochastic, independent and strongly linked to the division history of the cell, has revealed that populations of B cells behave in a highly predictable manner. Considerable progress has also been made in the last few years in understanding the gene regulatory network that controls the B cell to plasma cell transition. The mutually exclusive transcriptomes of B cells and plasma cells are maintained by the antagonistic influences of two groups of transcription factors, those that maintain the B cell program, including PaxS, Bach2 and Bcl6, and those that promote and facilitate plasma cell differentiation, notably Irf4, Blimp1 and Xbp1. In this review, we discuss progress in the definition of both the transcriptional and cellular events occurring during late B cell differentiation, as integrating these two approaches is crucial to defining a regulatory network that faithfully reflects the stochastic features and complexity of the humoral immune response. (C) 2011 Elsevier Ltd. All rights reserved.
Publisher
ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
Keywords
Plasma cell; B cell; Transcription factor; Gene regulatory network
WEHI Research Division(s)
Immunology; Molecular Immunology
Rights Notice
Copyright © 2011 Elsevier Ltd. All rights reserved.


Creation Date: 2011-10-01 12:00:00
Last Modified: 0001-01-01 12:00:00
An error has occurred. This application may no longer respond until reloaded. Reload 🗙