Specificity in signal transduction among glycosylphosphatidylinositols of Plasmodium falciparum, Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp.
Details
Publication Year 1999,Volume 21,Issue #12,Page 609-617
Journal Title
PARASITE IMMUNOLOGY
Publication Type
Journal Article
Abstract
Glycosylphosphatidylinositols (GPIs) and related glycoconjugates of parasite origin have been shown to regulate both the innate and acquired immune systems of the host. This is achieved through the activation of novel GPI-dependent signalling pathways in macrophages, lymphocytes and other cell types. Parasite GPIs impart at least two distinct signals to host cells through the structurally distinct inositolphosphoglycan (IPG) and fatty acid domains. Binding of IPG to as yet uncharacterized cell surface receptor(s) leads to activation of src-family protein tyrosine kinases: depending upon structure, GPI-derived fatty acids can either activate or antagonize protein kinase C, and may enter the sphingo-myelinase pathway. The degree of fatty acid saturation may also contribute to signalling activity. Thus, variation in structure of parasite GPIs imparts different properties of signal transduction upon this class of glycolipid. The divergent activities of GPIs from various protozoal taxa reflect global aspects of the host/parasite relationship, suggesting that GPI signalling is a central determinant of disease in malaria, leishmaniasis and both American and African trypanosomiases.
Publisher
BLACKWELL SCIENCE LTD
Keywords
PROTEIN-KINASE-C; INOSITOL PHOSPHATE-GLYCAN; T-CELL ACTIVATION; PHOSPHATIDYLINOSITOL MEMBRANE ANCHOR; VASCULAR ENDOTHELIAL-CELLS; NITRIC-OXIDE SYNTHESIS; GLYCOSYL-PHOSPHATIDYLINOSITOL; TYROSINE KINASE; PARASITIC PROTOZOA; CROSS-LINKING
Terms of Use/Rights Notice
Refer to copyright notice on published article.


Creation Date: 1999-01-01 12:00:00
An error has occurred. This application may no longer respond until reloaded. Reload 🗙