A conserved region in the EBL proteins is implicated in microneme targeting of the malaria parasite Plasmodium falciparum
Details
Publication Year 2006-10-20,Volume 281,Issue #42,Page 31995-32003
Journal Title
JOURNAL OF BIOLOGICAL CHEMISTRY
Publication Type
Journal Article
Abstract
The proliferation of the malaria parasite Plasmodium falciparum within the human host is dependent upon invasion of erythrocytes. This process is accomplished by the merozoite, a highly specialized form of the parasite. Secretory organelles including micronemes and rhoptries play a pivotal role in the invasion process by storing and releasing parasite proteins. The mechanism of protein sorting to these compartments is unclear. Using a transgenic approach we show that trafficking of the most abundant micronemal proteins (members of the EBL-family: EBA-175, EBA-140/BAEBL, and EBA-181/JSEBL) is independent of their cytoplasmic and transmembrane domains, respectively. To identify the minimal sequence requirements for microneme trafficking, we generated parasites expressing EBAGFP chimeric proteins and analyzed their distribution within the infected erythrocyte. This revealed that: (i) a conserved cysteine-rich region in the ectodomain is necessary for protein trafficking to the micronemes and (ii) correct sorting is dependent on accurate timing of expression.
Publisher
AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
Keywords
APICAL MEMBRANE ANTIGEN-1; TRANS-GOLGI NETWORK; TOXOPLASMA-GONDII; SECRETORY PATHWAY; ENDOPLASMIC-RETICULUM; HUMAN ERYTHROCYTES; QUALITY-CONTROL; INFECTED ERYTHROCYTES; HOST ERYTHROCYTE; LIFE-CYCLE
Terms of Use/Rights Notice
Refer to copyright notice on published article.


Creation Date: 2006-10-20 12:00:00
An error has occurred. This application may no longer respond until reloaded. Reload 🗙