The oncogenic properties of EWS/WT1 of desmoplastic small round cell tumors are unmasked by loss of p53 in murine embryonic fibroblasts
Details
Publication Year 2013-12-09,Volume 13,Issue #1,Page 585
Journal Title
BMC cancer
Publication Type
Journal Article
Abstract
BACKGROUND: Desmoplastic small round cell tumor (DSRCT) is characterized by the presence of a fusion protein EWS/WT1, arising from the t (11;22) (p13;q12) translocation. Here we examine the oncogenic properties of two splice variants of EWS/WT1, EWS/WT1-KTS and EWS/WT1 + KTS. METHODS: We over-expressed both EWS/WT1 variants in murine embryonic fibroblasts (MEFs) of wild-type, p53+/- and p53-/- backgrounds and measured effects on cell-proliferation, anchorage-independent growth, clonogenicity after serum withdrawal, and sensitivity to cytotoxic drugs and gamma irradiation in comparison to control cells. We examined gene expression profiles in cells expressing EWS/WT1. Finally we validated our key findings in a small series of DSRCT. RESULTS: Neither isoform of EWS/WT1 was sufficient to transform wild-type MEFs however the oncogenic potential of both was unmasked by p53 loss. Expression of EWS/WT1 in MEFs lacking at least one allele of p53 enhanced cell-proliferation, clonogenic survival and anchorage-independent growth. EWS/WT1 expression in wild-type MEFs conferred resistance to cell-cycle arrest after irradiation and daunorubicin induced apoptosis. We show DSRCT commonly have nuclear localization of p53, and copy-number amplification of MDM2/MDMX. Expression of either isoform of EWS/WT1 induced characteristic mRNA expression profiles. Gene-set enrichment analysis demonstrated enrichment of WNT pathway signatures in MEFs expressing EWS/WT1 + KTS. Wnt-activation was validated in cell lines with over-expression of EWS/WT1 and in DSRCT. CONCLUSION: In conclusion, we show both isoforms of EWS/WT1 have oncogenic potential in MEFs with loss of p53. In addition we provide the first link between EWS/WT1 and Wnt-pathway signaling. These data provide novel insights into the function of the EWS/WT1 fusion protein which characterize DSRCT. (253 words).
Publisher
BioMed Central
Research Division(s)
Cell Signalling And Cell Death; Cancer And Haematology
Open Access at Publisher's Site
http://www.biomedcentral.com/1471-2407/13/585
Terms of Use/Rights Notice
© 2013 Bandopadhayay et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


Creation Date: 2014-01-20 02:41:55
An error has occurred. This application may no longer respond until reloaded. Reload 🗙