Analysis of the regulation of the A33 antigen gene reveals intestine-specific mechanisms of gene expression
Details
Publication Year 2002-09-13,Volume 277,Issue #37,Page 34531-9
Journal Title
The Journal of biological chemistry
Publication Type
Journal Article
Abstract
The A33 antigen is a transmembrane protein expressed almost exclusively by intestinal epithelial cells. The level of its expression is robust and uniform throughout the rostrocaudal axis of the human and mouse intestines. In the colon, strong expression is found in the basolateral membranes of both the proliferating cells in the lower regions of the crypts and the differentiating cells in the upper regions of crypts. Similarly, in the small intestine, the protein is highly expressed by all the epithelial cells in the crypts and by the differentiated cells migrating over the villi. Thus, the A33 antigen has emerged as a definitive marker for all intestinal epithelial cells, irrespective of cell lineage and differentiation status. To understand the molecular mechanisms mediating this rare tissue-specific expression pattern, we undertook a comprehensive analysis of the 5'-regulatory region of the human A33 antigen gene. This allowed us to point to positive cis-regulatory elements incorporating consensus Kruppel-like factor and caudal-related homeobox (CDX)-binding sites, located just upstream from the human A33 antigen transcription start site, as being important for the intestine-specific expression pattern of this gene. Further analysis provided evidence that the A33 antigen gene may be one of only a few target genes to be described thus far for the intestine-specific homeobox transcription factor, CDX1. Taken together, our data lead us to propose that the activity of CDX1 is pivotal in mediating the exquisite, intestine-specific expression pattern of the A33 antigen gene.
Terms of Use/Rights Notice
Refer to copyright notice on published article.


Creation Date: 2014-02-13 03:23:15
An error has occurred. This application may no longer respond until reloaded. Reload 🗙