Combined immune checkpoint blockade as a therapeutic strategy for BRCA1-mutated breast cancer
Details
Publication Year 2017-06-07,Volume 9,Issue #393,Page eaal4922
Journal Title
Science Translational Medicine
Publication Type
Journal Article
Abstract
Immune checkpoint inhibitors have emerged as a potent new class of anticancer therapy. They have changed the treatment landscape for a range of tumors, particularly those with a high mutational load. To date, however, modest results have been observed in breast cancer, where tumors are rarely hypermutated. Because BRCA1-associated tumors frequently exhibit a triple-negative phenotype with extensive lymphocyte infiltration, we explored their mutational load, immune profile, and response to checkpoint inhibition in a Brca1-deficient tumor model. BRCA1-mutated triple-negative breast cancers (TNBCs) exhibited an increased somatic mutational load and greater numbers of tumor-infiltrating lymphocytes, with increased expression of immunomodulatory genes including PDCD1 (PD-1) and CTLA4, when compared to TNBCs from BRCA1-wild-type patients. Cisplatin treatment combined with dual anti-programmed death-1 and anti-cytotoxic T lymphocyte-associated antigen 4 therapy substantially augmented antitumor immunity in Brca1-deficient mice, resulting in an avid systemic and intratumoral immune response. This response involved enhanced dendritic cell activation, reduced suppressive FOXP3+ regulatory T cells, and concomitant increase in the activation of tumor-infiltrating cytotoxic CD8+ and CD4+ T cells, characterized by the induction of polyfunctional cytokine-producing T cells. Dual (but not single) checkpoint blockade together with cisplatin profoundly attenuated the growth of Brca1-deficient tumors in vivo and improved survival. These findings provide a rationale for clinical studies of combined immune checkpoint blockade in BRCA1-associated TNBC.
Publisher
AAAS
Research Division(s)
Stem Cells And Cancer; Molecular Genetics Of Cancer
PubMed ID
28592566
Terms of Use/Rights Notice
Refer to copyright notice on published article.


Creation Date: 2017-06-26 02:15:28
Last Modified: 2018-07-04 09:19:29
An error has occurred. This application may no longer respond until reloaded. Reload 🗙