The transcriptional coactivator Querkopf controls adult neurogenesis
- Author(s)
- Merson, TD; Dixon, MP; Collin, C; Rietze, RL; Bartlett, PF; Thomas, T; Voss, AK;
- Details
- Publication Year 2006-11-01,Volume 26,Issue #44,Page 11359-11370
- Journal Title
- JOURNAL OF NEUROSCIENCE
- Publication Type
- Journal Article
- Abstract
- The adult mammalian brain maintains populations of neural stem cells within discrete proliferative zones. Understanding of the molecular mechanisms regulating adult neural stem cell function is limited. Here, we show that MYST family histone acetyltransferase Querkopf (Qkf, Myst4, Morf)-deficient mice have cumulative defects in adult neurogenesis in vivo, resulting in declining numbers of olfactory bulb interneurons, a population of neurons produced in large numbers during adulthood. Qkf-deficient mice have fewer neural stem cells and fewer migrating neuroblasts in the rostral migratory stream. Qkf gene expression is strong in the neurogenic subventricular zone. A population enriched in multipotent cells can be isolated from this region on the basis of Qkf gene expression. Neural stem cells/progenitor cells isolated from Qkf mutant mice exhibited a reduced self-renewal capacity and a reduced ability to produce differentiated neurons. Together, our data show that Qkf is essential for normal adult neurogenesis.
- Publisher
- SOC NEUROSCIENCE
- Keywords
- NEURAL STEM-CELLS; MOUSE OLFACTORY-BULB; ZINC-FINGER PROTEIN; MAMMALIAN BRAIN; HISTONE ACETYLTRANSFERASE; SUBVENTRICULAR ZONE; NEURONAL MIGRATION; FOREBRAIN; LEUKEMIA; PROLIFERATION
- Publisher's Version
- https://doi.org/10.1523/JNEUROSCI.2247-06.2006
- Terms of Use/Rights Notice
- Refer to copyright notice on published article.
Creation Date: 2006-11-01 12:00:00