Evolution of protein quaternary structure in response to selective pressure for increased thermostability
Details
Publication Year 2016-03-22, Volume 428, Issue #11, Page 2359-2371
Journal Title
Journal of Molecular Biology
Publication Type
Journal Article
Abstract
Oligomerization has been suggested to be an important mechanism for increasing or maintaining the thermostability of proteins. Although it is evident that protein-protein contacts can result in substantial stabilization in many extant proteins, evidence for evolutionary selection for oligomerization is largely indirect and little is understood of the early steps in the evolution of oligomers. A laboratory-directed evolution experiment that selected for increased thermostability in the alphaE7 carboxylesterase from the australian sheep blowfly, Lucilia cuprina, resulted in a thermostable variant, LcalphaE7-4a, that displayed increased levels of dimeric and tetrameric quaternary structure. A trade-off between activity and thermostability was made during the evolution of thermostability, with the higher-order oligomeric species displaying the greatest thermostability and lowest catalytic activity. Analysis of monomeric and dimeric LcalphaE7-4a crystal structures revealed that only one of the oligomerization-inducing mutations was located at a potential protein:protein interface. This work demonstrates that by imposing a selective pressure demanding greater thermostability, mutations can lead to increased oligomerization and stabilization, providing support for the hypothesis that oligomerization is a viable evolutionary strategy for protein stabilization.
Publisher
Elsevier
WEHI Research Division(s)
Cell Signalling And Cell Death
PubMed ID
27016206
Rights Notice
Refer to copyright notice on published article.


Creation Date: 2016-04-05 01:44:00
Last Modified: 2018-03-20 03:04:55
An error has occurred. This application may no longer respond until reloaded. Reload 🗙