Structure and sodium channel activity of an excitatory I-1-superfamily conotoxin
Details
Publication Year 2007-09-04,Volume 46,Issue #35,Page 9929-9940
Journal Title
BIOCHEMISTRY
Publication Type
Journal Article
Abstract
Conotoxin iota-RXIA, from the fish-hunting species Conus radiatus, is a member of the recently characterized I-1-superfamily, which contains eight cysteine residues arranged in a -C-C-CC-CC-C-C- pattern. iota-RXIA (formerly designated r11a) is one of three characterized I-1 peptides in which the third last residue is posttranslationally isomerized to the D configuration. Naturally occurring iota-RXIA with D-Phe44 is significantly more active as an excitotoxin than the L-Phe analogue both in vitro and in vivo. We have determined the solution structures of both forms by NMR spectroscopy, the first for an I-1-superfamily member. The disulfide connectivities were determined from structure calculations and confirmed chemically as 5-19, 12-22, 18-27, and 21-38, suggesting that iota-RXIA has an ICK structural motif with one additional disulfide (21-38). Indeed, apart from the first few residues, the structure is well defined up to around residue 35 and does adopt an ICK structure. The C-terminal region, including Phe44, is disordered. Comparison of the D-Phe44 and L-Phe44 forms indicates that the switch from one enantiomer to the other has very little effect on the structure, even though it is clearly important for receptor interaction based on activity data. Finally, we identify the target of iota-RXIA as a voltage-gated sodium channel; iota-RXIA is an agonist, shifting the voltage dependence of activation of mouse Na(V)1.6 expressed in Xenopus oocytes to more hyperpolarized potentials. Thus, there is a convergence of structure and function in iota-RXIA, as its disulfide pairing and structure resemble those of funnel web spider toxins that also target sodium channels.
Publisher
AMER CHEMICAL SOC
Keywords
FUNNEL-WEB SPIDER; OMEGA-AGA-IVB; D-AMINO-ACID; CYSTINE KNOT; CALCIUM CHANNELS; NMR-SPECTROSCOPY; SELF-ASSOCIATION; CONUS PEPTIDES; SUPERFAMILY; ANTAGONIST
Terms of Use/Rights Notice
Refer to copyright notice on published article.


Creation Date: 2007-09-04 12:00:00
An error has occurred. This application may no longer respond until reloaded. Reload 🗙