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Abstract 

Background: After many years of neglect in the field of alternative splicing, the importance of intron retention (IR) 
in cancer has come into focus following landmark discoveries of aberrant IR patterns in cancer. Many solid and liquid 
tumours are associated with drastic increases in IR, and such patterns have been pursued as both biomarkers and 
therapeutic targets. Paradoxically, breast cancer (BrCa) is the only tumour type in which IR is reduced compared to 
adjacent normal breast tissue.

Methods: In this study, we have conducted a pan-cancer analysis of IR with emphasis on BrCa and its subtypes. 
We explored mechanisms that could cause aberrant and pathological IR and clarified why normal breast tissue has 
unusually high IR.

Results: Strikingly, we found that aberrantly decreasing IR in BrCa can be largely attributed to normal breast tissue 
having the highest occurrence of IR events compared to other healthy tissues. Our analyses suggest that low num-
bers of IR events in breast tumours are associated with poor prognosis, particularly in the luminal B subtype. Interest-
ingly, we found that IR frequencies negatively correlate with cell proliferation in BrCa cells, i.e. rapidly dividing tumour 
cells have the lowest number of IR events. Aberrant RNA-binding protein expression and changes in tissue composi-
tion are among the causes of aberrantly decreasing IR in BrCa.

Conclusions: Our results suggest that IR should be considered for therapeutic manipulation in BrCa patients with 
aberrantly low IR levels and that further work is needed to understand the cause and impact of high IR in other 
tumour types.
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Background
Pre-mRNA splicing is a ubiquitous process that is cru-
cial for the maintenance of transcriptomic complex-
ity and gene expression regulation in eukaryotic cells 

[1, 2]. Perturbations to this highly calibrated system can 
have severe consequences and lead to diseases including 
cancer [3–6]. In this context, numerous studies describ-
ing intron retention (IR) in disease have shed light on 
the mechanisms leading to aberrant and pathological IR 
[7–9].

The importance of IR in cancer has been empha-
sized following landmark discoveries about (i) aberrant 
IR patterns in leukaemia [10, 11], (ii) IR as a source of 
neoepitopes [12], (iii) tumour suppressor gene inactiva-
tion by intronic polyadenylation [13], (iv) IR-based bio-
markers [14, 15], and (v) IR as a therapeutic target [16].
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IR is regulated by cis- and trans-acting modulators [2, 
17, 18] facilitating cellular responses to a range of envi-
ronmental stimuli [19]. Intron-retaining mRNA tran-
scripts are often degraded via nonsense-mediated decay 
(NMD), thereby causing downregulation of the host gene. 
The burden of IR in disease is governed by perturbations 
to mechanisms known to regulate this form of alternative 
splicing, including mutations, splicing factor dysregula-
tion, and epigenetic variations.

However, despite the cumulative evidence for the 
importance of IR in cancer, a systematic analysis of IR 
regulation in breast cancer (BrCa) and the role of aber-
rant IR in BrCa biology has not been conducted to date. 
In this study, we sought to resolve the paradox wherein 
breast cancer exhibits reduced IR, which is an important 
consequence of alternative splicing.

We analysed 615 BrCa patient transcriptomes which 
included four major molecular subtypes (Luminal A, 
Luminal B, Basal, and Her2 positive). We confirmed a 
consistent downregulation of IR in BrCa. However, we 
also observed that normal breast tissue has a significantly 
higher IR event frequency compared to other healthy tis-
sues. The number of IR events correlated with survival in 
the luminal B BrCa subtype. Differences in IR frequencies 
are largely influenced by the tissue’s cellular composition 
as well as specific dysregulated RNA-binding proteins 
(RBPs).

Methods
RNA‑sequencing data/patient samples
We retrieved data from nine tumour types and healthy 
adjacent tissue, including 615 BrCa patient samples 
generated by the TCGA. We used TCGA metadata to 
assign the samples to molecular subtypes (i.e. Luminal 
A, Luminal B, human epidermal growth factor receptor 
2 (HER2)-enriched, and Basal-like) based on the PAM50 
classification system. On one occasion (Additional file 1: 
Fig. S2C), we grouped samples based on the immunohis-
tochemical (IHC) score for HER2.

Only samples for which sequencing had been per-
formed at > 40 M read depth were selected for analysis. 
Moreover, only tumour types with at least 20 matched 
tumour/normal tissue samples were considered. RNA-
seq data were downloaded as BAM files using the R/
Bioconductor package TCGAbiolinks [20] and the 
command-line tool gdc-client v1.4.0 (github.com/
NCI-GDC/gdc-client) under an approved data access 
application. All files were checked for integrity. Harmo-
nized gene expression data in the form of HTseq counts 
(RRID:SCR_005514) [21] were downloaded using 
TCGAbiolinks (RRID:SCR_017683).

mRNA‑sequencing and data analysis—MCF7 and MCF10A 
cells
Total RNA was isolated from MCF7 and MCF10A cells 
using TRIzol (Invitrogen). The RNA quality was assessed 
using RNA 6000 Nano Chips on an Agilent Bioanalyzer 
(Agilent Technologies) to confirm an RNA integrity score 
of > 7.0. mRNA-seq was performed by Macrogen (Korea; 
RRID:SCR_014454) using the Illumina Hi-Seq 2000 plat-
form. RNA-seq libraries were prepared from > 1  μg of 
total RNA using TruSeq RNA sample prep kit (Illumina) 
according to the manufacturers’ instructions.

Differential IR and gene expression analyses
IR was quantified using IRFinder v1.2.0 [17], using 
the Ensembl human genome (hg38, release 86; 
RRID:SCR_002344) as reference. The IRFinder algorithm 
measures 20 parameters for IR detection in each sample, 
including the median number of reads mapping to each 
nucleotide across the intron length (intron depth, ID), 
the ratio of nucleotides within an intron with mapped 
reads (coverage), the number of reads that map to the 5′ 
flanking exon and to another exon within the same gene 
(splice left, SL), the number of reads that map to the 3′ 
flanking exon and to another exon within the same gene 
(splice right, SR), the number of reads spanning the exon-
exon junction (splice exact, SE) as well as the IR ratio:

Some selection criteria for IR events were chosen to 
minimize the chance of false positive IR calling while at 
the same time maintaining sufficient sensitivity to avoid 
too many false negative events. The following criteria 
were used for quantifying the number of IR events in 
a sample:

(1) 0.7 ≤
SL
SR

≤ 1.3;

 This filter ensures that introns are flanked by consti-
tutive exons.

(2) (SL+ SR) > 10 in ≥ 50% of samples;
 Flanking exons need to be well expressed in most 

samples to avoid false positive IR events.
(3) coverage > 0.5 in ≥ 50% of samples;
 Only introns with extensive coverage in the majority 

of samples are considered to prevent confounding 
factors that could lead to false IR calling.

(4) IR > 0.05 in ≥ 50% normal or cancer samples.
 We included only samples with at least 40M reads to 

facilitate accurate IR quantification. We considered 

ID

ID+max(SL, SR)
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a 5% inclusion rate for IR to be of biological rele-
vance.

The number of IR events in a sample was determined 
based on introns with an IR ratio > 0.1 and meeting the 
filtering criteria described above. Introns not meeting 
these criteria were not considered as being retained. 
Beta regression was used to identify differentially 
retained introns (dIR) between cancer and adjacent 
normal tissues using the betareg R package [22]. Since 
IR ratios are proportional data with values between 0 
and 1, we reasoned that beta regression was best suited 
to model IR and identify dIRs between normal and 
cancer tissues. An absolute difference in the IR ratio 
(ΔIR =  IRCancer −  IRNormal) of more than 0.1 with FDR-
adjusted p < 0.05 was considered significant.

Dimensionality reduction, i.e. principal compo-
nent analysis (PCA), of IR profiles was performed 
using the package factoextra (github.com/kassambara/
factoextra).

Differential gene expression between normal breast 
tissue and BrCa was performed using the DESeq2 pack-
age (RRID:SCR_000154) [23]. Genes with an average 
read count > 10 in all samples were selected for dif-
ferential gene expression analysis (n = 23,072). Genes 
with an absolute log2 fold change > 1 and FDR-adjusted 
p < 0.05 were considered significant. To identify genes 
that were specifically differentially expressed in BrCa, 
we removed genes that were differentially expressed in 
any of the other 8 cancers and determined specificity by 
computing the z-score on log fold change using the log 
fold change observed in BrCa as reference.

Gene Ontology and RBP analyses
Gene Ontology analysis was performed using the clus-
terProfiler package (RRID:SCR_016884) [24]. The false 
discovery rate (FDR) approach was used for multiple 
testing correction. The list of 1542 RBPs was taken 
from Gerstberger et al. [25].

Survival analysis
Patient survival data were provided by the TCGA con-
sortium. Survival analysis was performed using pack-
ages Surv and survminer (github.com/kassambara/
survminer).

RNA‑binding protein motif detection
RNA-binding protein (RBP) motifs in position weight 
matrix format (PWM) were retrieved from the 
ATtRACT database (version 0.99β) [26], which con-
tains 1196 motifs corresponding to 160 human RBPs. 
Sequences of 100 nt were extracted from the regions 

flanking retained and non-retained introns and scanned 
for the presence of motifs using the fimo tool provided 
by the meme suite [27].

Results
IR in breast tumours is reduced in contrast to high 
occurrence in normal breast tissue
To compare IR profiles across human cancers, we 
retrieved transcriptomics data for nine different solid 
tumours and matched adjacent normal tissues from 
The Cancer Genome Atlas (TCGA; Fig. 1A) and quan-
tified IR using the IRFinder algorithm, which we have 
previously validated [17]. Overall, we identified a total 
of 11,943 unique IR events, of which 917 were shared 
among all nine cancers analysed. 

Our analyses confirmed a previous report that BrCa 
is the only cancer in which the number of IR events is 
reduced compared to normal adjacent tissue (Fig.  1B) 
[28]. All other cancers exhibit increased IR compared 
to their matched adjacent normal tissue (Fig. 1B). How-
ever, we also noticed that the number of IR events in 
breast cancer itself was comparable with other cancers, 
while normal breast tissue presented with unusually 
high numbers of IR events (Fig.  1B). In fact, normal 
breast tissue had the highest IR frequencies compared 
to all other normal tissues (Fig. 1C). Therefore, reduced 
IR in tumours, which is unique to BrCa, can be largely 
attributed to normal breast tissue having the highest 
occurrence of IR events.

We applied beta regression models to identify dif-
ferentially retained introns (dIRs) and found 3024 
dIRs between normal and breast cancer (Additional 
file  1: Fig. S1A). Of these 210 were downregulated (in 
160 genes) and 69 were upregulated (in 52 genes) with 
a ≥ 10% difference in the IR ratio (ΔIR ≥ 0.1). Downreg-
ulated IR events in BrCa are associated with processes 
related to cell cycle, nuclear division, and DNA replica-
tion among others (Additional file 1: Fig. S1B).

High IR is associated with improved survival in Luminal B 
subtype breast cancer
Next, we explored whether the specific pattern of IR in 
BrCa is associated with clinical features. As shown in 
Additional file 1: Fig. S2A and Fig. 1D, IR patterns were 
distinct between BrCa vs normal tissues as well as oestro-
gen receptors positive  (ER+) vs negative  (ER−) samples, 
respectively. The human epidermal growth factor recep-
tor 2 (HER2) amplified molecular subtype had the lowest 
average number of IR events (n = 1731) compared to the 
other three main subtypes Luminal A (n = 2089), Lumi-
nal B (n = 2113), and Basal (n = 2018) (Fig. 1E). Strikingly, 
HER2-amplified tumours are associated with a 2.9-fold 
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increased hazard ratio (p = 0.001, Additional file  1: Fig. 
S2B). Moreover, advanced stage tumours (Stage III) 
had the lowest average number of IR events (n = 1913) 
compared to Stage II (n = 2064) and Stage I (n = 2210) 
tumours (Fig.  1F). Likewise, those tumours with the 
highest immunohistochemical (IHC) staining score for 
HER2 (score: 3) exhibited the lowest average number of 
IR events (n = 1825) compared to score 1 (n = 2095) or 
score 2 (n = 2137) tumours (Additional file  1: Fig. S2C). 
We also found that a high number of IR events is asso-
ciated with better survival in patients with the Luminal 
B subtype (Fig. 1G; Additional file 1: Fig. S2D). Though, 
Luminal B is the only subtype where high IR is associated 
with a survival advantage (Additional file  1: Fig. S2E). 
Interestingly, the trend is reversed (although not signifi-
cant) in Her2 positive breast tumours that do not belong 
to the luminal B subtype.

Putative trans‑regulators of IR in breast cancer
To confirm that differences between tumour and nor-
mal breast tissue can be observed in vitro, we sequenced 
the transcriptomes of cultured  ER+ MCF7 cells and 
non-tumorigenic MCF10A cells. Indeed, we observed a 
similar trend as in the TCGA cohort (Fig. 2A) and found 
that higher IR in the breast epithelial cell line (MCF10A) 
was associated with reduced gene expression (Addi-
tional file  1: Fig. S3). We also analysed sequencing data 
(Sequence Read Archive; SRA) of other cell lines rep-
resenting each of the molecular subtypes (Additional 
file  1: Table  S1). Comparing the number of IR events, 
we observed a similar trend as with the TCGA tumour 
samples, except for HER + HCC1419 cells, which have on 
average more IR events (though not significant) than cell 
lines of other subtypes (Additional file 1: Fig. S4).

To identify potential regulators of IR, we correlated 
IR frequencies in the TCGA-BRCA cohort with expres-
sion values (normalized RNA-seq counts) of ~ 23,000 
genes (Additional file  2: Table  S2). We performed Gene 
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Ontology (GO) enrichment analysis on the top 5% genes 
with the highest (r > 0.41) and lowest (r < − 0.27) correla-
tion coefficients to identify potential positive and nega-
tive regulators of IR, respectively. We found eight GO 
terms that were significantly enriched in positively cor-
related genes (p-adj. ≤ 0.05; Fig.  2B). Intriguingly, six 
of these GO terms were related to RNA splicing, with 
DDX39B, RBM25, PRPF39, and SRSF11 being among the 
genes that most highly correlate with the number of IR 
events in each sample (Fig. 2C).

The four genes that most strongly anti-correlate with 
the number of IR events include the mutase PGAM1, 
the membrane protein encoding SURF4, the mito-
chondrial transmembrane transporter SLC25A5, and 
the mitochondrial ATP Synthase F1 Subunit Beta 
(ATP5F1B) (Fig. 2D). Strikingly, the top 10 most signifi-
cant GO terms (out of 399) associated with genes that 
negatively correlate with the number of IR events cor-
respond to mitochondrial processes and cellular ener-
getics (Additional file 1: Fig. S5).
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Fig. 2 Putative regulators of intron retention in breast cancer. A Scatterplot showing differentially retained introns (dIR) between MCF7 and 
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Highly proliferating cells have fewer IR events
Next, we investigated whether changes in IR frequen-
cies are associated with changes to cellular states. Since 
the energy demand of a cell is tightly coupled with pro-
liferation, we sought to examine a potential link between 
doubling times of BrCa cells and the number of IR events 
in 36 BrCa-related cell lines of the Cancer Cell Line 
Encyclopedia (CCLE). Indeed, we found that cells with 
a slower doubling time exhibit a higher number of IR 
events (Fig. 3A). While this correlation is fairly robust, it 
should be noted that CCLE doubling times are an error-
prone surrogate for cancer cell proliferation.

To corroborate this result, we also investigated whether 
a common proliferation marker would inversely correlate 
with IR frequencies. Since immunohistochemistry (IHC) 
staining of Ki-67 is unavailable for the TCGA cohort, we 
tested whether the proliferation rate in tissues might be 
estimated based on MKI67 sequencing read counts. The 
MKI67 gene encodes the proliferation marker protein 
Ki-67. Using Human Protein Atlas data, we confirmed 
that MKI67 mRNA expression correlates with its Ki-67 
protein staining intensities detected by IHC (Additional 
file  1: Fig. S6A). As expected, normalized MKI67 read 

counts were higher in all nine cancers when compared to 
the respective adjacent normal tissues (Additional file 1: 
Fig. S6B). This suggests that MKI67 read counts can be 
used as a proxy for IHC staining to estimate cellular pro-
liferation rates. MKI67 expression was also found to be 
inversely correlated to the doubling time of 36 CCLE 
cell lines (Additional file 1: Fig. S6C). We observed that 
the number of IR events in samples of the TCGA-BRCA 
cohort negatively correlated with the proliferation rate 
(Fig.  3B). However, no correlation was observed when 
analysing normal and tumour samples separately (Addi-
tional file 1: Fig. S7).

The role of RNA‑Binding Proteins in IR regulation
Next, we investigated genes that were specifically deregu-
lated in BrCa. We identified a set of 150 genes that were 
only differentially expressed between BrCa and normal 
breast tissues, of which seven were RBPs (Fig.  4A). We 
calculated the z-score of each gene’s log fold change in 
BrCa versus the log fold change in other cancers in order 
to estimate the level of specificity of a gene being dif-
ferentially expressed in BrCa only (Fig.  4B). Among the 
genes that are highly specifically over-expressed in BrCa 

Fig. 3 IR and cell proliferation. A Cancer Cell Line Encyclopedia (CCLE) cell doubling times (x-axis) correlate with number of IR events (y-axis). B 
Normalized read counts of proliferation marker Ki-67 anti-correlate with the number of IR events (y-axis). Red dots—tumour samples; blue dots—
normal breast tissue

(See figure on next page.)
Fig. 4 Breast cancer-specific gene expression and RBP analysis. A Volcano plots showing differentially expressed genes in nine tumour types vs 
adjacent healthy tissue. The dashed lines represent the p value cut-off (horizontal; p < 0.05) and fold change threshold (vertical |FC| ≥ 1). See Fig. 1A 
for cancer-type abbreviations. Highlighted in blue are genes that are exclusively differentially expressed in BrCa, while those in red represent RBPs 
within this subset. B Heatmap of genes specifically differently expressed in BrCa (represented by colour-coded z-score). Annotation bar (left) shows 
the colour-coded correlation coefficient between gene expression and number of IR events in each sample. C Bar plots show the frequencies with 
which known binding motifs occur around the splice sites (50 nt up-/downstream) of differentially retained (IR; dark blue) and non-differentially 
retained introns (NR; light blue). Differences in average frequencies were determined using Student’s t test. *p < 0.05, ***p < 0.001, ****p < 0.0001, 
NS—not significant
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are two known RBPs: ZFP36L2 and TUT4. ZFP36L2 pro-
motes poly(A) tail removal of mRNA transcripts [30], 
while terminal uridylyl transferase 4 (TUT4) adds uri-
dines to deadenylated transcripts [31]. Thus, both RBPs 
are mediators of mRNA decay, which could explain the 
observed reduction of IR transcripts in BrCa.

We also determined the frequency by which BrCa-spe-
cific genes occur in RNA-related gene sets (n = 138) in 
the Molecular Signatures Database (MSigDB; total ~ 5000 
curated gene sets) [32]. While known RBPs such as 
ZFP36L2 and SNRNP25 (part of the minor U12-type 
spliceosome) are annotated in multiple RNA-related 
gene sets, other genes, that are specifically differentially 
expressed in BrCa, did not show any potential RNA-
binding capabilities (Additional file 1: Fig. S8A).

In addition, we analysed differentially retained introns 
for occurrences of RBP binding motifs. We found that 
differentially retained introns were enriched in NELFE 
and SRSF9 binding sites in upstream exons (5’-up) and 
the 3’ terminal region, respectively (Fig.  4C). Moreover, 
retained introns have fewer HNRNPH1 and HNRNPK 
binding sites in their 3’ terminal region compared to non-
retained introns (Fig. 4C; Additional file 1: Fig. S8B).

We conclude that RPBs are among the factors that 
facilitate reduced IR in BrCa by enabling efficient splic-
ing of introns from pre-mRNA transcripts. However, 
RBPs specifically differentially expressed in BrCa are 
not among those with enriched binding motifs within 

and around differentially retained introns. This suggests 
that more complex, multifaceted regulatory mecha-
nisms are causing the consistent reduction of IR in 
BrCa.

Tissue composition affects cancer IR profiles
Since the reduction in IR events in BrCa contrasts with 
all other cancer types analysed, we examined a possible 
contribution from the changing cell composition in the 
tumour microenvironment compared to healthy breast 
tissue. Gene signature-based and machine learning-
based algorithms have been developed to deconvolute 
the cell-type composition in bulk RNA-sequencing data 
[33]. To compare cell environmental profiles of TCGA 
breast tumour samples versus healthy adjacent control 
samples, we used the cell-type deconvolution algorithm 
xCell [34], which was trained on 1,822 pure human cell-
type-specific transcriptomes extracted from single-cell 
transcriptome profiling data. xCell analysis revealed 
that the breast tumour cell composition is distinct 
from other cancers (Additional file  1: Fig. S9). Among 
the most enriched cell types in BrCa are T helper cells, 
mesenchymal stem cells, and basophils. These predic-
tions are supported by recent single-cell BrCa profil-
ing studies [35–37]. Normal breast tissue is enriched 
in endothelial cells, adipocytes, and dendritic cells 
(Fig. 5A).
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Indeed, adipocyte and myeloid cell (M1 macrophages, 
basophils) enrichment are specific to normal breast tis-
sue (Fig.  5B/C), which could explain the IR paradox in 
BrCa.

To determine whether cell types enriched in normal 
breast tissue have particularly high IR event frequen-
cies, we retrieved RNA-sequencing data of 66 cell/tissue 
types from the ENCODE repository (Additional file  3: 
Table  S3). Our analysis suggests that breast epithelial 
cells have the highest prevalence of IR followed by adipo-
cytes (Fig. 5C), which could explain the drop in IR events 
in breast tumours.

Discussion
IR is omnipresent in vertebrate species [2, 38] and affects 
up to 80% of human protein-coding genes [17]. Numer-
ous studies have highlighted the functional importance 
of retained introns in a wide range of biological func-
tions including cell differentiation and development [12, 
39–42].

Since first reports in 2015 and subsequent confirma-
tory studies, BrCa has stood in stark contrast to other 
cancers concerning its burden of IR [28]. Dysregulation 
of cis- and trans-modulators can cause aberrant IR in 
various cancers [28]. For example, Dvinge et  al. found 
that snRNA expression changes IR in the MCF7 cell line 
and to a certain degree in BrCa patient samples. They 
also showed that splicing factor knockdown can lead to 
increased IR in triple-negative BrCa (TNBC) [43]. Kim 
et al. found that some BrCa IR events anti-correlate with 
DNA methylation and that high IR levels in transcripts 
of migration and invasion inhibitory protein (MIIP) are 
associated with increased survival in European-Ameri-
can patients with invasive breast carcinoma [44].

We confirmed a consistent reduction of IR events in 
TCGA breast adenocarcinoma samples compared to 
adjacent normal breast tissue. While BrCa is the only 
cancer where this reduction is observed, IR frequencies 
are, in fact, comparable to those observed in other cancer 
types. This is due to the excessively large number of IR 
events in healthy breast tissue. Gascard et al. found that 
IR increases with differentiation state in normal human 
breast cells with fewer IR events in myoepithelial cells 
and seven times more events in luminal epithelial cells 
[45]. Indeed, our results suggest that an important fac-
tor in the reduction of IR events in breast tumours is the 
changing cell composition from adipocyte and epithelial 
cell-rich breast tissue to lymphocyte-infiltrated breast 
tumours. Adipocytes and epithelial cells have one of the 
highest IR frequencies in their transcriptomes compared 
to other cell types, while lymphocytes are known to have 
low IR counts [46]. Siang and co-workers have shown in 
this context that the RBP human antigen R (HuR), which 

is involved in pre-mRNA processing, is a negative regula-
tor of adipogenesis [47]. Interestingly, Diaz-Muñoz et al. 
demonstrated that HuR binding to introns modulates 
alternative intron usage [48]. This may contribute to the 
high IR observed in adipocyte-rich normal breast tissue.

Aberrant IR has previously been associated with dis-
ease phenotypes and clinical outcomes. For example, IR 
in CMYC and SESTRIN1 genes was shown to be a reli-
able molecular marker separating melanoma from non-
melanoma tumours [14] and Sznajder and colleagues 
have shown that IR can be used as a biomarker in heredi-
tary repeat expansion diseases [15]. Despite marked dif-
ferences between tumour and normal breast tissue, IR 
profiles in our analysis also differ between  ER+ versus 
 ER− tumours. The survival advantages associated with 
high IR numbers in the Luminal B subtype suggest that 
this form of alternative splicing should be considered for 
therapeutic exploitation. However, the exact mechanisms 
whereby dynamic IR profiles lead to differences in clinical 
outcomes would be the subject of future studies.

The inverse relationship between IR and cell prolifera-
tion has been previously observed in the context of B cell 
development and T cell activation [46, 49]. Our results 
demonstrate that the number of IR events positively cor-
relates with longer cancer cell doubling times and that 
more IR events are associated with slower cell prolifera-
tion in BrCa. Our data show that HER2 positive breast 
tumours have the lowest number of IR events. HER2 is 
known to induce cell proliferation in human cancers and 
is associated with poor prognosis in BrCa [50]. These 
results suggest that IR is a mechanism that counteracts 
tumour growth and would provide opportunities as 
therapeutic targets. Interestingly, the tumour suppres-
sor Herstatin, expressed in healthy breast tissue [51], is 
a splice variant of the oncogene HER2, with a retained 
intron 8 [52]. Herstatin is a secreted autoinhibitor of 
Her2 [52], and intron 8 retention is regulated by RBPs of 
the HNRNP1 family (including H1, D, and A2/B1) [53]. 
Koedoot and co-workers have demonstrated that inhibi-
tion of cell proliferation can be achieved via splicing fac-
tor knockdown in TNBC [54].

Conclusions
In summary, our study sheds light on the unique causes 
and consequences of aberrant splicing in BrCa. The 
modulation of IR levels may offer novel opportunities for 
personalized BrCa treatment, especially in hormone- and 
chemotherapy-resistant subtypes.
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