Optimization and Characterization of the Antimalarial Activity of N-Aryl Acetamides that are Susceptible to Mutations in ROM8 and CSC1
Details
Publication Year 2025-08-14,Volume 68,Issue #15,Page 16613-16644
Journal Title
Journal of Medicinal Chemistry
Abstract
New antimalarials are needed due to the threat of emerging resistance against existing antimalarial therapies. A phenotypic screen uncovered the N-aryl acetamide class that inhibits the development of P. falciparum asexual ring-stage parasites. The structure-activity relationship of this class was investigated, and key modifications were introduced that produced WEHI-326 with potent antimalarial activity. Enhancing the metabolic stability of this class will be a future challenge to achieve efficacy in a malaria mouse model. WEHI-326 was found to have a moderate barrier to resistance and a moderate rate of asexual kill, potently inhibited gametocyte and gamete development, and in turn, blocked the transmission of parasites to the mosquito. Forward genetics and cross-resistance profiling determined that parasites resistant to N-aryl acetamides had mutations in rhomboid protease 8 (ROM8) and the putative cation channel, CSC1. WEHI-326 will be an important tool in unraveling the role of ROM8 and CSC1 in P. falciparum development.
Publisher
ACS
Research Division(s)
New Medicines and Diagnostics
PubMed ID
40680058
Open Access at Publisher's Site
https://doi.org/10.1021/acs.jmedchem.5c01471
Terms of Use/Rights Notice
Refer to copyright notice on published article.


Creation Date: 2025-07-28 03:09:57
Last Modified: 2025-08-29 08:42:33
An error has occurred. This application may no longer respond until reloaded. Reload 🗙