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SUMMARY
Complex somatic genomic rearrangements and copy number alterations are hallmarks of nearly all cancers.
We have developed an algorithm, LINX, to aid interpretation of structural variant and copy number data
derived from short-read, whole-genome sequencing. LINX classifies raw structural variant calls into distinct
events and predicts their effect on the local structure of the derivative chromosome and the functional impact
on affected genes. Visualizations facilitate further investigation of complex rearrangements. LINX allows in-
sights into a diverse range of structural variation events and can reliably detect pathogenic rearrangements,
including gene fusions, immunoglobulin enhancer rearrangements, intragenic deletions, and duplications.
Uniquely, LINX also predicts chained fusions that we demonstrate account for 13% of clinically relevant
oncogenic fusions. LINX also reports a class of inactivation events that we term homozygous disruptions
that may be a driver mutation in up to 9% of tumors and may frequently affect PTEN, TP53, and RB1.
INTRODUCTION

Somatic structural variation (SV) and associated copy number

alterations (CNAs) are key mechanisms in tumorigenesis.1 How-

ever, both the mechanisms driving and the consequences of

genomic rearrangements in cancer are less well understood

than for point mutation events. This is due both to the relative

paucity of whole-genome sequencing (WGS) data that are

required for comprehensive SV analysis and also to the fact

that genomic rearrangements have significant diversity. Many

rearrangements involve a high degree of complexity, with indi-

vidual events resulting in multiple or even hundreds of breaks.2,3

Interpretation of these highly rearranged genomes is challenging

but simultaneously highly relevant for the identification of driver

events that may function as biomarkers or druggable targets.

LINX is an SV interpretation tool, which integrates CNA and SV

calling derived from WGS data and comprehensively clusters,

chains, and classifies genomic rearrangements. The motivation

for this is twofold: first, from a biological perspective, to allow

better insight into distinct mechanisms of rearrangements in

tumorigenesis and second, from a clinical perspective, to allow

prediction of the functional impact of structural rearrangements,

including gene fusions and disruptions. A number of previous
This is an open access article und
tools have been developed to analyze the roles of certain

rearrangement event types in tumorigenesis, such as chromo-

thripsis,2 chromoplexy,4 long interspersed nuclear element

(LINE) insertions,5 and amplification mechanisms.6 Clustering

methodologies have also been used previously to propose sig-

natures of structural rearrangement.1,7 LINX goes further than

just integrating the functionality of each of these previous tools,

both by classifying all classes of rearrangements in each tumor

genome and by predicting the local chained structure of the de-

rivative chromosome as well as the functional impact of the rear-

rangement in a single application.

RESULTS

LINX algorithm
The input for LINX is a base-pair-consistent segmented copy

number and SV callset from the previously described tools

PURPLE8 and GRIDSS.9 The base pair consistency means that

each and every copy number change in the genome is matched

precisely to an SV junction, which is represented either as a

breakpoint when the partner location is known or as a single

breakend when the partner location cannot be unambiguously

determined.
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Figure 1. LINX schematic and visualizations

(A) The LINX algorithm works in four steps to

annotate, cluster, chain, and determine the func-

tional impact of an integrated copy number. The

Circos on the left represents the input of LINX and

shows three structural variants (purple lines)

affecting two chromosomes (outer track in green

and blue) with consistent copy number break-

points (middle track showing green for gain and

red for loss). The Circos on the right shows

example output of LINX, including the chaining of

the variants into two continuous predicted deriv-

ative chromosomes (lines in brown and purple)

and a canonical TMPRSS2_ERG fusion (genes

depicted in blue and light brown on second outer

circle with fused exons showing darker shading)

on one of the two predicted chromosomes.

(B) A detailed guide to the visualizations produced

by LINX.
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There are four key steps in the LINX algorithm (Figure 1;

Methods S1). First, LINX annotates each breakpoint and break-

end with several basic geometric and genomic properties that

are important to the clustering and chaining algorithm. This in-

cludes whether each breakend is part of a foldback inversion,

flanks a region of loss of heterozygosity (LOH), or is in a well-

known fragile site region.8,10 LINX also annotates well-known

line element source locations5 and identifies additional sus-

pected mobile LINE source elements based on both the local

breakpoint structure and signals of poly-A sequence insertions.

Second, LINX performs a clustering routine to group raw

structural variants into distinct rearrangement ‘‘events.’’ LINX

defines a rearrangement event as one or more junctions that

likely occurred proximately in time and transformed the genome

from one stable configuration to another. Events can range from

a simple deletion or tandem duplication to complex events,

including chromothripsis or breakage fusion bridge11 cascades.

The fundamental principle for clustering in LINX is to join break-

points where it is highly unlikely that they would have occurred

independently. Rather than a single rule, such as clustering var-

iants into events based solely on proximity12 or variants that form

a ‘‘deletion bridge,’’4 LINX employs a set of 11 independent rules

in its clustering routine (Methods S1). These include clustering

variants that are very close in proximity (<5 kb between break-

ends); clustering breakends that together delimit an LOH event,

homozygous deletion, or region of high major allele copy num-

ber; clustering translocations that share common arms at both

ends; clustering inversions, long deletion, and long tandem

duplication variants that directly overlap each other; and clus-

tering all foldback inversions that occur on the same chromo-

some arm.

Third, after resolving all variants into clusters, LINX predicts

the derivative chromosome structure via a chaining algorithm.
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To do this, LINX considers all pairs of fac-

ing breakends on each chromosomal arm

within each cluster and iteratively priori-

tizes which pair is most likely to be joined.

The chaining logic imposes allele specific
copy number constraints at all points on each chromosome and

also the biological constraint that chromosomes are not

permitted without a centromere unless strict criteria relating to

detection of extrachromosomal DNA are met. Foldback inver-

sions are also explicitly modeled to allow chaining of clusters

of variable junction copy number and high amplification. Overall,

the chaining prioritization scheme is designed to be error tolerant

and aims to maximize the chance that each individual breakend

is linked correctly to the next breakend on the derivative chromo-

some. However, due to multiple possible paths, upstream sour-

ces of error, and missing information, the prediction is represen-

tative only and, in the case of highly complex clusters, unlikely to

be correct across all break junctions.

The fourth and final step in LINX is to annotate the gene impact

of SV junctions to predict gene disruptions and fusions. Any

breakend overlapping or in the upstream region of an Ensembl

transcript13 is annotated with its position and orientation relative

to the strand of the gene and the nearest splice acceptor or

donor. Gene fusions are called by searching for correctly ori-

ented splice acceptor and donor pairs on the predicted deriva-

tive chromosome, including chained fusions that may span mul-

tiple break junctions.14 To meet the fusion calling criteria, the

breakends must also connect to viable contexts in each gene

and not be terminated by further breakends in the chain on either

50 or 30 partner end (Methods S1). Since complex rearrange-

ments may result in many candidate gene fusions, LINX stream-

lines clinical interpretation by providing a curated list of known

pathogenic fusion gene pairs, as well as known promiscuous 5ʹ
and 3ʹ fusion gene partners, and marks matching fusions as

reportable. Finally, LINX also matches amplification, deletion,

and LOH drivers called by PURPLE across a panel of well-known

cancer genes (Table S1)8 to specific SV clusters and calls addi-

tional disruption driver events in tumor suppressor genes.



Figure 2. Landscape of genomic rearrange-

ments

(A) Top panel shows an alluvial plot depicting the

proportional assignment of each of the raw struc-

tural variant types (DEL, deletion; DUP, duplica-

tion; INV, inversion; TRL, translocation) to LINX

classification. The LINX classifications are further

broken down by tumor type in a relative bar chart in

the left lower panel. The right lower panel shows

the distribution of the number of structural variants

per sample grouped by tumor type, with the black

dots indicating the median values.

(B) Length distribution of notional deletion, dupli-

cations, and non-foldback inversions for both

simple rearrangements and complex clusters

(containing three or more variants). Note that

foldback inversions have a distinct length distri-

bution and are shown separately in Figure S4C.

(C) Counts of deletions and duplications in com-

plex clusters per sample both closely follow a 1:2

ratio (indicated by dotted line) compared with in-

versions, as expected by random rearrangements

following catastrophic events.

(D) Counts of simple deletions and duplications per

sample are not correlated with counts of deletions

and duplications in complex clusters.

See also Figure S4 and Table S3.
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Pan-cancer landscape of genomic rearrangements
To demonstrate the functionality of LINX, we ran it on a pan-can-

cer cohort of 4,358 paired tumor-normal, whole-genome-

sequenced (median of 1063 and 383 paired-end sequencing

coverage, respectively) adult metastatic cancer samples from

Hartwig Medical Foundation (referred to as Hartwig cohort;

Table S2).8 Of these samples, 1,924 had matched whole tran-

scriptome sequencing data, which were used for orthogonal

validation where appropriate. Overall, we found a mean of 324

rearrangement junctions per sample with the highest rates in

esophagus (mean = 753) and stomach (mean = 647) tumors

and lowest rates in thyroid (mean = 102) and neuroendocrine

(mean = 109) tumors (Figure 2A; Table S3). Event classification

by LINX highlighted the diversity and tumor type specificity of re-

arrangement mechanisms with deletions, tandem duplications,

LINE insertions, and complex events (defined as events with

three or more junctions) found to be the largest classes of rear-

rangements in agreement with previous pan-cancer whole-

genome analysis.1 We examined each of these event classifica-

tions in detail as follows.

Classification of simple and complex rearrangement

events

Classification of event types in LINX can considerably simplify

interpretation of a cancer genome. An important use case is to

distinguish simple events driven by a single break resulting in de-

letions and duplications (Figure S1) from variants that are notion-

ally called deletions and duplications by an SV caller but may be

part of a more complex event. Clean mutational profiles for sim-
ple deletions and duplications are impor-

tant for downstream applications, such

as signature analysis1 and in particular
homologous recombination (HR) deficiency classification,15,16

which is associated with both short deletions and tandem dupli-

cations and may be relevant to cancer treatment.

In the Hartwig cohort, we find that lengths of deletions and du-

plications classified as simple events are notably shorter than

those clustered in complex events (Figure 2B). Moreover, the

simple deletions and duplications show distinct characteristic

length peaks, which have been previously shown to be associ-

ated with BRCA1, BRCA2, and CDK12 inactivation or CCNE1

amplification,17 as well as a short DUP signature that we have

recently shown to be associated with colorectal tumors.9 On

the other hand, the deletions and duplications involved in com-

plex events have length distributions closely resembling that of

inversions clustered in complex events. We also find that the

per-sample counts of deletions, duplications, and inversions in

complex events closely follows a 1:1:2 ratio as expected from

random rearrangements following a catastrophic event (Fig-

ure 2C). However, the counts of simple deletion and duplication

junctions per sample were only very weakly positively correlated

with those for deletions or duplications that are categorized as

part of complex events (deletions r = 0.156; duplications r =

0.13; Figure 2D). Taken together, these observations suggest

LINX is able to accurately distinguish between simple and com-

plex rearrangements.

LINX annotates every cluster involving two break junctions

(further referred to as two-break junction events) with a resolved

typewhere they can be consistently chained (Figure S2) ormarks

as ‘‘incomplete’’ where they cannot form a consistent set of
Cell Genomics 2, 100112, April 13, 2022 3
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derivative chromosomes (Figure S3). Consistent two-break junc-

tion clusters fall into two major categories—reciprocal events

(e.g., reciprocal inversions or translocations) or events with in-

sertions of a templated sequence either in a chain or cycle.1

We observe that two-break junction events with insertion se-

quences frequently involve very-short-templated sequences <1

kb in length, referred to as ‘‘genomic shards,’’18 which we find

to be pervasive in cancer, constituting 14% of somatic break-

points. Genomic shards can confound classification of otherwise

simple variant types, because a short-templated insertion from

another chromosome appears notionally as two translocations

and can easily be misinterpreted as a reciprocal translocation

or more complex event.

LINX classifies events that can be resolved as a simple dele-

tion, tandem duplication, or translocation event with one or

more inserted shards as a ‘‘synthetic’’ event, under the assump-

tion that the structure is likely created by the disruption of a sim-

ple event with the insertion of the templated sequence during

repair without affecting the shard donor locus. In support of

this hypothesis, we find that samples with high counts of simple

deletion and duplications have significantly higher (p < 13 10�60

for both) counts of synthetic deletion and duplications, respec-

tively (Figures S4A and S4B), and furthermore, we observe the

lengths of synthetic deletions and duplications to be highly

consistent with the respective lengths of simple deletions and

duplications (Figure S4C). Synthetic deletion and duplication

events can have many different breakend topological rearrange-

ments, depending on the source and orientation of the inserted

shard (Figure S1). Insertion of genomic shards is by no means

unique to simple deletion and duplication events, as we also

see frequent short-templated insertion sequences in breaks of

more complex events, including foldback inversion and chromo-

thripsis events. Synthetic foldback inversions also show the

same length distribution as simple foldbacks (Figure S4C).

Reciprocal events are the other major category of two-break

junction events. These arise from the crossover of multiple con-

current double-stranded breaks forming either a reciprocal

inversion if both breaks occur on a single chromosome (with

the segment in between the two breaks repaired inverted) or a

reciprocal translocation if the repair is interchromosomal.

Although reciprocal inversions and translocations are found in

65% of samples in the Hartwig cohort, they are infrequent rela-

tive to other events in cancer, making up 0.8% and 0.5% of all

clusters, respectively. In addition to these classical reciprocal

events, we also find other configurations of reciprocal events

involving two break junctions (Figure S2). One prominent config-

uration that we term ‘‘reciprocal duplication’’ involves a pair of

reciprocal translocations or inversions but with breakends facing

each other at both ends with substantial overlap, often multiple

kilobase or even megabase in length (Figure S4D). Reciprocal

duplications are significantly enriched (p < 13 10�60) in samples

with strong tandem duplication signatures (Figure S4E). Further-

more, the length distribution of reciprocal duplications matches

the length distribution of the signature for samples with drivers

known to cause tandem duplication phenotypes, i.e., BRCA1,

CCNE1, or CDK12 drivers (Figure S4F). This suggests that these

reciprocal duplication events may arise from the same process

that forms tandem duplication events, likely when multiple tan-
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dem duplications occur simultaneously in a cell and, instead of

repairing locally, they may cross over and create a reciprocal

duplication. This observation places constraints on the mecha-

nism by which tandem duplications may form, because it re-

quires duplication of DNA at both loci prior to breakage and is

consistent with a replication restart-bypass model,19 but not a

microhomology-mediated, break-induced replication model.20

Mobile element and pseudogene insertion detection

Somatic integration of LINEs is a common feature inmany types of

cancer, particularly esophagus and head and neck cancers.5 A

LINE insertion may involve either the transposition of a full or par-

tial LINE source element or the transduction of a partnered or

orphaned genomic region within 5 kb downstream of the LINE

element.While LINE insertions are typically simple events in them-

selves, correct classification of these break junctions is important

to accurate interpretation of the genome, as they can otherwise be

mistaken as translocations and other complex events.

LINE integrations can be difficult to resolve with short read

technology, because the inserted sequence is often not uniquely

mappable in the genome and typically includes a Poly-A tail,21

making assembly difficult. LINX circumvents both these issues

by leveraging GRIDSS’s single breakend-calling capability9 to

identify LINE insertion sites with breakend evidence for either re-

petitive LINE sequence, PolyA sequence, or a list of known

recurrently active LINE source elements. To validate LINX’s

detection of mobile element insertions, we ran LINX on 75 sam-

ples from the pan-cancer analysis of whole genomes (PCAWG)

pan-cancer cohort and compared LINX’s LINE insertion calls

with those from TraFiC-mem.5 Overall, 339 of 564 (60%) LINX

LINE insertions calls were also detected by TraFiC-mem, with

TraFiC-mem calling an additional 270 insertions not found by

LINX. The concordance in total LINE insertion count was very

strong on a per-sample basis (Figure S5A; Table S4), with

most of the private calls in both pipelines being found in the

high LINE mutational burden samples (Figure S5B), suggesting

that many of the private calls from both pipelinesmay be genuine

LINE insertions.

Across the full Hartwig cohort, LINX found 76% of tumors

have at least one LINE insertion event. Some tumors suffer

extreme deregulation, with 6.7% of tumors having over 100 in-

sertions and 2,241 insertions found in a single esophagus

tumor sample (Figures 3A and 3B). The five most frequently in-

serted LINE source elements in the Hartwig cohort were all

among the top six reported previously in the PCAWG pan-can-

cer cohort:5 chr22:29,059,272–29,065,304, chrX:11,725,366–

11,731,400, chr14:59,220,385–59,220,402, chr9:115,560,408–

115,566,440, and chr6:29,920,213–29,920,223. Analysis of the

precise breakend locations at these five sites reveals highly

recurrent site-specific patterns of transduction (Figures 3C

and S5C), where the 30 ends of the transduced sequences

are normally sourced from a handful of specific downstream

sites (presumably polyadenylation sequences of alternative

transcription endpoints for the LINE source element), whereas

the location of 50 side of the transduction appears to be rela-

tively randomly distributed.

At the LINE insertion site, accurate breakpoint determination

can also give insight into potential biological mechanisms.

LINX finds frequent target-site duplication22 but intriguingly finds



Figure 3. Mobile element insertions

(A) Violin plot showing the distribution of the number of LINE insertions per sample grouped by tumor type. Black dots indicate the median values for each tumor

type.

(B) Complex LINE cluster in HMF002232B, a colorectal cancer. Overlapping segments from the LINE source element from chr14:59.2M have been inserted in at

least 20 independent locations scattered throughout the genome.

(C) Histogram showing frequency of breakends positions for all mobile element transductions in Hartwig cohort originating from the five most active LINE source

elements relative to the last base of the LINE source element.

(D) Pseudogene insertion of GLE1 into an overlapping break junction on chromosome 5 in HMF002165A, a non-small cell lung cancer. All 16 exons of the GLE1

canonical transcript are inserted, but parts of the first and last exons are lost.

(E) Samples with high numbers of LINE insertions also have high numbers of pseudogene insertions.

See also Figure S5 and Table S4.
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two peaks in the distance between the insertion breakends, one

at an overlap of 16 bases but also a second peakwith no overlap,

suggesting the possibility of two distinct breakage mechanisms

for the second strand after LINE invasion (Figure S5D). Further-

more, for the 20% of insertions where LINX observed a 50 inver-
sion in the insertion sequence (due to twin priming),22 only a sin-

gle peak with target site duplication of 16 bases is found.

LINX can also detect somatic pseudogene insertions resulting

from the activated reverse transcriptase activity associated with

deregulated LINE activity in tumors.5 LINX annotates any group

of deletions that matches the exact boundaries of annotated in-

trons as pseudogene insertions (Figure 3D).We find 577 pseudo-

gene insertions in the Hartwig cohort, exclusively in samples with

somatically activated LINE mechanisms and enriched in the

samples with the most deregulated LINE activity (Figure 3E).
Complex events

LINX classifies any cluster that has three or more junctions and is

not resolved as a LINE source element as ‘‘complex.’’ Previous

tools, notably ChainFinder,4 have been developed to systemati-

cally search for complex rearrangement patterns in tumors. We

compared LINX and ChainFinder across 1,479 Hartwig cohort

samples and found that, while in 22% of cases, LINX and Chain-

Finder produced near-identical clusters, themajority of junctions

clustered by LINX are left unclustered by ChainFinder, while few

SVs were exclusively clustered by ChainFinder (Figures S6A and

S6B). We found this to be because of two main reasons: first,

ChainFinder fails to cluster a large number of junctions that are

highly proximate (<5 kb between breakends; Figure S6C) and,

second, LINX employs a variety of clustering techniques to link

distant junctions on the same chromosome arm that are not
Cell Genomics 2, 100112, April 13, 2022 5



Figure 4. Complex rearrangements and high amplification

(A) Cumulative distribution function plot of count of complex rearrangement clusters per sample with at least 3, 5, 10, and 20 variants.

(B) Violin plot showing the distribution of the maximum number of variants in a single complex rearrangement cluster per sample, grouped by tumor type. Black

dots indicate the median values for each tumor type.

(C) Proportion of clusters contributing to at least one amplification, deletion, homozygous disruption, or LOH driver in a panel of cancer genes by complexity of

cluster and maximum JCN.

(D) Fully resolved chromothripsis event consisting of 31 structural variants affecting a 13-Mb region of chromosome 2 in HMF001571A, a prostate tumor.

(E) Counts of occurrences of trans-phased breakends by distance between the breakends for complex events, LINE insertions, and two-break reciprocal clusters

in the range of �500 to 500 bases (log scale). Negative distances indicate overlapping breakends and duplication at the rearrangement site.

(F) Counts of occurrences of trans-phased breakends by distance between the breakends zoomed in to �30 to 30 bases.

(G) Proportion of variants with at least one breakend joining a shard of less than 1 kb in length by resolved type for selected resolved types.

(H) Violin plot showing the distribution of shard length by resolved type.

(I) Double minute formed by three junctions in HMF003969A, a prostate tumor, and which amplifies known oncogene, AR, to a copy number of approximately 23.

(J) Proportion of samples with ecDNA and linear amplifications by cancer type.

See also Figures S6 and S7 and Table S5.
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captured by ChainFinder (Figure S6D). The additional variants

clustered by LINX compared with ChainFinder share a strikingly

similar length distribution to the variants clustered by both tools

(Figure S6E), including deletions, duplications, and inversions

with lengths greater than 1 Mb, which are not normally found in

simple events.

Conversely, in a small proportion (1.8%) of cases, junctions

are clustered by ChainFinder and not by LINX. Ninety-five

percent of these are deletions and tandem duplications <1 Mb

in length that may also have occurred as independent events

and be inadvertently clustered by ChainFinder (Figure S6E). In

line with this hypothesis, we find that 20% of the deletions clus-

tered by ChainFinder, but not by LINX, are in known fragile sites

(Figure S6F) and often are phased in trans, suggesting that they

likely occurred in different events.12
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Across the Hartwig cohort, we found at least one complex

event in 95% of tumors and at least one event of 20 or more

junctions in 60% of tumors (Figure 4A). While there are rela-

tively few complex events in any given tumor, they account

for more than half of junctions overall. Complex clusters with

>100 junctions were found in all cancer types, with breast can-

cer having the highest median maximum complex cluster size

of 62 (Figure 4B). We observe that complex events with a

higher number of junctions are more likely to disrupt or amplify

a putative cancer driver gene. Overall, 12.7% of all complex

clusters in the cohort contributed to a LOH, amplification, dele-

tion, or disruption driver, but this rises to 39.1% for events with

20 or more junctions and 77% for events with more than 20

junctions and high amplification (junction copy number R8;

Figure 4C).
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LINX goes further than other clustering tools in that it allows

not only for complex clusters to be identified but in many of

cases is able to completely resolve such events into a consistent

set of derivative chromosomes, including in chains with up to 33

junctions (Figure 4D). Uniquely, and critically for accurate chain-

ing in these complex structures, LINX utilizes phased assembly

output from GRIDSS to determine whether proximate facing

breakends are cis or trans phased. We observe that trans-

phased facing breakends, causing local duplication, are com-

mon in complex events and can often extend up to several hun-

dred bases but only rarely extend beyond 30 bases in reciprocal

events and mobile insertions (Figures 4E and 4F), suggesting a

fundamentally different breaking mechanism in complex events,

which may cause double-stranded breaks with hundreds of ba-

ses overlap. Proximate cis-phased breakends are even more

common than trans-phased and resemble in length distribution

the shards detected in simple events but with much higher fre-

quency in complex clusters (Figures 4G and 4H). We frequently

observe localized regions of scarring with multiple distinct

shards sourced from the same location, sometimes with over-

lapping template sequences.

Amplification mechanisms

Regions of high amplification are among the most complex

events in tumors, as they require iterative and repeated cycles

of synthesis or unequal segregation to form. There are two

well-known key distinct biological mechanisms that create highly

amplified rearrangements: repeated cycles of breakage fusion

bridge (BFB) and stochastic amplification of circular extrachro-

mosomal DNA by asymmetric segregation during cell division

(ecDNA). ecDNA (Figures 4I and S7A) may arise from any event

that creates simultaneous multiple double-stranded breaks on

the same chromosomal arm, with one or more chromosomal

segments repairing to form a circular structure without a

centromere. BFB (Figure S7B), on the other hand, is triggered

by the formation via translocation or foldback inversion of a

chromosome with two centromeres, arising from either multiple

concurrent double-stranded breaks or telomere erosion, and

leads to duplication of chromosomal segments within a linear

chromosome.

Despite these significant differences in mechanism, distin-

guishing between ecDNA and BFB is non-trivial based on

short-read sequencing data but is essential in order to under-

stand the diversity of amplification drivers in tumors and may

be relevant to the prognosis or treatment of certain tumors.23

The key difficulties in discrimination are that both mechanisms

can leave a similar footprint, as both may arise out of complex

shattering events and are highly shaped by the same selection

processes, both positive (amplification of key oncogenes) and

negative (constraints on amplifications of other proximate

genes).

LINX employs a set of heuristics to identify subsets of clusters

as likely ecDNA. The key principle used to identify ecDNA is to

look for high junction copy number (JCN) structural variants adja-

cent to low-copy-number regions that can be chained into a

closed or predominantly closed loop. LINX also checks that

the high JCN cannot be explained by compounding linear ampli-

fication mechanisms, by comparing the JCN of the candidate

ecDNA junctions with the maximal amplification impact of fold-
back inversions (hallmarks of BFB) and other junctions that link

closed segments of the ecDNA to other regions of the genome

(Methods S1). To validate the ecDNA heuristic, we ran LINX on

a set of 13 WGS neurosphere-cultured glioblastoma samples

that had been previously analyzed24 for ecDNA with Amplicon

Architect.6 LINX and Amplicon Architect called ecDNA for an

identical set of 19 oncogenes across the 13 samples (Table

S5), including the 11 samples that were orthogonally validated

by fluorescence in situ hybridization (FISH).

Applying the heuristic to the Hartwig cohort, we found ecDNA

to be a relatively uncommon event present in 9.9% of all tumors,

with the highest frequency in CNS tumors (51%; Figure 4J). This

is lower than found in a large recent pan-cancer cohort analysis

of WGS using AmpliconArchitect,23 which found a pan-cancer

prevalence of 14%. We observe that, overall, 12% of putative

amplification drivers identified in the Hartwig cohort are associ-

ated with ecDNA events (Figure S7C) but that this rate increases

for more highly amplified events to greater than 40% for events

with maximum JCN > 32. The relative rate of ecDNA is the high-

est for EGFR (Figure S7D), but this appears to be highly specific

to CNS tumors (where 87% of EGFR amplifications are associ-

ated with ecDNA), whereas for lung tumors (where epidermal

growth factor receptor [EGFR] amplification is also common)

and other cancer types, the rates of ecDNA are only 11% and

21%, respectively, similar to that of other well-known oncogenes

(Figure S7E).

The high-amplification events that do not meet the ecDNA

criteria are assumed to be formed via linear amplification. While

we find that 76% of these events have at least one foldback

inversion, suggesting a BFB process, in many events, the fold-

back JCN cannot explain the full amplification, and in the remain-

ing events, LINX identifies no foldback events at all (Figure S7F).

The majority of these are unlikely to be ecDNA, however,

because there is no obvious set of junctions and segments

that can be closed into a circle with a consistent copy number.

Some events, such as the exceptionally complex amplifications

ofMDM2 andCDK4 common in liposarcoma,3may not fall neatly

into either an ecDNA or BFB classification (Figure S7G) and have

recently been proposed to be a novel rearrangement class

termed ‘‘tyfonas.’’12

Detection of clinically relevant pathogenic

rearrangements

LINX calls a diverse and comprehensive range of fusions and

pathogenic rearrangements (Figures 5A and S8A–S8D). We

orthogonally validated LINX’s pathogenic fusion predictions by

comparing them with fusions predicted from RNA sequencing

(RNA-seq) data taken from the same samples. For the RNA com-

parison, we used Arriba, one of the best performing RNA fusion

callers,25 using a curated list of 391 known pathogenic fusion

pairs (Table S6). Across 1,924 Hartwig cohort samples with

matched RNA, 148/173 in-frame fusions (86%) predicted by

LINX were also found by Arriba (Figure 5B; Table S7). Of the 25

fusions not identified in RNA, 13 matched the characteristic tu-

mor type of the known fusion pair (nine of which were

TMPRSS2-ERG fusions in prostate cancer) and are likely to be

pathogenic but with insufficient expression to be detected in

the RNA. A further two cases predicted by LINX were found by

Arriba but only in out-of-frame transcripts. Thirteen known pair
Cell Genomics 2, 100112, April 13, 2022 7



Figure 5. Clinically relevant rearrangements

(A) AMYB-NFIB fusion caused by a reciprocal translocation in HMF000780A, a salivary gland tumor. The translocation links exons 1–8 inMYB to exon 11 inNFIB.

(B) Comparison of LINX fusion predictions in Hartwig cohort to Arriba fusion predictions from orthogonal RNA sequencing for known pairs and promiscuous

fusion partners. Promiscuous fusions of less than 1Mb length are shown separately, as theymay occur from readthrough transcripts and not be associated with a

genomic rearrangement.

(C) Count of LINX chained fusion predictions for known and promiscuous fusion and whether they are also found to be expressed in RNA by Arriba.

(D) Distribution of BCL2 expression in lymphoid samples with and without a predicted pathogenic IGH-BCL2 rearrangement. Box: 25th–75th percentile; whiskers:

data within 1.5 times the interquartile range (IQR).

(E) Reciprocal translocation affecting TP53 in HMF001913A, a prostate tumor. The two predicted derivative chromosomes overlap by approximately 300 bases

on both ends but are trans phased, which rules out the possibility of a templated insertion at either location. Although the TP53 copy number alternates between

one and two, no derivative chromosome contains the full gene and the gene is homozygously disrupted.

(F) Prevalence of homozygous disruption drivers for top 10 most affected tumor-suppressor genes.

(G) Distribution of gene expression in Hartwig cohort for samples with homozygous deletion, homozygous disruption, and wild type for each of RB1, TP53, and

PTEN. box: 25th–75th percentile; whiskers: data within 1.5 times the IQR.

See also Figures S8 and S9 and Tables S6, S7, S8, and S9.
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fusionswere predicted by Arriba, but not by LINX, seven of which

involve gene pairs less than one million bases apart on the same

chromosome and may be caused by readthrough transcripts26

or circularized RNA27 unrelated to structural rearrangements in

the DNA.

In addition to known pathogenic fusion pairs, 63 cancer-

related fusion genes were curated as promiscuous 50 and 3ʹ
fusion partners. Among these, LINX identified a further 152

candidate in-frame fusions, 74 (49%) of which were also de-

tected in RNA. Arriba detected 397 additional promiscuous can-

didates, but 86% of these were proximate on the same chromo-

some and are likely readthrough transcripts with no genomic

rearrangement. Altogether, 43 of the 325 (13%) known and pro-

miscuous fusion predictions were chained fusions involving mul-

tiple junctions, 26 (60%) of which were validated in the RNA-seq

data (Figure 5C), highlighting the utility of chaining of derivative
8 Cell Genomics 2, 100112, April 13, 2022
chromosomes for DNA fusion calling. TMPRSS2-ERG was the

only fusion that LINX found to be recurrently chained in the

cohort, accounting for 14 of the 43 predicted chained fusions,

all in prostate cancers.

Immunoglobulin enhancer rearrangements are a distinct class

of pathogenic rearrangements, common in B cell tumors where

errors in VDJ recombination and/or isoform switching in the

IGH, IGK, and IGL regions may lead to pathogenic rearrange-

ments, driving high expression of known oncogenes through

regulatory element repositioning.28 Although these typically do

not make a novel protein fusion product, LINX predicts these

pathogenic rearrangements based on the breakend in the IGH,

IGK, and IGL regions with orientation and position matching

locations commonly observed in B cell tumors.28 Among 10

lymphoid samples with matching RNA in the cohort, LINX found

six such rearrangements, including five cases of IGH-BCL2
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and one case of IGH-MYC. The five identified samples with IGH-

BCL2 rearrangements have significantly higher expression (p =

0.008) of BCL2 than the five lymphoid samples with no BCL2 re-

arrangement detected (Figure 5D).

LINX also identifies disruptive intragenic rearrangements that

may cause exonic deletions and duplications. Our knowledge

base includes nine such rearrangements known to be patho-

genic and two that we have deemed likely pathogenic due to

high recurrence in the Hartwig cohort. Three of the known path-

ogenic exon rearrangements were detected by LINX in at least

five samples with paired RNA in our cohort: EGFRvII (n = 6),

EGFRvIII (n = 14), and CTNNB1 exon three deletion (n = 6). In

all cases with an event detected by LINX in the DNA, we found

RNA fragments that supported novel splice junctions in the

matched RNA (Figure S8E). Only one other sample in the com-

plete cohort (n = 1,924) had more than one fragment supporting

any of these alternative splice junctions (a gastrointestinal stro-

mal tumor with three fragments supporting EGFRvII but with

no evidence of rearrangement in EGFR), suggesting a low

false-negative rate in LINX.

In addition to producing novel oncogenic proteins and over-

expression of well-known oncogenes, rearrangements may

also lead to tumorigenesis by disrupting the function of tumor-

suppressor genes. To capture this, LINX annotates every break-

end that overlaps a gene, determines whether it is disruptive to

the gene, and reports the number of undisrupted copies. In

cases of reciprocal translocations (Figure 5E), reciprocal inver-

sions (Figure S9A), complex break events (Figure S9B), or tan-

dem duplications that overlap at least one exon (Figure S9C), a

gene may be disrupted on all remaining copies, even though

the copy number is greater than zero for all exonic bases.29

We term this type of genomic rearrangement a ‘‘homozygous

disruption.’’ Homozygous disruptions cannot readily be de-

tected by standard panel or whole-exome sequencing, since in-

tronic sequences are typically not included in such panels and

they are copy neutral in exonic regions.

We find homozygous disruptions to be a common driver in the

Hartwig cohort, with 9% of samples containing at least one ho-

mozygous disruption in a panel of 448 curated cancer-related

genes (Table S8). Three well-known tumor-suppressor genes

had homozygous disruptions in more than 1% of the cohort:

TP53 (n = 69), PTEN (n = 56), and RB1 (n = 55; Figure 5F). Sup-

porting the functional impact of these events, we found signifi-

cantly lower expression for each of these genes (TP53: p = 2 3

10�16; PTEN: p = 2 3 10�6; RB1: p = 2 3 10�3) in samples

with predicted homozygous disruptions compared with samples

with at least one intact copy (Figure 5G) and similar mean fold

change in expression compared with samples with homozygous

deletions (TP53: 0.30 versus 0.40; PTEN: 0.47 versus 0.37; RB1:

0.68 versus 0.60 for disruptions and deletions, respectively). We

also performed a genome-wide search for genes with enrich-

ment of homozygous disruptions and found 35 significantly en-

riched genes, including 16 well-known tumor suppressors, 14

genes immediately adjacent to tumor-suppressor genes, and

three highly recurrent oncogenic fusion partners (Table S9).

Intriguingly, we found an additional two genes also enriched in

homozygous disruptions, but not widely characterized as tu-

mor-suppressor genes: PSIP1 (five observations; q = 0.006),
which has previously also shown to be significantly enriched

in truncating point mutations,30 and USP43 (six observations;

q = 0.01), a recently proposed tumor suppressor.31

Visualization

LINX produces detailed visualizations of the rearrangements in

the tumor genome that allow further insights into complex rear-

rangements. LINX supports either drawing all rearrangements

in a cluster or all the rearrangements on a chromosome,

creating an integrated Circos output32 showing copy number

changes, clustered SVs, the derivative chromosome predic-

tions, and impacted genes, including protein domain annota-

tion for gene fusions, all on the same diagram. The visualiza-

tions use a log-based position scaling between events so

that small- and large-scale structures can both be inspected

on a single chart. Combined with the circular representation,

these features allow unprecedented resolution of complex

structures across a broad array of event types, including chro-

moplexy (Figure 6A) and complex BFB amplification events

(Figure 6B). Methods S1 includes a walkthrough and explana-

tion of all LINX figures, covering the complete SV landscape

of the COLO829T melanoma cancer cell line, which has been

proposed as a somatic reference standard for cancer-genome

sequencing.33,34

Evaluation on an independent cohort. To assess broader utility

of the tool set and the reproducibility of our results, we compared

the findings on the Hartwig cohort with a subset of 1,541 sam-

ples from the independently sequenced PCAWG pan-cancer

cohort (Table S10).35 The PCAWG samples analyzed also cover

a diverse range of tumor types but, unlike the Hartwig cohort,

contain almost exclusively primary cancer samples and are

sequenced to a lower average coverage of depth (383–603

PCAWG compared with median 1063 for HMF).

We observed largely the same structural variant patterns

across the two cohorts (Figure S10A). The length distributions

of deletions, duplications, and inversions were highly similar for

both simple and complex events across the two cohorts (Fig-

ure S10B). We also observed a very similar preponderance and

length distribution of genomic shards across all event types (Fig-

ure S10C). Furthermore, we found that the length distributions of

the synthetic events in the PCAWG cohort closely replicated the

results found in the Hartwig cohort (Figure S10D). Likewise, the

reciprocal duplication events we identified in the Hartwig cohort

were also present in PCAWG, with the same length patterns of

tandem duplication signatures for samples with BRCA1,

CDK12, and CCNE1 drivers (Figure S10E). Driver-related rear-

rangement patterns were also similar between the PCAWG

and Hartwig cohorts. While the overall rates of samples with

high-amplification events were lower in the primary cancers

(22% PCAWG; 41% HMF), the proportion accounted for by

ecDNA was similar (28% PCAWG; 24% HMF; Figure S10F).

We also found homozygous disruptions events impacting tu-

mor-suppressor genes (TSGs) in the PCAWG cohort. Indeed,

the top four driver genes with putative homozygous disruption

drivers were the same in both datasets (Figure S10G).

Overall, the high reproducibility of these results in the indepen-

dently sequenced PCAWG cohort lends weight both to the utility

of LINX and the universality of the observed patterns across both

metastatic and primary cancers.
Cell Genomics 2, 100112, April 13, 2022 9



Figure 6. Complex event visualization

(A) Chromoplexy-like cluster formed from 19 break junctions across seven chromosomes in HMF001596B, a prostate tumor. The rearrangement leads to three

distinct putative drivers in a single event, including a chained TMPRSS2-ERG fusion with two hops; a loss of heterozygosity for PPP2R2A, which also has a stop-

gained point mutation (not shown); and an intronic homozygous disruption of PTEN.

(B) Breakage fusion bridge event affecting the P arm of chromosome 3 in the melanoma cell line COLO829T. The predicted derivative chromosome has a copy

number of two and can be traced outwards starting from the centromere on chromosome 3, traversing two simple foldbacks and two chained foldbacks and

finishing on a single breakend at chr3:25.3M, which from the insert sequence can be inferred to be connected to a centromeric satellite region (likely chromosome

1, which has a copy number gain of two over the centromere fromP toQ arm andwhich appears to be connected to chromosome 3 in unpublishedSKY karyotype

figures; http://www.pawefish.path.cam.ac.uk/OtherCellLineDescriptions/COLO829.html). One chained foldback at chr3:26.4M includes a genomic shard from

chr6 of approximately 400 bases, which has itself been replicated and internally disrupted by the foldback event. The other chained foldback at chr3:25.4M

includes two consecutive genomic shards inserted from chromosome 10 and 12 of approximately 200 bases each.
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DISCUSSION

Wehave shown that LINX can help understand highly rearranged

cancer genomes in multiple ways. Other recent publications on

complex somatic rearrangements1,12 have developed tools,

such as ClusterSV and JaBbA, that have significant feature over-

lap with LINX. Each of these approaches also utilizes a base-

pair-consistent SV/CN call set to cluster SVs, classify certain

types of rearrangements, and assess downstream impact.

However, LINX differs from existing approaches in several key

aspects. First, LINX clusters use copy number consistency con-

straints in addition to SV proximity. Second, LINX chains SVs to

reconstruct the derivative chromosomes caused by each rear-

rangement event, including partial reconstruction for incomplete

events. Third, LINX performs comprehensive classification.

Every SV is classified, including mobile element translocations.

Fourth, LINX utilizes single-breakend SV calls. The single-break-

end repeat annotations provided by GRIDSS enable LINX to

classify mobile element translocations as well as cluster com-

plex events overlapping centromeric repeats. Fifth, LINX’s rear-

rangement model allows for genomic shards to be inserted in
10 Cell Genomics 2, 100112, April 13, 2022
any event type. The size distribution of sharded events indicates

this approach is sound, at least for simple events, and this

approach considerably simplifies the classification scheme.

Sixth, LINX utilizes a nonlinear Circos-style visualization format

that enables even quite complex rearrangements to be visually

interpretable. Finally, LINX provides the most comprehensive

genomic rearrangement functional impact analysis currently

available. To the best of our knowledge, LINX is the only tool

that reports homozygous disruptions and the only tool that can

identify chained fusions from DNA-seq data alone, both of which

can lead to clinically relevant rearrangements in tumors.

The challenges in understanding the complexity of rearrange-

ments in tumor genomes can be daunting. The diversity of over-

lapping or converging biological mechanisms that may cause

similar rearrangement patterns means that it may be perilous

to analyze any one rearrangement as a standalone analysis. By

exhaustively classifying all rearrangements, LINX is a robust

foundation for more detailed analysis of specific rearrangement

patterns, including structural variant signatures, complex shat-

tering events, and high-amplification drivers as well as dissec-

tion of the underlying molecular mechanisms, DNA replication,

http://www.pawefish.path.cam.ac.uk/OtherCellLineDescriptions/COLO829.html
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and repair components involved. The full LINX analysis results on

the Hartwig cohort are available via data request and can be

paired with clinical data and other whole-genome analyses for

further in-depth research.

WGS offers the promise of a single comprehensive test for all

genomic alterations for both routine diagnostics and future

biomarker discovery. LINX takes a step toward that goal by

both comprehensively calling clinically relevant fusions from

DNA with similar precision and sensitivity to gold standard

RNA-seq methods and by identifying homozygous disruptions,

an important class of drivers of tumorigenesis that cannot readily

be detected by standard-of-care methods.

Limitations of the study
There aremany potential sources of error that can confound cor-

rect interpretation of complex genomic rearrangements,

including sample preparation, sequencing errors and coverage

biases (such as GC bias), inaccurate fitting of sample purity

and ploidy, false-positive or false-negative structural variant

calls, and inaccurate local copy number measurement. Depth

of coverage and sequencing quality are important consider-

ations here. While we have shown that LINX can find highly

similar results on the PCAWG dataset, which has, on average,

half the sequencing coverage of the Hartwig cohort, lower depth

coverage and/or lower quality sequencing is associated with

higher false-negative rates of structural variants9 and will result

in less complete reconstructions.

Furthermore, while LINX has been optimized for short-read

technology, the short-read length is ultimately the key limitation

in interpretation, because it limits the phasing of proximate var-

iants and accurate identification of events in long repetitive re-

gions. Nevertheless, in practice, LINX is able to resolve many

structures via various chaining and clustering heuristics, but for

more complex events, particularly highly rearranged focal re-

gions, errors are inevitable and the chaining is only partial and

representative. While we have performed extensive comparison

of LINX against other tools and can validate some of LINX’s

chaining predictions orthogonally via RNA evidence for chained

fusions, there are, as yet, no representative tumor genomes with

a fully resolved chromosomal structure for comparison as a truth

set. Long-read sequencing technologies36 can phase more

distant breakpoints and are likely better suited for resolving com-

plex events, although those technologies typically perform less

well for small variant detection. Pairing short- and long-read

technologies will no doubt lead to further advances in our under-

standing of the mechanisms and role of genomic rearrange-

ments in tumorigenesis.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

HMF WGS/WTS BAMs Priestley et al., 20198 https://www.hartwigmedicalfoundation.nl/en/

database/

PCAWG WGS BAMs Consortium and The ICGC/TCGA

Pan-Cancer Analysis of Whole

Genomes Consortium, 202035

http://dcc.icgc.org/pcawg/

WGS glioblastoma neurosphere

cultures BAMs

deCarvalho et al., 201824 EGA accession: EGAS00001001878

Software and algorithms

LINX v1.12 This paper https://github.com/hartwigmedical/hmftools/tree/

master/linx

GRIDSS2 v2.9.3 Cameron et al., 20219 https://github.com/PapenfussLab/gridss

PURPLE v2.48 Priestley et al., 20198 https://github.com/hartwigmedical/hmftools/tree/

master/purple

STAR 2.7.3a Dobin et al., 201337 https://github.com/alexdobin/STAR

Isofox v1.0 Hartwig Medical Foundation https://github.com/hartwigmedical/hmftools/tree/

master/isofox

ChainFinder v1.0.1 Baca et al., 20134 https://software.broadinstitute.org/cancer/cga/

chainfinder

Circos Krzywinski et al. 200932 http://circos.ca/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Peter

Priestley (p.priestley@hartwigmedicalfoundation.nl).

Materials availability
This study did not generate any new reagents.

Data and code availability
All raw (BAM), analysed (VCF, SV, purity copy number data) germline, and somatic genomic data and LINX results from the Hartwig

cohort were obtained from the Hartwig Medical Foundation (Data request DR-005). Standardized procedures and request forms for

access to this data, including LINX analysis results, can be found at https://www.hartwigmedicalfoundation.nl/en.

LINX is freely available as open source software from the Hartwig Medical Foundation (https://github.com/hartwigmedical/

hmftools/tree/master/linx) under a GPLv3 license. Reference data required to run LINX on hg19 or hg38 is available from https://

resources.hartwigmedicalfoundation.nl. LINX can be run from raw paired tumor-normal FASTQ files as part of Hartwig’s open source

cloud-based cancer analysis pipeline (https://github.com/hartwigmedical/platinum). Alternatively, a docker image is available from

dockerhub as gridss/gridss-purple-linx to run GRIDSS, PURPLE, and LINX together from tumor and normal BAMs.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The patient cohort was derived from the Hartwig Medical Foundation Cohort for which the sample collection and whole genome

sequencing and alignment to the GRCH37 reference genome has previously been described.8 We filtered for the highest purity

sample from each patient from tumor samples with purity R 20% and with no QC warnings or failures, yielding 4,378 paired tu-

mor-normal whole genome samples in total. An additional 1,774 paired tumor-normal sample BAMS were obtained from PCAWG,

1,541 of which passed QC warnings and purity filters. For 1,924 HMF samples paired whole transcriptome sequence data were

also analyzed.
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Analysis of structural variation and copy number alterations
GRIDSS9 v2.93 and PURPLE8 v2.48 were used for copy number and structural variant inputs for LINX. LINX v1.12 was used for all

analyses in this paper and is described in detail in Methods S1.

RNA validation
The RNA-seq was aligned to the GRCH37 genome using STAR 2.7.3a.37 Gene expression was calculated using Isofox v1.0, which

uses an expectation maximisation algorithm to estimate transcript abundance from genome aligned RNA-seq data, with default pa-

rameters. Isofox was also used to count the RNA fragments supporting novel splice junctions predicted in LINX for exon deletions

and duplications. Isofox is described in detail at https://github.com/hartwigmedical/hmftools/tree/master/isofox.

Known pathogenic pair and promiscuous gene fusions predictions in the DNAwere compared to passing fusion calls in the RNA by

Arriba (https://github.com/suhrig/arriba). Fusions were considered to be matched if the gene pair matched between RNA and DNA.

Mean TPM fold change was calculated as 2 to the power of the difference in mean(log2(TPM)) between groups of samples.

Complex event validation
We compared LINX to ChainFinder4 v1.0.1 on 2,840 samples from the Hartwig cohort. ChainFinder was run with default parameters.

Both LINX and ChainFinder were run using the same GRIDSS/PURPLE input data. Only 1,479 samples for which ChainFinder

completed within 24 hours were included in the comparison. ChainFinder clusters of 3 or more variants were considered equivalent

to LINX’s COMPLEX classification. For each individual variant we determined whether it was clustered in LINX, in ChainFinder or in

both as well as the size of the cluster in each tool.

LINE insertion validation
We ran LINX on 75 WGS samples from the PCAWG cohort (Table S2) which had previously been run with TraFiC-mem.5 Insertions

were considered matched between the tools if the predicted insertion site was within 50 bases.

ecDNA validation
We ran LINX on 13 previously analysed24 WGS glioblastoma neurosphere cultures sequenced to �10x depth and compared the

ecDNA predictions of Linx to those of the AmpliconArchitect tool and FISH. We matched the ecDNA predictions by amplified onco-

gene per sample.

Genes enriched in homozygous disruptions
We estimated a background rate of homozygous disruptions by dividing the total number of observed homozygous disruptions

across the full Hartwig cohort by the total length of all annotated genes in the Hartwig cohort. For each gene we then compared

the observed number of homozygous distribution to the expected number taking into account the global rate and the length of

the specific genes using a Poisson distribution and correcting for false discovery. Genes with a false discovery rate of less than

0.1 were reported.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests are described in figure legends. All significance values presented for comparisons of both gene expression and

counts of rearrangement types are calculated using a two-tailed Mann–Whitney U-test.
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