Multiplex and multimodal mapping of variant effects in secreted proteins via MultiSTEP
Journal Title
Nature Structural & Molecular Biology
Publication Type
Jun 13
Abstract
Despite widespread advances in DNA sequencing, the functional consequences of most genetic variants remain poorly understood. Multiplexed assays of variant effect can measure the function of variants at scale but cannot readily be applied to the ~10% of human genes encoding secreted proteins. Here we develop a flexible, scalable human cell surface display method, multiplexed surface tethering of extracellular proteins (MultiSTEP), to study the consequences of missense variation in coagulation factor IX (FIX), a serine protease in which genetic variation can cause hemophilia B. We combine MultiSTEP with a panel of antibodies to detect FIX secretion and post-translational modification (PTM), measuring 44,816 variant effects for 436 synonymous variants and 8,528 of the 8,759 possible F9 missense variants. Almost half of missense variants impact secretion, PTM or both. We also identify functional constraints on secretion within the signal peptide and for nearly all gain or loss of cysteine variants. Secretion scores correlate strongly with FIX levels in hemophilia B and reveal that loss-of-secretion variants are more often associated with severe disease. Integration of the secretion and PTM scores enables reclassification of 63.1% of F9 variants of uncertain significance in the My Life, Our Future hemophilia genotyping project. Lastly, we show that MultiSTEP can be applied to other secreted proteins, thus demonstrating that MultiSTEP is a multiplexed, multimodal and generalizable method for systematically assessing variant effects in secreted proteins at scale.
Publisher
Springer Nature
Research Division(s)
Bioinformatics and Computational Biology
PubMed ID
40514537
Terms of Use/Rights Notice
Refer to copyright notice on published article.


Creation Date: 2025-06-26 09:55:27
Last Modified: 2025-06-26 09:56:13
An error has occurred. This application may no longer respond until reloaded. Reload 🗙