Transcriptome dynamics of CD4(+) T cells during malaria maps gradual transit from effector to memory
Journal Title
Nature Immunology
Publication Type
Journal epub ahead of print
Abstract
The dynamics of CD4(+) T cell memory development remain to be examined at genome scale. In malaria-endemic regions, antimalarial chemoprevention protects long after its cessation and associates with effects on CD4(+) T cells. We applied single-cell RNA sequencing and computational modelling to track memory development during Plasmodium infection and treatment. In the absence of central memory precursors, two trajectories developed as T helper 1 (TH1) and follicular helper T (TFH) transcriptomes contracted and partially coalesced over three weeks. Progeny of single clones populated TH1 and TFH trajectories, and fate-mapping suggested that there was minimal lineage plasticity. Relationships between TFH and central memory were revealed, with antimalarials modulating these responses and boosting TH1 recall. Finally, single-cell epigenomics confirmed that heterogeneity among effectors was partially reset in memory. Thus, the effector-to-memory transition in CD4(+) T cells is gradual during malaria and is modulated by antiparasitic drugs. Graphical user interfaces are presented for examining gene-expression dynamics and gene-gene correlations ( http://haquelab.mdhs.unimelb.edu.au/cd4_memory/ ).
Publisher
NPG
Research Division(s)
Immunology
PubMed ID
33046889
Terms of Use/Rights Notice
Refer to copyright notice on published article.


Creation Date: 2020-11-02 04:55:19
Last Modified: 2020-11-03 09:29:22
An error has occurred. This application may no longer respond until reloaded. Reload 🗙