SNP barcodes provide higher resolution than microsatellite markers to measure Plasmodium vivax population genetics
Details
Publication Year 2020-10-20, Volume 19, Issue #1, Page 375
Journal Title
Malaria Journal
Publication Type
Journal Article
Abstract
BACKGROUND: Genomic surveillance of malaria parasite populations has the potential to inform control strategies and to monitor the impact of interventions. Barcodes comprising large numbers of single nucleotide polymorphism (SNP) markers are accurate and efficient genotyping tools, however may need to be tailored to specific malaria transmission settings, since 'universal' barcodes can lack resolution at the local scale. A SNP barcode was developed that captures the diversity and structure of Plasmodium vivax populations of Papua New Guinea (PNG) for research and surveillance. METHODS: Using 20 high-quality P. vivax genome sequences from PNG, a total of 178 evenly spaced neutral SNPs were selected for development of an amplicon sequencing assay combining a series of multiplex PCRs and sequencing on the Illumina MiSeq platform. For initial testing, 20 SNPs were amplified in a small number of mono- and polyclonal P. vivax infections. The full barcode was then validated by genotyping and population genetic analyses of 94 P. vivax isolates collected between 2012 and 2014 from four distinct catchment areas on the highly endemic north coast of PNG. Diversity and population structure determined from the SNP barcode data was then benchmarked against that of ten microsatellite markers used in previous population genetics studies. RESULTS: From a total of 28,934,460 reads generated from the MiSeq Illumina run, 87% mapped to the PvSalI reference genome with deep coverage (median = 563, range 56-7586) per locus across genotyped samples. Of 178 SNPs assayed, 146 produced high-quality genotypes (minimum coverage = 56X) in more than 85% of P. vivax isolates. No amplification bias was introduced due to either polyclonal infection or whole genome amplification (WGA) of samples before genotyping. Compared to the microsatellite panels, the SNP barcode revealed greater variability in genetic diversity between populations and geographical population structure. The SNP barcode also enabled assignment of genotypes according to their geographic origins with a significant association between genetic distance and geographic distance at the sub-provincial level. CONCLUSIONS: High-throughput SNP barcoding can be used to map variation of malaria transmission dynamics at sub-national resolution. The low cost per sample and genotyping strategy makes the transfer of this technology to field settings highly feasible.
Publisher
BMC
Keywords
Diversity; Malaria; Microsatellites; Papua New Guinea; Plasmodium vivax; Population structure; Single Nucleotide Polymorphisms (SNPs)
WEHI Research Division(s)
Population Health And Immunity
PubMed ID
33081815
Open Access at Publisher's Site
https://doi.org/10.1186/s12936-020-03440-0
NHMRC Grants
NHMRC/1027108 NHMRC/1102971
Rights Notice
Refer to copyright notice on published article.


Creation Date: 2021-02-01 12:05:17
Last Modified: 2021-03-02 10:10:25
An error has occurred. This application may no longer respond until reloaded. Reload 🗙