Structure of a novel P-superfamily spasmodic conotoxin reveals an inhibitory cystine knot motif
Details
Publication Year 2002-11-08,Volume 277,Issue #45,Page 43033-43040
Journal Title
JOURNAL OF BIOLOGICAL CHEMISTRY
Publication Type
Journal Article
Abstract
Conotoxin gm9a, a putative 27-residue polypeptide encoded by Conus gloriamaris, was recently identified as a homologue of the "spasmodic peptide", tx9a, isolated from the venom of the mollusk-hunting cone shell Conus textile (Lirazan, M. B., Hooper, D., Corpuz, G. P., Ramilo, C. A., Bandyopadhyay, P., Cruz, L. J., and Olivera, B. M. (2000) Biochemistry 39, 1583-1588). The C. gloriamaris spasmodic peptide has been synthesized, and the refolded polypeptide was shown to be biologically active using a mouse bioassay. The chemically synthesized gm9a elicited the same symptomatology described previously for natively folded tx9a, and gm9a and tx9a were of similar potency, implying that neither the two gamma-carboxyglutamate (Gla) residues found in tx9a (Ser(8) and Ala(13) in gm9a) nor Gly(1) (Ser(1) in gm9a) are crucial for biological activity. We have determined the three-dimensional structure of gm9a in aqueous solution and demonstrated that the molecule adopts the well known inhibitory cystine knot motif constrained by three disulfide bonds involving Cys(2)-Cys(16), Cys(6)-Cys(18) and Cys(12)-Cys(23). Based on the gm9a structure, the sites of Gla substitution in tx9a are in loops located on one surface of the molecule, which is unlikely to be involved directly in receptor binding. Because this is the first structure reported for a member of the newly defined P-superfamily conotoxins, a comparison has been made with structurally related conotoxins. This shows that the structural scaffold that characterizes the P-conotoxins has the greatest potential for exhibiting structural diversity among the robust inhibitory cystine knot-containing conotoxins, a finding that has implications for functional epitope mimicry and protein engineering.
Publisher
AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
Keywords
3-DIMENSIONAL SOLUTION STRUCTURE; NUCLEAR MAGNETIC-RESONANCE; NMR STRUCTURE CALCULATION; SPIN COUPLING-CONSTANTS; MUSCLE SODIUM-CHANNELS; BIOLOGICAL MACROMOLECULES; GLYCINE RECEPTOR; PEPTIDES; SPECTROSCOPY; PROTEINS
Terms of Use/Rights Notice
Refer to copyright notice on published article.


Creation Date: 2002-11-08 12:00:00
An error has occurred. This application may no longer respond until reloaded. Reload 🗙