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Abstract: CNS viral infections are one of the major causes of morbidity and mortality worldwide and
a significant global public health concern. Uncontrolled inflammation and immune responses in the
brain, despite their protective roles, can also be harmful. The suppressor of cytokine signalling (SOCS)
proteins is one of the key mechanisms controlling inflammatory and immune responses across all
tissues including the brain. SOCS5 is highly expressed in the brain but there is little understanding of
its role in the CNS. Using a mouse model of encephalitis, we demonstrate that lack of SOCS5 results
in changes in the pathogenesis and clinical outcome of a neurotropic virus infection. Relative to
wild-type mice, SOCS5-deficient mice had greater weight loss, dysregulated cytokine production
and increased neuroinflammatory infiltrates composed predominantly of CD11b+ cells. We conclude
that in the brain, SOCS5 is a vital regulator of anti-viral immunity that mediates the critical balance
between immunopathology and virus persistence.
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1. Introduction

Central nervous system (CNS) virus infections are an important cause of morbidity and
mortality worldwide and a significant global public health concern [1]. Arthropod-borne
viruses (arboviruses) are major causes of encephalomyelitis in humans and include New
World alphaviruses such as Western equine encephalitis (WEE), eastern equine encephalitis
(EEE), and Venezuelan equine encephalitis (VEE) viruses [2]. Old World alphaviruses such
as chikungunya (CHIKV), Ross River (RRV), or Mayaro (MAYV) viruses cause arthritogenic
disease [3]. Therapeutic options to treat these diseases are limited and often ineffective,
and as the spread of neurotropic viruses intensifies, there is a need to understand the
mechanisms responsible for disease severity.

The brain is an immuno-specialised organ. Virus infection of the brain leads to acti-
vation of resident neural cell populations, such as microglia and astrocytes, recruitment
of inflammatory cells and initiation of adaptive immune responses. These inflammatory
responses, if left unchecked, can cause damage to brain tissue [4]. A key regulatory mech-
anism, which prevents these responses from becoming excessive is the suppressors of
cytokine signalling (SOCS) [5]. The SOCS family is composed of eight members, SOCS1 to
7 and CISH (cytokine-inducible Src-homology 2 protein) [6]. SOCS proteins are negative
regulators involved in the control of cytokine networks responsible for innate and adaptive
immune responses [7]. In the CNS, SOCS proteins are expressed by resident cells and
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by infiltrating immune cells [8,9]. While the physiological role and mechanism of action
of SOCS1 and SOCS3 are well understood, much less is known about the other family
members (SOCS4-7). SOCS5 shares a high degree of amino acid homology with SOCS4 [10]
and regulates epidermal growth factor receptor (EGFR) signalling [11]. We have previously
demonstrated that SOCS5 plays a pivotal role as a regulator of inflammation in the lungs
during influenza virus infection, restricting virus in the airways via regulation of EGFR
and PI3K signalling [12]. Other studies have implicated SOCS5 in type I interferon (IFN)
regulation during the infectious bursal disease virus [13] and feline herpesvirus [14] in-
fections. The resting brain expresses high levels of SOCS5 [15,16], but there are limited
data on its role during viral CNS infections. In vitro studies show that Japanese encephali-
tis virus (JEV) infection upregulates SOCS5 production in a human microglial cell line,
but suppresses it in a mouse neuronal cell line, in each case leading to enhanced virus
replication [17,18].

In the present study, we used SOCS5 knockout (Socs5−/−) mice to investigate the
role of SOCS5 in virus encephalitis. We used the well-characterised Semliki Forest virus
(SFV) mouse infection model [19] to demonstrate that SOC5 deficiency was associated with
increased brain inflammation and exacerbated neuropathology. Our data show, for the first
time, that SOCS5 is an important suppressor of immune and inflammatory responses that
reduces immunopathology in the brain.

2. Materials and Methods
2.1. Animals

Generation of Socs5−/− mice on a C57BL/6 background [20] have been described
previously. Animal experiments followed the NHMRC Code of Practice for the Care and
Use of Animals for Scientific Purposes guidelines and were approved by the University of
Melbourne Animal Ethics Committee (AEC 1714184). All mice were monitored daily for
clinical signs including determination of body weight.

2.2. Virus

The avirulent A7(74) strain of Semliki Forest virus was used in this study [21]. All mice
were inoculated intraperitoneally (i.p.) with 5 × 103 pfu of virus in 0.1 mL PBS containing
0.75% bovine serum albumin (PBSA). TCID50 assays were used to titrate infectious viruses
as described previously [22].

2.3. Tissue Sampling

To remove blood from the tissue vasculature following terminal anaesthesia, animals
were perfused with PBS through the left cardiac ventricle. Brains were removed and
processed for virus infectivity assay and chemokine/cytokine levels (half-brain bisected
sagitally along the midline), for preparation of RNA for gene expression studies (half-brain),
analysis of inflammatory cell infiltrates (entire brain), or for histopathological assessment.

2.4. Gene Expression Analysis

Half-brain specimens were submerged in RNA stabilisation reagent, RNAlater (Qi-
agen, Hilden, Germany). RNA was extracted using the RNeasy Lipid Tissue Mini kit
(Qiagen, Hilden, Germany) according to manufacturer’s instructions and stored at −80 ◦C
until use. RNA quantity was determined by spectrophotometry (NanoDrop 2000, Thermo
Fisher Scientific, Waltham, MA, USA). 5 µg of RNA was converted to cDNA using Su-
perScript III reverse transcriptase (Invitrogen, Carlsbad, CA, USA). RT-PCR was car-
ried out using Fast SYBR Green Mastermix (Thermo Scientific, Waltham, MA, USA)
and primers recognising the NSP3 region of the virus genomic RNA: viral NSP3 re-
verse primer- 5′-GGGAAAAGATGAGCAAACCA-3′; viral NSP3 forward primer- 5′-
GCAAGAGGCAAACGAACAGA-3′. Levels of virus RNA were normalised to the house-
keeping gene, GAPDH. SOCS5 was amplified using previously published primer se-
quences [23]. Samples were run on a CFX96 real time PCR machine (Bio Rad, South
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Granville, NSW, Australia) with the following PCR conditions: the first cycle: 5 min at
95 ◦C, 10 sec at 95 ◦C, 15 sec at 60 ◦C and 1 sec at 72 ◦C. The following 45 cycles: 10 sec at
95 ◦C, 15 sec at 60 ◦C, 1 sec at 72 ◦C and ended with 10 min at 40 ◦C. The relative amount
of virus genomic RNA was calculated using the 2−∆∆CT method.

2.5. Immunophenotypic Staining

Single cell suspensions were purified from the brain and spleen. The brain tissue was
digested with 1785 units/mL collagenase type III (Worthington, Lakewood, NJ, USA) and
6 units/mL DNase I. CNS-infiltrating leukocytes were isolated from the brain samples
by centrifugation on a Percoll (Sigma-Aldrich, St. Louis, MO, USA) gradient (70%, 37%,
and 30% Percoll). Purified cells were stained with the following antibodies: CD8-PerCP
Cy5.5 (clone 53-6.7, BD Biosciences, San Diego, CA, USA), CD4-Pacific Blue (clone RM4-
5, BD Biosciences), CD44-APC Cy7 (clone IM7, BD Biosciences), CD62L-PE Cy7 (clone
MEL-14, BD Biosciences), CD103-APC (clone 2E7, Biolegend, San Diego, CA, USA), CD69-
FITC (clone H12F3, BD Biosciences), PD-1-BV785 (clone 29F.1A12, Biolegend), KLRG-1-
APC (clone 2F1, BD Biosciences), NK1.1-PE (clone PK136, BD Biosciences), CD3-FITC
(clone 145-2C11, Biolegend), B220-APC Cy7 (clone RA3-6B2, BD Biosciences), IgD-PE
Cy7 (clone 11-26c.2a, Biolegend), CD19-APC (clone 6D5, Biolegend), CD138-PE (clone
231-2, BD Biosciences), F4/80-FITC (clone BM8, Biolegend), CD11c-FITC (clone HL3 BD
Biosciences), Gr1-FITC (clone RB6-8C5, BD Biosciences), Ly6C-PerCP Cy5.5 (clone AL-
21, BD Biosciences), MHCII-Pacific Blue (clone AF6-120.1, Biolegend), CD45-APC Cy7
(clone 30-F11, BD Biosciences), Ly6G-PE Cy7 (clone 1A8, BD Biosciences), CD11b-APC
(clone M1/70, Invitrogen), and CD11c-PE (clone HL3, BD Biosciences). Cells were stained
for 30 min on ice, washed twice and analysed by flow cytometry on a BD Canto or BD
Fortessa (BD Biosciences, San Diego, CA, USA), and analysed by FlowJo software (BD
Biosciences, San Diego, CA, USA). Gating strategy is provided in Supplementary Materials
(Supplementary Figure S2).

2.6. Cytokine and Chemokine Analysis

Cytokine and chemokine levels in the brain were analysed using the LEGENDPlex
Multi-Analyte Flow Assay Kit (Biolegend, San Diego, CA, USA) Mouse Anti-Virus Re-
sponse Panel (13-plex) according to manufacturers’ instructions.

2.7. Histopathology

Brains were removed from PBS perfused animals, fixed in 4% paraformaldehyde
in PBS, processed for embedding in paraffin wax, cut into thin sections, stained with
haematoxylin and eosin, and analysed microscopically. Histopathology was performed
by the Phenomics Australia Histopathology and Digital Slide Service at the University of
Melbourne.

2.8. Statistical Analyses

Statistical analyses were performed using non-parametric Kolmogorov–Smirnov test
or Student’s unpaired t-test within GraphPad Prism 9 software (San Diego, CA, USA).

3. Results and Discussion

SOCS5 has been shown to be an important regulator of antiviral immunity and in-
flammation in extra-neural tissues [12]. Therefore, we hypothesised that SOCS5 has an
important role in controlling brain inflammatory and immune responses. To test our
hypothesis, we used a Semliki Forest virus (SFV) mouse model system [19]. Following
intraperitoneal infection and systemic replication, SFV infects the CNS, targeting pre-
dominantly neurons and oligodendrocytes [24]. The virus is effectively controlled by the
humoral immune response, and the infectious virus is cleared from the brain by day 8
post-infection. However, brain virus RNA is detectable for many months and has the ability
to give rise to infectious viruses in immunosuppressed animals [22]. SOCS5 is highly ex-
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pressed in mouse brain in the cortex and cerebellum (Supplementary Figure S1), therefore,
we investigated its expression kinetics in the brain of C57BL/6 mice following infection
with SFV. Total RNA was purified at different times post-infection, transcript levels were
normalised to a housekeeping gene GAPDH, and fold-changes were determined compared
to uninfected controls. GAPDH has been chosen as a housekeeping gene based on previous
reports [25,26], but has not been validated in the current study.

SOCS5 transcripts were significantly downregulated by day 4 post-infection (dpi) and
remained so until at least d21 (Figure 1). SOCS5 was also found to be suppressed in a
mouse neuronal cell line upon infection with JEV [18]. This suggests that the virus may
suppress SOCS5 expression as part of its strategy to avoid the host’s immune responses.
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Figure 1. Socs5 expression in the brains of C57BL/6 mice during the course of infection with SFV.
Gene expression was normalised to GAPDH and the ∆∆Ct method used to calculate log10 fold change
relative to the untreated control. Each bar represents the mean of 4–6 biological replicates, error bars
represent SD. Significance was determined by non-parametric Kolmogorov–Smirnov test, * p < 0.05,
** < 0.005.

To examine the in vivo role of SOCS5 during encephalitis, we intraperitoneally (i.p.)
infected wild-type C57BL/6 and Socs5−/− mice with 5 × 103 pfu of the A7(74) strain of
SFV. Mice were monitored for clinical symptoms, and the infectious brain virus, viral
RNA load, cytokine, chemokine, and inflammatory cell profiles were analysed. Relative to
wild-type mice, levels of the infectious virus were lower in Socs5−/− mice at 4 dpi, with
only three out of six mice having a detectable infectious virus in the brain (Figure 2A). This
correlated with a significantly reduced viral RNA load in Socs5−/− mice at 4 dpi (Figure 2B).
Thereafter, while there was a general trend towards lower levels of virus RNA in the
brains of Socs5−/− mice, there was no significant difference in either the infectious virus or
the virus RNA load (Figure 2B). Mice lacking SOCS5 lost significantly more body weight
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following SFV infection compared to wild-type control mice (Figure 2C). Severe weight
loss is not generally associated with SFV infection, but there was considerable (>5%) and
significantly greater weight loss in Socs5−/− mice than in wild-type mice at days 6, 7, and 8
post-infection. In the influenza mouse model, weight loss correlates with inflammatory
responses at the site of infection [25]. Analysis of the cytokine and chemokine milieu
of the brain (Figure 2D) demonstrated a similar profile of cytokines and chemokines at
4 dpi, at which time there was no difference in weight loss. On 6 dpi, the first day with a
significant difference in weight loss, levels of cytokines and chemokines were higher than
at 4 dpi, and higher in the Socs5−/− mice than in the wild-type mice. This difference was
not statistically significant, but four cytokines were noticeably (approx. 2-fold) elevated in
Socs5−/− mice compared to wild-type controls; IL-6 (185 vs. 82 pg/mL), RANTES (1248 vs.
762 pg/mL), IFNα (297 vs. 157 pg/mL), and IFNβ (920 vs. 518 pg/mL). These cytokines
are all associated with early responses to viral infection.
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Figure 2. SOCS5 deficiency exacerbates clinical disease and increases brain inflammatory responses.
(A) Titres of infectious virus in the brain during the course of SFV infection in Socs5−/− and wild-type
C57BL/6 in mice. Viral titres were determined by TCID50 assay, the dashed line indicates the limit of
detection. (B) SFV genomic RNA copies measured by qPCR in brain tissue during the course of infection
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with SFV in Socs5−/− and wild-type C57BL/6 mice. Transcript levels were normalised to a housekeep-
ing gene GAPDH and fold-changes of genomic viral RNA were calculated compared to uninfected,
naïve control. Each bar represents the mean of 4–6 biological replicates, error bars represent SEM,
white bars—WT controls, grey bars—Socs5−/− mice. Significance was determined by unpaired
Student’s t-test, * p < 0.05, ** < 0.005. (C) Socs5−/− mice showed significantly greater weight loss than
C57BL/6 controls on 6–8 dpi. Combined data from 3 independent experiments are shown (n = 34
for C57BL/6, n = 37 for Socs5−/− mice). Error bars represent SEM, significance was determined by
unpaired Student’s t-test, * p < 0.05, ** < 0.005. (D) Cytokine and chemokine protein levels were
analysed by Legendplex in brain homogenates at different timepoints post-infection. Mean data
are shown for biological replicates (n = 4–6). (E) Inflammatory cells in the brains of Socs5−/− and
C57BL/6 mice during the course of infection with SFV. Data shown are from a time course experiment
(biological replicates n = 4–7 per time point), error bars represent SEM, significance was determined
by unpaired Student’s t-test, **** p < 0.0001. (F) Cellular composition of the inflammatory cells in the
brains of Socs5−/− and C57BL/6 mice during the course of infection with SFV. Phenotype and cell
numbers were determined by flow cytometry as described in Materials and Methods. (G) Signifi-
cantly different brain cell populations on 8 dpi. Error bars represent SD, significance was determined
by unpaired Student’s t-test, * p < 0.05, ** < 0.005, *** < 0.001, **** p < 0.0001.

Relative to wild-type mice, Socs5−/− mice had a significantly greater influx of im-
mune cells into the brain on 8 dpi (Figure 2E). Phenotypic profiling of inflammatory cells
(Figure 2F) showed that numbers of CD11b+ cells were significantly (p < 0.0001) higher
in the Socs5−/− than in the wild-type mice. This included significantly higher numbers of
neutrophils (CD45hi CD11b+ Ly6G+, p = 0.04), inflammatory monocytes (CD45hi CD11b+

Ly6C+, p = 0.03), and microglia (CD45lo CD11b+ Ly6G− Ly6C−, p = 0.02). There were
also significantly higher numbers of antibody secreting cells (ASCs) (CD138+ B220lo IgD−,
p = 0.001), NK1.1+ cells (p = 0.0003), CD11c+ cells (p < 0.0001), and both CD4+ (p < 0.0001)
and CD8+ (p < 0.0001) T cells (Figure 2G).

To evaluate the neuropathological changes in Socs5−/− (n = 2) and wild-type (n = 2)
mice on 8 dpi, haematoxylin and eosin (HE) stained sections from the brains were assessed
and scored. Overall, the meningoencephalitis was more severe in SOCS5-deficient mice
than in C57BL/6 control mice (Figure 3). Changes consisting of multifocal lesions showing
neuropil vacuolation, gliosis, necrosis of a few glial cells, moderate meningeal lymphocytic
infiltration, and axonal swelling were observed in wild-type mice (Figure 3A–N). In contrast,
brains of Socs5−/− mice displayed marked vacuolation of grey and white matter (status
spongiosus) with axonal swelling, neuronal necrosis, more diffuse gliosis, perivascular
lymphocytic cuffing, and substantial meningeal lymphocytic infiltration. There was also
evidence of multifocal parenchymal necrosis with pyknosis, karyolysis, and karyorrhexis
of neuronal and glial nuclei (Figure 3A–N).

The CNS can initiate and sustain strong inflammatory and immune responses upon
viral infection [27]. Inflammation is a critical host defence mechanism, but it can also be
damaging if not regulated. This is particularly the case in the brain which has minimal
capacity for regeneration. A series of interlocked immune mechanisms controls infection
and immunopathological damage [5]. Negative regulation of pro-inflammatory cytokine
signalling is pivotal in these processes and the SOCS family proteins play a key role. Our
data indicate that following a neurotropic alphavirus infection, SOCS5 is an important
regulator of inflammatory responses.
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Figure 3. Socs5−/− mice show exacerbated brain pathology following SFV infection. Brains from
Socs5−/− mice and control mice were removed (n = 2 for each genotype) on 8 dpi, sectioned sagittally
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and stained with HE to assess inflammation and neuronal degeneration; representative images are
shown. Neuronal degeneration in the cortex (A,B), vacuolation in pons (C,D), gliosis in thalamus
(E,F), meningeal lymphocytic infiltration (G,H), perivascular lymphocytic cuffing (I,J). Cerebellar
vacuolation and infiltration (K–N), images (M,N) are magnified areas (outlined) of images (J,K),
respectively. Bar = 100 µm (A–D); 50 µm (E–J,M,N); 200 µm (K,L). Arrows point to described
histopathological changes (pyknotic nuclei in (A,B), cell infiltration in (G,H) and cuffing in (I,J)).

Following SFV infection SOCS5 was downregulated in mouse brains infected with
SFV and its levels remained low even after the infectious virus was cleared. This suggests
that SOCS5 is a contributor to the immunosuppressive environment of the resting brain
and is downregulated in response to viral infection. We have previously reported that
SOCS5 is suppressed in primary human airway epithelial cells by the highly pathogenic
avian H5N1 influenza virus [12]. Similarly, suppression of SOCS5 has been reported during
JEV infection [18]. In the latter case, SOCS5 downregulation led to activation of its target,
the EGFR [11,12,28], reduction of IFNβ production, and higher viral titres in the brain. In
the present study, apart from an early reduction in brain virus titres, perhaps related to
increased levels of type I interferons (IFNα and IFN β), there were no clear differences in
SFV infectivity titres in the brain. Collectively, these data indicate that systemic SOCS5
deficiency (rather than in vivo inhibition as in [18]), had minimal effect on the dynamics
of the SFV brain infection. However, systemic lack of SOCS5 led to increased chemokine
and cytokine production in virus infected brains. This was mainly RANTES and IL-6 but
also type-I interferons. SOCS5 suppresses EGFR phosphorylation. In the brain, activation
of EGFR leads to activation of astrocytes and microglia [29,30], both of which produce
cytokines/chemokines. Our results indicated overproduction of immunomodulators and
exacerbated gliosis in Socs5−/− mice consistent with overactivation of these glial cell types,
possibly caused by unregulated phosphorylation of EGFR due to the lack of SOCS5. In
CNS viral infections, chemokines such as RANTES and cytokine such as IL-6 facilitate
lymphocyte and monocyte recruitment. We observed significantly higher numbers of
neutrophils, inflammatory monocytes, and microglia in Socs5−/− brains, which is consistent
with the overall more severe meningoencephalitis changes. There were also significantly
increased numbers of ASCs in the brains, but this had no apparent impact on infectious
viral clearance. CD8+ T cell numbers were increased in Socs5−/− mice, and this could have
been responsible for the reduction in the levels of virus RNA [22].

This study describes, for the first time, a phenotype for Socs5−/− mice in the context
of a neuroinvasive alphavirus. While the absence of SOCS5 protein did not have a major
impact on the kinetics of SFV infection in the brain, it resulted in higher levels of cytokines
and chemokines in the brain and a greater loss of body weight. The higher levels of
cytokines and chemokines were followed by increased numbers of inflammatory cells
in the brain. Neuropathological changes in the brain were consistent with increased
inflammatory infiltrates and cytokine production. These results indicate that SOCS5 plays
a negative regulatory role in brain inflammatory and immune responses, although the
exact mechanisms of its action in the CNS are currently unknown. It is obvious that SOCS
proteins represent an important mechanism for maintaining homeostasis and controlling
brain inflammation. Thus, our study adds key insights to the current knowledge regarding
the physiological role of SOCS5.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v14112476/s1, Figure S1: SOCS5 localisation in the brain. Figure S2:
Gating strategy for flow cytometric analysis of brain infiltrates. References [20,31] were cited in the
supplementary materials.
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