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Abstract

Identification of peptides by analysis of data acquired by the two established methods for

bottom-up proteomics, DDA and DIA, relies heavily on the fragment spectra. In DDA, pep-

tide features detected in mass spectrometry data are identified by matching their fragment

spectra with a peptide database. In DIA, a peptide’s fragment spectra are targeted for

extraction and matched with observed spectra. Although fragment ion matching is a central

aspect in most peptide identification strategies, the precursor ion in the MS1 data reveals

important characteristics as well, including charge state, intensity, monoisotopic m/z, and

apex in retention time. Most importantly, the precursor’s mass is essential in determining the

potential chemical modification state of the underlying peptide sequence. In the timsTOF,

with its additional dimension of collisional cross-section, the data representing the precursor

ion also reveals the peptide’s peak in ion mobility. However, the availability of tools to survey

precursor ions with a wide range of abundance in timsTOF data across the full mass range

is very limited. Here we present a de novo feature detector called three-dimensional inten-

sity descent (3DID). 3DID can detect and extract peptide features down to a configurable

intensity level, and finds many more features than several existing tools. 3DID is written in

Python and is freely available with an open-source MIT license to facilitate experimentation

and further improvement (DOI 10.5281/zenodo.6513126). The dataset used for validation

of the algorithm is publicly available (ProteomeXchange identifier PXD030706).

1 Introduction

For the identification of peptides detected in DDA analysis or extracted in DIA analysis, most

peptide identification strategies rely on matching fragment ions with predicted mass spectra

from a database of peptides. The precursor ion’s attributes are used to constrain the scope of

candidate peptides selected from the database for the matching process [1]. The scope is

defined by a peptide mass tolerance specified in the search parameters and therefore relies on

an accurate determination of the precursor ion’s monoisotopic m/z, charge state, and peak in

retention time [2, 3]. Furthermore, analysis of precursor ions provides much greater depth of

analysis on the basis of the stronger signal from precursor ions compared to the intensity of

the signal from fragment ions [4]. The total mass of the precursor, as well as its position in
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retention time and mobility, encodes information that is not obtainable solely from analysis of

fragment ions.

The timsTOF provides an extra degree of separation of convoluted peptides through their

collisional cross-section [5], though resolving peptide features in its MS1 data has formidable

challenges. The factors that make challenging the finding and resolving of peptide features in

four dimensions include peptide features appearing in the presence of noise that can mimic

signal, and feature overlap in m/z, mobility, and retention time as peptides coelute in the liquid

chromatography. Although there is variability in the size and shape of features, their typical

dimensions are 2 ± 0.3 Th wide in m/z, 44 ± 14 TOF scans through mobility, and 6.6 ± 2.4 sec-

onds in retention time. In a complex sample such as HeLa, there may be 100,000 features in

the raw data from the instrument.

An example of candidate features observed in a single frame of MS1 timsTOF raw data is

shown in Fig 1. The x-axis is the m/z dimension, and the y-axis is the CCS dimension. The

retention time dimension is the series of subsequent frames through time. The frame rate

depends on the instrument configuration; in this example the MS1 frame period was 500

milliseconds.

Previous examples of software that detect peptide features in timsTOF MS1 data across the

full mass range includes MaxQuant [6] and Biosaur [7]. The approach used by MaxQuant is to

average the raw intensities with a Gaussian kernel to form a cube of data with axes of ion

mobility index, retention time, and m/z. The cubes are sliced in the mobility dimension, yield-

ing a map of signal intensity as a function of m/z and retention time. Every Nth slice (where N

is user-configurable and defaults to 3) is processed without considering mobility with Max-

Quant’s standard approach to segment the base of each peak in each m/z-RT plane. The base

areas of peaks are then clustered between consecutive planes to form the feature in 4D.

Fig 1. A raw data MS1 full-frame view at an instant of retention time. The inset shows an enlarged region of the

frame with three candidate features visible; (A) a charge 2+ feature, (B) and (C) charge 4+ features.

https://doi.org/10.1371/journal.pone.0277122.g001
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MaxQuant performs de novo feature detection in MS1 but only reports the features that were

included in the isolation regions selected for fragmentation; these are recorded in the APL

tables for input to its search engine Andromeda [8].

Biosaur extends the three-dimensional approach of Dinosaur [9] to include the CCS

dimension. Raw intensity readings are grouped into ‘hills’ in retention time and CCS within a

m/z tolerance. Readings are absorbed into existing hills if their m/z is within tolerance, other-

wise a new hill is formed. Isotopic peaks are formed in 4D by gathering readings in consecutive

frames and mobility scans, with user-definable tolerance for missed frames or scans for a read-

ing to be considered part of an existing hill.

Here we present a de novo MS1 feature detector for the Bruker timsTOF, called 3DID

(three-dimensional intensity descent), that performs a comprehensive survey of precursor

ions, and detects many more qualified peptide features than MaxQuant and Biosaur.

2 Results

Searching for peptide features in vast, sparse, noisy data in a performant manner is an

extremely challenging pattern recognition problem. 3DID’s workflow (Fig 2) surveys the entire

MS1 data space for the characteristic signature of a peptide’s precursor ion. It does this without

prior knowledge of where they might exist. Upon detection of a feature, 3DID determines its

attributes: monoisotopic m/z, charge state, and the apex of the feature in mobility and reten-

tion time. It also performs quality checks such as the alignment of isotopic peaks in the mobil-

ity and retention time dimensions.

3DID leverages knowledge of the predictable structural pattern of peptide features (Fig 3).

The first characteristic of the pattern is that peptide features appear as a series of isotopic

peaks, each peak resulting from probabilistic combinations of isotopes in the peptide mole-

cule’s composition [10]. Second, each peak is comprised of a variable number of intensity

readings that present in three dimensions: m/z, CCS, and retention time. The observation of

multiple readings with intensity greater than the average intensity of other readings in their

vicinity is an indication of a base peak. Third, isotopic peaks have a known width in m/z, deter-

mined by the resolution of the instrument. They are Gaussian in the m/z, mobility, and reten-

tion time dimensions [11]. Finally, isotopic peaks in a series are a known distance apart in the

Fig 2. 3DID workflow.

https://doi.org/10.1371/journal.pone.0277122.g002
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m/z dimension [12], the distance between them being determined by their integer charge

state. Isotopic peaks in a series are aligned in the mobility and retention time dimensions.

The raw MS1 data space is divided into voxels (volumetric pixels), a small region of 3D m/

z, mobility, and retention time space, ranked in descending order by the mean intensity of

their constituent raw points. Voxels with fixed dimensions of 0.1 in m/z, 10 scans in mobility,

and 5 seconds in retention time are used, where the rationale is to capture a single isotopic

peak in the m/z dimension, and to sample the peak in the mobility and retention time dimen-

sions broadly enough to find its apex. A peak encompassed by such a voxel is likely to be a

good candidate for a precursor feature’s monoisotopic peak or its base peak. As there are

many thousands of voxels to process, processing parallelism is achieved by dividing the m/z

dimension into bands of 10 Th through retention time and mobility; a worker is assigned a

band in which to process its voxels.

To group the raw points of the candidate peak, the voxel’s intensity-weighted m/z centroid

is determined. The peak delta either side of the centroid is determined by calculating three

standard deviations based on the instrument’s resolution of 40,000. The raw points within 3σ
either side of the m/z centroid are grouped as the peak’s m/z dimension. An example voxel, its

candidate peak constrained in the m/z dimension, and the raw data in its vicinity are shown in

Fig 4.

To find the peak’s apex in mobility, we begin by taking points ± 40 scans (a number selected

because it is twice the mean peak width in the mobility dimension) from the voxel’s mobility

midpoint and flattening the points to the mobility dimension by grouping the points that lie

on the same scan and summing their intensity. A smoothing Savgol-Golay filter [13] is applied

to facilitate the determination of the peak’s apex and valleys with the peakutils [14] Python

package. In instances where we find multiple apexes, we take the apex closest to the voxel’s

Fig 3. An artificial representation of a peptide’s isotopic peak series in the m/z, CCS, and intensity dimensions at

an instant of retention time.

https://doi.org/10.1371/journal.pone.0277122.g003
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mobility midpoint. The valley either side of the apex define the peak’s extent in the mobility

dimension (Fig 5A).

Constraining the raw points to the peak’s m/z and mobility extents, the retention time

dimension is extended by twice the mean base peak width in each direction from the voxel’s

midpoint. Flattening the points to the retention time dimension by summing the peak’s points

that occur in the same frame, the peakutils package is again applied to find the apex closest to

the voxel’s midpoint and the valleys on either side. Any points that sit more than 1 second

from the main peak are removed to avoid superfluous trailing and leading edges (Fig 5B).

Having defined the bounds of the voxel’s peak in m/z, mobility, and retention time, the

region of raw data is expanded in each direction of the m/z dimension to look for the other iso-

topic peaks in the feature’s series. The lower m/z edge is extended by 0.6 Th (allowing for one

Fig 4. The raw data in the vicinity of an example voxel in its most intense frame.

https://doi.org/10.1371/journal.pone.0277122.g004
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isotope for charge-2 plus a little bit more as a margin of error, as the voxel’s peak may be the

base peak rather than the monoisotopic peak) and the upper m/z edge by 3 Th (allowing for

up to six isotopes for charge-2 plus a little bit more).

The raw points that lie within the 3D feature region are collated, intensity descent as

described previously is used to simplify the spectra to 2D (m/z and intensity), and deconvolution

is performed with the ms_deisotope Python package [15] to resolve isotopic peaks (Fig 5C).

Each feature that achieves more than the default score is added to the list if it satisfies the

requirement of the monoisotopic peak or the base peak matching the voxel’s m/z centroid; this

ensures that each feature produced is formed from the voxel’s peak.

Having determined the feature’s monoisotopic m/z, charge state, and isotope envelope, the

intensity is calculated for each isotope in the envelope by taking the most intense point in the

three frames closest to the retention time apex; three points are used to achieve an averaging

effect, to reduce intensity fluctuations that can occur with using single points. If the isotopic

peaks include points that were measured when the detector was saturated, their intensities are

adjusted with reference to a theoretical model, as we previously reported. The feature’s inten-

sity is calculated by summing the intensity of the first three isotopic peaks. Lastly, voxels that

have more than 80% of their intensity comprised of the points in the feature’s isotopic peaks

are removed from consideration as the basis of other features.

Voxels are processed in decreasing order of intensity if they have not already been pro-

cessed in a more intense voxel’s isotopic peaks, continuing until all the voxels above a defined

intensity threshold have been processed. The threshold is configurable according to the depth

of analysis required; more depth takes more time to process, allowing a trade-off according to

the application.

To determine the identifiability of a peptide feature solely from MS1 and in the absence of

fragment ion information, inspired by MSTracer [2] we constructed a neural network classifier

to predict whether an extracted feature is likely to be identified from MS2 spectra. A training

set was created from the identification results from the TFD/E approach we described previ-

ously [16], using the features identified with a q-value less than 1% as the ‘identified’ category,

and the features detected but not identified as the ‘not identified’ category. The classifier inputs

Fig 5. (A) The voxel’s peak flattened to the mobility dimension, with its apex and valleys determining the mobility

extent. (B) The same procedure is used for the retention time dimension. (C) The raw points in the 3D feature region

flattened to the m/z dimension, and the isotopic peaks proposed for a charge-2 peptide.

https://doi.org/10.1371/journal.pone.0277122.g005
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were modified from [2] to suit the additional dimension of mobility and our workflow, as

shown in Table 1.

The classifier output was the category.

The neural network architecture (Fig 6) was similar to the one used by MSTracer; 3DID’s

model was larger in its dimensions as this was determined to improve convergence on the

training data. Defined with Keras [17] and using Tensorflow [18] for the back-end, the dense

layers were 200 units wide, batch normalisation was added for each dense layer, and 40% drop-

out was added to each layer to improve robustness. We randomly selected 80% for training,

10% for validation, and 10% for test.

The model was trained for 4000 epochs with a batch size of 512, which achieved an accuracy

of 86% on the test set.

Having been trained on features identified with TFD/E, the model was used to classify the

features detected by 3DID. A threshold of 0.2 for identifiability categorisation was selected

from examination of the score distribution to filter out only the least likely to be identified and

to pass the remainder through to the search engine.

Following the classification step, a de-duplication step was performed to remove features

that were inadvertently detected twice. A filter was applied to take the feature with the highest

identifiability score when there were other features within 10 ppm m/z, 20 scans in mobility,

and 5 seconds in retention time.

2.1 Comparing feature detection with Biosaur

To compare feature detections from 3DID and the latest version of Biosaur (2.0.3), features

detected by both tools were matched according to their proximity in m/z, retention time, and

CCS. A feature from 3DID and a feature from Biosaur were considered to be the same feature

detected by both algorithms if their apexes were within 25 ppm for m/z, 5 seconds in retention

time, and 0.05 1/K0 in ion mobility. Default settings were used for Biosaur except for mass_ac-

curacy (10 ppm) and min_intensity (200). This was done for equivalence with 3DID settings

as much as possible.

3DID detected 89% of the features detected by Biosaur (13,577), and nearly ten times more

(135,218) (Fig 7A). The histogram of feature intensity (Fig 7B) shows the additional features

detected by 3DID were mostly of lower abundance than those detected by Biosaur.

2.2 Comparing identifications with TFD/E and MaxQuant

As MaxQuant only reports detected features that were instrument-selected for fragmentation

inside regions recorded as isolation windows, and TFD/E’s feature detection strategy is also

based on targeting precursors in isolation windows, a basis for comparison was made by select-

ing only those features detected by 3DID’s that were inside isolation windows. For a sample of

a Yeast/HeLa/E.coli proteome mixture, 156,244 features were detected and classified as identi-

fiable by 3DID at the lowest setting of minimum voxel intensity. A 3DID feature was consid-

ered to be located within an isolation window if the apex of its monoisotopic peak was within

Table 1. Feature attributes used for identifiability classifier inputs.

Attribute Factor

deconvolution score isotopic peak spacing and peak height ratios

coelution coefficient mean cosine similarity of isotopic peaks in retention time

mobility coefficient mean cosine similarity of isotopic peaks in CCS

number of isotopes quality of detection

https://doi.org/10.1371/journal.pone.0277122.t001
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the bounds of the isolation window’s extent in m/z, retention time, and mobility. We observed

that regardless of the minimum voxel intensity setting, the number of features detected in iso-

lation windows was about half the total number of features detected (Fig 8).

Each feature within an isolation window was associated with the fragment spectra for its

window. Using Pyteomics [19], an MGF file [20] was rendered containing an entry for each

association, and a search was performed using Comet and Percolator [21] using the same steps

from the TFD/E pipeline as previously described: an initial search, mass recalibration, and a

more refined search with tighter mass tolerance.

Reducing the minimum voxel intensity at which to end the search for features increases the

number of features detected, but the number of identified features does not substantially

increase (Fig 9).

As the minimum voxel intensity was reduced, the additional features detected were mostly

lower intensity, and this would be expected. However, the identified feature intensity distribution

did not increase uniformly; many of the additional features detected were not identified (Fig 10).

This is likely due to the difficulty of identifying them from the weaker signal of their fragment ions.

Fig 6. The neural network architecture for the feature identifiability classifier.

https://doi.org/10.1371/journal.pone.0277122.g006

Fig 7. (A) The number of features detected only by 3DID, features detected only by Biosaur, and the features detected by both. (B) The intensity distribution of

features only detected by 3DID (blue) and features also detected by Biosaur (orange).

https://doi.org/10.1371/journal.pone.0277122.g007
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Fig 8. Number of all features detected compared to the number of features within isolation windows, by minimum voxel intensity.

https://doi.org/10.1371/journal.pone.0277122.g008

Fig 9. Number of features detected in isolation windows and identified versus minimum voxel intensity.

https://doi.org/10.1371/journal.pone.0277122.g009
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To compare identifications of features detected by MaxQuant while removing the differ-

ences between Comet/Percolator and MaxQuant’s integrated search engine Andromeda [8],

the features from MaxQuant’s APL peaklist files were rendered as an MGF and searched with

Comet and Percolator.

The peptide identifications from features detected by 3DID (within the isolation windows),

TFD/E, and MaxQuant had the greatest number of identifications in common at the lower set-

ting for minimum voxel intensity (Fig 11). At the lowest 3DID setting, 7976 unique peptide

sequences were identified by all three methods, while a further 1868 peptides were detected by

both 3DID and TFD/E.

The increase in identifications from 3DID features as the minimum voxel intensity is low-

ered does not result in a degradation of mass accuracy; the distribution of mass accuracy is

centered around zero within +/- 2ppm and remains consistent with identifications from TFD/

E (Fig 12). The bias of mass accuracy for identifications of features detected by MaxQuant is

likely due to the absence of a mass recalibration step.

Fig 10. Reducing the minimum voxel intensity increases the number of features detected overall—and within the isolation windows—at an intensity

lower than what can be identified with the Comet/Percolator toolchain.

https://doi.org/10.1371/journal.pone.0277122.g010
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3 Discussion

Here we have presented 3DID, an MS1 feature detector that finds twice as many identifiable

features across a broader dynamic range as the DDA analysis approaches of TFD/E and Max-

Quant. We have also shown that 3DID detects many more features across a wider dynamic

range compared with Biosaur.

The detection of low-abundance peptides is hampered by ambient noise, and the

opportunity for false discovery is substantial. However, by imposing a feature quality

threshold that considers the feature’s fit with the theoretical tryptic peptide model for its

monoisotopic peak and charge state, the alignment of its isotopic peaks in retention time

and ion mobility, and the number of isotopes detected, the rate of false discovery is

controlled.

3DID’s ability to comprehensively survey precursor ions highlights its potential utility for

the characterisation of precursor ions in timsTOF MS1 data.

Fig 11. Peptide identifications of the features detected with 3DID and varying minimum voxel intensities 3DID, and the identified features from TFD/E,

and MaxQuant.

https://doi.org/10.1371/journal.pone.0277122.g011
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4 Materials and methods

4.1 Data processing

The YHE211 data set we described previously [16] (available from the ProteomeXchange

Consortium via the PRIDE [22] partner repository with the dataset identifier PXD030706

and 10.6019/PXD030706) was processed by 3DID, MaxQuant (2.0.3.0), Biosaur (2.0.3), and

TFD/E (1.0).

The raw data was de-noised with the “tims data reduction” tool from Bruker (1.4) using the

“denoised proteomics complex” settings.

Default settings were used for MaxQuant. The APL files were converted to MGFs with

TFD/E’s generate-MGF-from-MaxQuant-APLs.py.

For Biosaur, the raw data was converted to mzML format with MSConvertGUI from Pro-

teoWizard (3.0) as described in the Biosaur paper [7]. Biosaur was run with the following

default parameters overridden to match 3DID’s settings as closely as possible: mass accuracy

10, minimum hill length 3, and minimum intensity 200.

Default parameters were used for 3DID and TFD/E.

4.2 Software

The software was written in Python 3.8. The key libraries used were Pandas 1.3.1 for data filter-

ing and interface file input/output, AlphaTims 0.3 for loading raw data from the instrument

database, scipy 1.6.1 and numpy 1.19.5 for signal processing, ms_deisotope 0.0.22 for spectra

deconvolution, and Ray 1.5.2 for parallel processing. The neural network classifier was built

with Keras and used TensorFlow 2.5 for the backend. Algorithm prototyping was done in

Jupyter notebooks (jupyter-core 4.6.3).

Software validation work was performed on a PC with a 12-core Intel i7 6850K processor

and 64 GB of memory running Ubuntu 20.04. An NVIDIA GeForce GTX 1070 GPU was used

for the neural network training and inference.

Readers are encouraged to browse the source code in the GitHub repository (DOI 10.5281/

zenodo.6513126) for a detailed understanding of the algorithms and implementation

Fig 12. Mass accuracy ppm of identified features detected by 3DID, TFD/E, and MaxQuant.

https://doi.org/10.1371/journal.pone.0277122.g012
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approach. The Jupyter notebooks developed to generate the figures in this paper are also avail-

able in the repository.
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