Defective lipid signalling caused by mutations in PIK3C2B underlies focal epilepsy
Journal Title
Brain
Publication Type
epub ahead of print
Abstract
Epilepsy is one of the most frequent neurological diseases, with focal epilepsy accounting for the largest number of cases. The genetic alterations involved in focal epilepsy are far from being fully elucidated. Here, we show that defective lipid signalling caused by heterozygous ultra-rare variants in PIK3C2B, encoding for the class II phosphatidylinositol 3-kinase PI3K-C2β, underlie focal epilepsy in humans. We demonstrate that patients' variants act as loss-of-function alleles, leading to impaired synthesis of the rare signalling lipid phosphatidylinositol 3,4-bisphosphate, resulting in mTORC1 hyperactivation. In vivo, mutant Pik3c2b alleles caused dose-dependent neuronal hyperexcitability and increased seizure susceptibility, indicating haploinsufficiency as a key driver of disease. Moreover, acute mTORC1 inhibition in mutant mice prevented experimentally induced seizures, providing a potential therapeutic option for a selective group of patients with focal epilepsy. Our findings reveal an unexpected role for class II PI3K-mediated lipid signalling in regulating mTORC1-dependent neuronal excitability in mice and humans.
Publisher
Oxford Academic
Keywords
Pi3k-c2b; class II PI3K; epilepsy; mTOR; variants
Research Division(s)
Population Health And Immunity
PubMed ID
35786744
Open Access at Publisher's Site
https://doi.org/10.1093/brain/awac082
Terms of Use/Rights Notice
Refer to copyright notice on published article.


Creation Date: 2022-07-11 12:21:23
Last Modified: 2022-07-11 12:29:10
An error has occurred. This application may no longer respond until reloaded. Reload 🗙