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Abstract
Introduction The primate retina has evolved regional specialisations for specific visual functions. The macula is specialised 
towards high acuity vision and is an area that contains an increased density of cone photoreceptors and signal processing 
neurons. Different regions in the retina display unique susceptibility to pathology, with many retinal diseases primarily 
affecting the macula.
Objectives To better understand the properties of different retinal areas we studied the differential distribution of metabolites 
across the retina.
Methods We conducted an untargeted metabolomics analysis on full-thickness punches from three different regions (macula, 
temporal peri-macula and periphery) of healthy primate retina.
Results Nearly half of all metabolites identified showed differential abundance in at least one comparison between the three 
regions. Furthermore, mapping metabolomics results from macula-specific eye diseases onto our region-specific metabo-
lite distributions revealed differential abundance defining systemic metabolic dysregulations that were region specific.
Conclusions The unique metabolic phenotype of different retinal regions is likely due to the differential distribution of dif-
ferent cell types in these regions reflecting the specific metabolic requirements of each cell type. Our results may help to 
better understand the pathobiology of retinal diseases with region specificity.

1 Introduction

Systemic metabolic dysregulation can cause pathology in 
the retina with diabetic retinopathy being a prime example 
of this. It has been recognised that diabetes long-term meta-
bolic dysregulations can lead to complications in the retina 
and vision loss with hyperglycaemia believed to be one of 
the main disease drivers. More recently, several studies have 
aimed to investigate potential links between other retinal 
disorders and systemic metabolic changes. For example, 
metabolomic studies performed on serum from age-related 
macular degeneration (AMD) have identified associations 
between dysregulations of lipids as well as amino acids with 
AMD disease status or severity (Acar et al., 2020; Brown 
et al., 2018; Laíns et al., 2017, 2019). Similarly, metabo-
lomic profiling of Macular telangiectasia type 2 (MacTel) 
patients identified serum levels of serine, and sphingolipids 
as an important MacTel risk factor (Bonelli et al., 2021; 
Bonelli et al., 2020; Bonelli et al., 2021; Gantner et al., 2019; 
Scerri et al., 2017; Tyynismaa, 2019). However, it is not 
clear whether the systemic manifestations (i.e. changes in 
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the serum) are causally related to retinal pathology in AMD 
or MacTel, or whether they are just indicators of underlying 
disturbances affecting both retina and peripheral blood.

Complexity is also introduced when retinal diseases do 
not affect the tissue uniformly due to its spatial structural 
variation. High acuity vision depends on a region called the 
macula, which has a peak density of cone photoreceptors as 
well as retinal ganglion cells and is thicker than the periph-
eral retina, which is rich in rod photoreceptors. This dif-
ferential distribution of cells across the retina is reflected by 
different transcriptional profiles in different retinal regions 
(Hu et al., 2019; Ratnapriya et al., 2019; Voigt et al., 2019, 
2020; Whitmore et al., 2014; Yan et al., 2020; Yi et al., 
2021). However, spatially differential gene expression data 
presented, so far, limited success explaining why, for exam-
ple, the macula is particularly affected by diseases such as 
AMD or MacTel. Furthermore, it is not clear how changes 
in metabolism, mentioned above, may have a differential 
impact on retinal diseases. It is also not clear how differential 
cell distribution impacts metabolite levels in different areas 
of the retina.

Understanding the spatial distribution of metabolites in 
the retina, and how that relates to different retinal cell types 
may therefore be useful to understand how systemic risk 
factors might affect specific cells in the retina and in particu-
lar the macula. This study presents an untargeted metabo-
lomics analysis performed on primates measuring the main 
metabolic profiles of the different regions of the retina. We 
identify metabolites and metabolic pathways that differenti-
ate the macula from more peripheral regions and investigate 
the relationship between these findings and the distribution 
of different cell types in the retina. Lastly, using our results, 
we investigate how systemic metabolic risk factors found 
in both AMD and MacTel relate to the specific metabolic 
characteristics of the macula.

2  Results

2.1  Differential metabolite abundance 
across the retina

To map the distribution of metabolites across the primate 
retina, samples from three different retinal areas were col-
lected from eleven primate (Macaca fascicularis) postmor-
tem eyes and analysed by untargeted metabolomics mass 
spectrometry analysis (Metabolon Inc.). The raw data (peak 
areas) underwent log transformation, quality and low abun-
dance filtering, normalisation and missing value imputa-
tion. One sample was discarded from further analyses as 
it was confirmed to be incorrectly collected when checking 
positive controls (Materials and Methods). The final dataset 
consisted of 32 retinal samples from six primates. Three 

females and three males were included in this study with an 
average age of 2.1 years. For each sample, 371 metabolite 
abundances were retained. Liner modelling correcting for 
several covariates was performed as described in Materi-
als and Methods to detect metabolites with differential 
abundance between retinal areas. A schematic overview of 
the study methods and analyses is presented in Fig. 1. We 
found a total of 197 (53%) metabolites whose abundance 
was significantly different in at least one statistical contrast 
(Table S1). The number and intersection of differentially 
abundant metabolites between retinal areas are presented 
in Figure S1. The largest number of differences was found 
between the macula and periphery (190), the two regions 
with the largest spatial distance in the retina. We did how-
ever find more differentially abundant metabolites between 
the macula and temporal areas (97), than between the tem-
poral and peripheral areas (53).

Comparing the abundance of individual metabolites in 
the macula versus periphery (Figure S2-3, Table S1), the 
most significantly enriched metabolites were carotene diol 
1 and 3, corresponding to the macular pigments lutein and 
zeaxanthin. These two diet-derived xenobiotics are known to 
be enriched in the macula of primates and were used in this 
study to validate the correct dissection of the macular sam-
ples (Materials and Methods). Of note, ergothioneine and 
beta-guanidinopropanoate, also diet-derived, were the third 
and fourth most significantly enriched metabolites, as well 
as xenobiotics, in the macula. In contrast, the positive con-
trol euthanasia drug, pentobartbital, was equally distributed 
across the retina (Table S1). The most enriched endogenous 
metabolites in the macula were n-acetyl-3-methylhistidine, 
n-acetyl-aspartyl-glutamate (NAAG) and 2-hydroxyglu-
tarate. The NAA precursors n-acetylaspartate (NAA) and 
aspartate were also significantly enriched metabolites (rank 
15 and 25) (Table S1). The most depleted non-lipid metabo-
lites in the macula were putrescine and taurine (rank 2 and 
4, Table S1).

To better understand which aspects of the metabolism 
differ between the retinal periphery and the macula, metab-
olites were grouped according to metabolic pathways and 
biochemical families and tested for directional enrichment 
(Fig. 2, Figure S2, Table S1). The pathway with the most 
significant enrichment in the macula was the alanine/aspar-
tate pathway, followed by the tricarboxylic acid (TCA) cycle. 
Conversely, the macula was relatively depleted of phosphati-
dylethanolamine, ceramide, sphingomyelin, diacylglycerol, 
polyamine and benzoate (in order of statistical significance). 
Overall, there was a similar number of metabolites enriched 
(99) versus metabolites depleted in the macula (98), but 
these differences were contributed to by metabolites from 
different classes. Overall, lipids were depleted in the macula 
and non-lipid metabolites were enriched, as displayed in 
Fig. 2, Figure S3). Furthermore, four of the six significantly 
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depleted metabolic groups were lipids (note, the bottom four 
rows in Fig. 2 are primarily depleted).

Plotting the distribution of metabolic pathways and bio-
chemical families in the three sampled regions (macula, 
temporal and peripheral) further illustrates the relative lack 
of ceramide, phosphatidylethanolamine, sphingomyelin 
and diacylglycerol in the macula compared to the periphery 
(Supplementary Figure 2). Of note, phosphatidylcholine and 
plasmenylethanolamine were much more evenly distributed, 
and carnitine-related fatty acid metabolism and lysophos-
phatidylcholine were the only lipid groups enriched in the 
macula.

In addition, we tested for metabolic pathways enriched 
with differentially abundant metabolites represented in both 

directions (‘mixed directionality enrichment’). Pathways 
with significant enrichment/depletion in the macula were the 
leucine, methionine, glycine/serine, urea cycle, glutathione, 
purine, phosphatidylcholine and the plasmenylethanolamine 
metabolite classes (Fig. 2, Table S1). The individual dif-
ferentially-abundant metabolites that constitute these mixed 
directionality results (pathways labelled with a star in Fig. 2) 
are displayed in Fig. 3. In contrast to the other lipid groups, 
the number of different phosphatidylcholines (dark green in 
Fig. 3) was similar in the enriched and depleted categories. 
However, the unsaturated forms were typically enriched, 
and the saturated ones tended to be depleted in the macula. 
Also of note were the purine family metabolites, wherein 
phosphorylated purines (ADP, AMP, GDP and IMP) were 
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Fig. 1  Study schematic and principal components analysis plot
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Fig. 2  Differential abundance of metabolites across retinal space. 
Relative abundance of N metabolites (filled rectangles, or ‘bricks’) 
grouped by biochemical family/pathway (y axis) and ordered by 
greater family-wise abundance in the macula (top) to the periphery 
(bottom). The number of bricks indicates the number of metabo-
lites in the pathway available for this study. The colour of each brick 
represents the log-fold change of that metabolite between macula 
and periphery. Positive log-fold change (reds) indicates that the 

metabolite is more abundant in the macula while negative values 
(blues) indicate that the metabolite is more abundant in the periph-
ery. + denotes family is significantly enriched in the macula (mainly 
red);—denotes family is significantly depleted in the macula (mainly 
blue); * denotes family is more differentially abundant in both direc-
tions than would be expected by chance (‘mixed directionality’/signal 
mixture effect)
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enriched in the macula, and their non-phosphorylated coun-
terparts (adenosine, guanosine and inosine) were depleted.

Abundance differences of each metabolite in the macula 
and peripheral regions are displayed in Figures S2, Figure 
S4, and Figure S5. To explore the distribution characteris-
tics of metabolites across all three sampled retinal areas, 
we grouped metabolites according to differential abun-
dance patterns that progressed laterally from the macula to 
the temporal region to the periphery. We defined ten major 
pattern clusters (Table 1, Figure S6, Figure S7), the largest 
of which contained metabolites that progressively increased 
or decreased according to proximity to the retinal centre. A 
total of 173 metabolites showed the greatest abundance dif-
ferences at the extremes of the macula > temporal > periph-
eral axis, with only seven showing significant differences in 
the temporal retina relative to the other regions.

Similarly, we clustered metabolic families by first deriv-
ing principal components (PCs) for each family and then 
testing for differences in their magnitude between retinal 
regions. As expected, when these differences in PC abun-
dance were grouped, most pathways/families recapitulated 
spatial distribution patterns observed using their constituent 
metabolite abundances (Table 1, Table S1).

Lastly, we tested for the effects of sex and age on the 
metabolic composition of the retina. Interestingly, we found 
female primates to exhibit increased levels of phosphati-
dyl-ethanolamine and plasmenyl-ethanolamide metabolic 
pathways, and decreased levels of lysophosphatidylcholine 
lysine-related pathways compared to males (Table S2, Figure 
S8). Older age tended to positively correlate with sphingo-
myelins and negatively impact levels of the leucine, isoleu-
cine and valine-related metabolites. Testing for differential 
effect for age and sex on metabolic abundances across the 
areas did not reveal any major signal (Table S2).

2.2  The regional retinal context of disease‑related 
metabolites

To place results from our analysis in healthy primate retina 
into the context of pathology, we mapped our data against 
serum-based investigations of two retinal disorders that 
exclusively affect the macula and have known associations 
with systemic metabolic changes, Macular Telangiectasia 
type 2 (MacTel) (Bonelli et al., 2021; Bonelli et al., 2020; 
Bonelli et al., 2021; Gantner et al., 2019; Scerri et al., 2017; 
Tyynismaa, 2019) and Age-related Macular Degeneration 
(AMD)(Acar et al., 2020; Brown et al., 2018; Laíns et al., 
2017, 2019). To this end, we leveraged differential serum 
metabolite abundance results from our previously published 
MacTel study (Bonelli et  al., 2020), to compare serum 
metabolites in patients with MacTel compared to controls. 
In addition to MacTel, we also recruited a cohort of 205 
individuals with AMD and 146 healthy controls. Patients 

were divided into sub-phenotypes of choroidal neovasculari-
zation (CNV), geographic atrophy (GA) and ‘mixed’. Abun-
dances of 763 serum metabolites were compared between 
each AMD patient subgroup and the controls. Although 
similar size studies of AMD have already been published 
(Acar et al., 2020; Brown et al., 2018; Laíns et al., 2017, 
2019), our data and its analysis ensured that the data genera-
tion, pre-processing, cleaning and statistical analysis were 
consistent across datasets. In all statistical contrasts, only 
four metabolites were identified as being significantly dif-
ferentially abundant after correcting for multiple testing: 
tryptophan betaine, heptanoate, 1-linoleolglycerol (18:2) 
and 1-pentadecanoylglycerol (15:0). All four were depleted 
in the serum of AMD-CNV patients compared to controls. 
A further 73 metabolites were differentially abundant in 
this patient subgroup at the nominal threshold of p < 0.05 
(Supplementary Results and Table S3). We found 36 and 37 
nominally significant metabolites when comparing AMD-
GA and AMD-Mixed to controls. None of these remained 
significant after accounting for multiple testing.

To investigate the spatial dimension of patient serum 
results in the retina, we separated the log fold-change results 
from the human serum-based studies into three groups 
according to their specific abundance in the primate macula 
or periphery, or annotated them as having a non-significant 
difference (Fig. 4A–B). Several of the metabolites that were 
changed in patient serum were found to be differentially dis-
tributed in healthy primates' retinas. For instance, metabo-
lites of the glycine/serine/threonine metabolism as well as 
alanine/asparagine metabolism were systemically depleted 
in the serum of MacTel subjects and were defined by our 
analyses to be more abundant in the macula compared with 
periphery or not differentially abundant (Fig. 4A). The oppo-
site trend was evident for phosphatidylethanolamines, which 
exhibited lower abundance in the macula than periphery but 
were enriched in the serum of MacTel patients. Sphingomy-
elins were significantly more abundant in the macula and 
depleted in MacTel patient serum. This analysis revealed 
however some interesting diversification patterns across 
the methionine and cysteine metabolism whose metabolites 
depleted in MacTel were mostly macula enriched rather than 
the non-differentiated ones. In AMD, purine and ceramide 
metabolism was reduced in patient serum and healthy pri-
mate retina (Fig. 4B).

3  Discussion

In this study, we measured metabolic abundances in three 
different regions of the primate retina: the central macular, 
temporal, and peripheral regions. Using a large and untar-
geted panel of 371 metabolites for 32 retinal samples, our 
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study is the first of its kind to elucidate the metabolic pro-
file of retinal regional areas by identifying multiple differ-
ences. We found a total of almost 200 metabolites whose 
abundance differed between the three areas, highlighting a 
clear metabolic separation between the macular region of the 
retina compared to the outer, temporal or peripheral, areas.

The most enriched metabolites in the macula were identi-
fied in our study as carotene diol 1 and 3. These are carot-
enoids containing an oxygenated carotene backbone and 
are known as xanthophylls. It is well established that lutein 
and zeaxanthin are two diet-derived xanthophylls highly 
enriched in the macula and responsible for the characteris-
tic primate yellow pigment spot (Landrum & Bone, 2001). 
Since zeaxanthin is relatively more concentrated in the 
macula compared to lutein (Bone et al., 1988), the distribu-
tion pattern observed in our study (Figure S9) indicates that 
carotene 3 corresponds to zeaxanthin and carotene diol 1 to 
lutein. Furthermore, the finding also validates that the tis-
sue samples were dissected from the correct retinal region.

The function of these yellow macular pigments has not 
been firmly established yet, although their natural anti-
oxidative properties are proposed to protect the retina from 
light-induced oxidative damage. In this context, it is interest-
ing that we also identified ergothioneine, a diet-derived, col-
ourless xenobiotic with antioxidative properties (Halliwell 
et al., 2018), as the third most enriched xenobiotic in the pri-
mate macula—lending further credence to the hypothesis of 
macula-specific anti-oxidative mechanisms. This concept is 
further supported by the macular enrichment of glutathione 
(Table S1), which is an endogenously generated antioxida-
tive compound.

The fourth most enriched xenobiotic in the macula, beta-
guanidinopropanoate, is known to decrease intracellular cre-
atine and phosphocreatine levels and, in skeletal muscle, to 
increase fatigue tolerance (Oudman et al., 2013). Consider-
ing the important role of phosphocreatine in photoreceptor 
energy metabolism (Linton et al., 2010; Wallimann et al., 
2011), it is plausible that the specific accumulation of beta-
guanidinopropanoate contributes to the fine-tuning of energy 
usage in the macula.

One of the most striking observations in our study was 
the reduced abundance of many lipid groups in the macula 
compared to the periphery. Since many of the lipids detected 
in our study are membrane constituents, it is likely that this 
differential distribution is linked to the anatomy of the retina. 
More specifically, photoreceptors contain more lipids than 
other cells in the retina because their outer segments consist 
of densely stacked disc-shaped membranes. The thickness 
of the outer segment layer is more or less uniform across the 
entire retina, whilst the inner retina (composed of four major 
neuronal subtypes) approximately doubles in thickness in 
the macula compared to the periphery. As all samples in 
this study (full-thickness retinal punches) were normalised, 
this roughly halves the relative contribution of outer seg-
ments (from rods and cones) in the macular sample. Fur-
thermore, the molar ratio of phosphatidylethanolamine to 
phosphatidylcholine in disk membranes is much higher (1:1) 
than in normal plasma membranes (1:6) (Boesze-Battaglia 
& Schimmel, 1997), which explains the relatively low abun-
dance of phosphatidylethanolamine in the macula, compared 
to phosphatidylcholine. By extension, it is plausible that the 
pronounced relative reduction of sphingomyelin and cera-
mide abundance in the macula is also based on enrichment 
of these lipids in photoreceptor outer segments, although this 
has yet to be validated.

The second-most depleted non-lipid compound in the 
macula was taurine, which is known to be highly enriched 
in the retina, more so than any other bodily tissue (Ripps & 
Shen, 2012). Photoreceptors accumulate taurine and criti-
cally depend on it for long-term survival (Rascher et al., 
2004; Ripps & Shen, 2012; Schmidt et al., 1976). Thus, as in 
the case of phosphatidylethanolamine described above, the 
relative depletion of taurine in the macula can be attributed 
to its known enrichment in photoreceptors. Consequently, 
we may speculate that putrescine (the most depleted macula 
non-lipid metabolite) and the polyamine family metabolites 
(the most depleted macula non-lipid metabolic group) are 
overrepresented in photoreceptors. However, supporting 
evidence for this (Ientile et al., 1986) is scarce. The spatial 
distribution of cones and rods might also contribute to the 
differential abundance of the phosphorylated versus non-
phosphorylated purines such as GDP/GTP and guanosine 
as these metabolites are important components of the vis-
ual signalling cascade and might reflect activity differences 
between cones versus rods in the light-adapted retina.

The most enriched metabolite in the macula was NAAG, 
which is the third-most-prevalent neurotransmitter in the 
mammalian nervous system (Neale et al., 2000) after glu-
tamate and taurine. Although the physiological function of 
NAAG in the retina is not well understood, its synthesis in 
and release from retinal ganglion cells in mammals and birds 
is well established by immunohistochemistry (Anderson 
et al., 1987; Williamson et al., 1991) and by the enrichment 

Fig. 3  Log-fold changes and 95% confidence interval of metabolite 
families/pathways with mixed abundances between the macula and 
periphery. Only metabolites which are individually significantly dif-
ferentially abundant are displayed. Positive log-fold changes values 
in this figure indicate that the metabolite abundance was higher in 
the macula compared to the periphery and vice versa. Metabolites 
are grouped and coloured by their respective biochemical families/
biological pathways. + denotes family is significantly enriched in the 
macula (mainly red);—denotes family is significantly depleted in the 
macula (mainly blue); * denotes family is more differentially abun-
dant in both directions than would be expected by chance (signal 
mixture effect). Families with significant abundance entirely in the 
macula or periphery are omitted for clarity (provided in Figure S5–7)

◂
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of the NAAG producing enzymes (N-acetylaspartate syn-
thetase and N-acetylaspartylglutamate synthase) visible in 
published single-cell transcription profiles (Swamy et al., 
2021). This suggests that the increased abundance of NAAG 
is due to the much higher numbers of retinal ganglion cells 
in the macula versus the periphery. These results show 
that future studies that allow single-cell metabolomics are 
needed. These will be able to identify cell type-specific 
metabolite repertoires and will alleviate the problem of 
unknown cell type proportion contributions to these results 
(Seydel, 2021).

Considering the important roles specific metabolites play 
in cytoarchitecture and cellular function it is arguably not 
surprising that we found in this study over half of all identi-
fied metabolites were differentially distributed in at least one 
comparison. This appears to apply in particular to metabo-
lites associated with retinal ganglion cells, rods and cones, 
which display the most extreme spatial distribution gradients 
across the retina. In contrast, we would expect metabolites 
that are linked to cell types with a more even spread, such 
as Müller cells or bipolar cells, to show less pronounced 
abundance differences in our three sampling locations. An 
illustrative example of this may be gamma-aminobutyrate 

(GABA) and glutamine which are both evenly distributed 
(Table S1) and which are part of dominant metabolic path-
ways in Müller cells (Bringmann et al., 2013).

In this study, we were unable to analyse the retinal pig-
ment epithelium, which acts as a major metabolic support 
hub for the retina (Hass et al., 2022; Hurley, 2021). Future 
studies on the metabolic composition of the RPE may pro-
vide further insight regarding the differential spatial distribu-
tion of metabolites in the RPE and their potential relation-
ship to retinal health.

To explore the relevance of regional metabolic pheno-
types in the retina in the context of disease, we explored 
the potential overlap between our primate retina dataset and 
serum metabolomics data from patients with retinal eye dis-
eases. We chose to focus on MacTel and AMD because both 
of these diseases are associated with systemic metabolic 
changes and both manifest themselves region-specifically 
in the macula. The retina and the serum studies were all 
based on the same metabolomics platform (Metabolon) and 
the bioinformatic pre-processing of all datasets was uniform, 
enabling meaningful comparisons whereas other studies 
often have this as a confounder. This approach revealed that 
the metabolic pathways that were changed in the serum of 

Table 1  Abundance pattern cluster descriptions

This table represents the ten identified pattern clusters that divide biochemical families according to their different abundances across retinal 
areas. A description for each cluster is provided. Lastly, metabolic families that were significant for each cluster (Table S1) are presented in the 
last column. More detailed metabolic abundances per area divided by pattern clusters are provided in Figure S6

Cluster name Description Significant pathways

Steep enrichment Metabolites whose abundance very quickly increases when 
moving from the periphery to the macula of the retina. 
Differences are consistent in direction and significant 
between all three areas

Alanine and Aspartate Metabolism; Histidine Metabolism; 
Methionine, Cysteine, SAM and Taurine Metabolism

Shallow enrichment Metabolites whose abundance slowly increases when 
moving from the periphery to the macula of the retina. A 
significant difference is only perceived when comparing 
macula to periphery

Glutamate Metabolism; Xenobiotics; Carbohydrate Metabo-
lism (other); Glycine, Serine and Threonine Metabolism

Macula enriched Metabolites whose abundance is particularly elevated only 
in the macula

TCA Cycle; Fatty Acid Mtb (Carnitine); Lysophospholipid; 
Lysine Metabolism

Periphery depleted Metabolites whose abundance is particularly depleted only 
in the periphery

none

Steep depletion Metabolites whose abundance very quickly decreases when 
moving from the periphery to the macula of the retina

Phosphatidylethanolamine (PE); Ceramides; Polyamine 
Metabolism

Shallow depletion Metabolites whose abundance slowly decreases when 
moving from the periphery to the macula of the retina. A 
significant difference is only perceived when comparing 
macula to periphery

none

Periphery enriched Metabolites whose abundance is particularly elevated only 
in the periphery

Sphingomyelin; Benzoate Metabolism

Macula depleted Metabolites whose abundance is particularly depleted only 
in the macula

Diacylglycerol; Phospholipid Metabolism

Temporal enriched Metabolites whose abundance is particularly elevated only 
in the temporal region

Cofactors & Vitamins; Monoacylglycerol; Lysophospholipid

Temporal depleted Metabolites whose abundance is particularly depleted only 
in the temporal region

none
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Fig. 4  Area Region specific 
metabolic pathways enrich-
ment results for two retinal 
diseases: A MacTel and B 
AMD. Each row represents a 
biological pathway that contains 
metabolites either enriched, 
not differentiated or depleted 
in the macula of the primates 
compared to the periphery. 
Metabolites are presented as 
“bricks” in each row. The colour 
of each metabolite represents 
the log-fold changes of that 
metabolite between MacTel 
cases and controls. High log-
fold change indicates that the 
metabolite is more abundant in 
the cases compared to controls 
while negative values indicate 
a depletion of such metabolite. 
Sub-pathways significantly 
enriched (FDR < 0.05 for 
MacTel and nominal p < 0.05 
for AMD) present a thick black 
stroke around them. There were 
no metabolites in the AMD 
study that achieved FDR < 0.05
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MacTel patients and that also displayed a region-specific dis-
tribution in the healthy retina were in the alanine/asparagine 
metabolism, parts of glycine/serine metabolism, the phos-
phatidylethanolamine metabolism and the sphingomyelin 
metabolism. In AMD, we found that the purine and ceramide 
metabolic pathways showed retinal region-specificity (in the 
healthy retina) as well as changes in patient serum.

Although the overlaps between healthy primate retina and 
human patient serum do not establish causality or imply a 
functional role in pathobiological mechanisms, they are 
likely to aid a better understanding of why diseases such as 
MacTel and AMD primarily affect the macula.

4  Materials and methods

4.1  Sample collection and processing

4.1.1  Macaque retina collection and processing

Metabolic abundances were measured in the retinas of 6 
healthy adult primates (Macaca fascicularis). Postmortem 
retinal tissue was collected at the California National Pri-
mate Research Center (Animal Welfare Assurance ID: D16-
00272 (A3433-01), Public Health Service Policy on Humane 
Care and Use of Laboratory Animals Policy). For all animals 
but one, both eyes were included in the study for a total of 
11 retinas. Fresh neural retinal tissue in the light-adapted 
state was dissected 10–20 min after euthanasia from three 
different eccentricities from the fovea. The yellow macular 
pigment spot (macula lutea) was clearly visible in the dis-
sected retinas and used to locate the fovea, from where a 
piece of retinal tissue was cut out (centred on the fovea). 
The diameter of the sample was equivalent to the distance 
between the fovea and the temporal edge of the optic disc. 
A second, adjacent sample of the same size was taken tem-
porally to the foveal sample. A third sample (same size) was 
taken further temporally in the peripheral retina, resulting 
in a total of 33 samples. The primates presented an average 
age of 2.1 years (sd = 0.94) and were divided into 3 females 
and 3 males. Samples were collected and immediately flash 
frozen on 3 separate dates and then submitted to Metabolon 
Inc. (Durham, USA) for mass spectrometry analysis. Briefly, 
this involved analysis of five fractions per sample: two for 
analysis by two separate reverse phase (RP)/UPLC-MS/
MS methods with positive ion mode electrospray ionization 
(ESI); one for analysis by RP/UPLC-MS/MS with negative 
ion mode ESI; and one for analysis by HILIC/UPLC-MS/
MS with negative ion mode ESI. Raw data was extracted, 
peak-identified and QC processed using Metabolon’s hard-
ware and software. Compounds were identified by compari-
son to library entries of purified standards and peaks were 

quantified using the area-under-the-curve technique, provid-
ing relative abundances of 435 metabolites.

4.1.2  Human blood collection and processing

To assess the utility of our results when exploring systemic 
metabolic profiles of retinal disorders, we collected meta-
bolic abundances from plasma of 351 participants. Of these 
205 were AMD patients, while the rest were age-matched 
controls without AMD. AMD patients were divided into 
three sub-disease categories according to their retinal diag-
nosis, patients with choroidal neovascularization (CNV), 
geographic atrophy (GA) and patients with CNV and GA 
(mixed). This data consisted of 127 CNV, 45 GA and 33 
Mixed AMD patients. The metabolic measurements were 
processed in 12 batches. The participants presented an aver-
age age of 78.2 years (sd = 7.31) with 54% females and 46% 
males. For each sample, we received abundances for 1403 
metabolites, 431 of which were discarded a priori given that 
they were not defined as specific metabolites by Metabo-
lon Inc.. Metabolic missingness rate was 14% (sd = 27%) 
among all samples with a similar missingness rate between 
healthy individuals (13.8%) and all the AMD cases (CNV 
13.7%, GA 13.5%, Mixed 14.4%). Missingness varied across 
metabolites (Table S3).

4.2  Data pre‑processing and imputation

Given their strongly skewed distribution, metabolic abun-
dances were log-transformed to achieve distribution symme-
try. Metabolic abundances were normalised by dividing the 
global median log-abundance of area/batch combination. To 
validate that samples were dissected from the correct loca-
tions in the retina we monitored the abundance of the metab-
olites carotene diol 1 and 3. Although Metabolon has not yet 
directly assigned the two carotenoids to specific structures, 
carotene diol 1 and 3 almost certainly represent the macular 
pigments lutein and zeaxanthin, respectively. The distribu-
tion of these two metabolites across the three sample loca-
tions matches well with the known enrichment of lutein and 
zeaxanthin in the macula. Furthermore, zeaxanthin is known 
to have a “sharper peak” than lutein in the fovea, when com-
paring macula versus periphery (Figure S9).

The metabolic missingness rate was 26% (sd = 34%) 
among all samples with an increasing missingness rate 
between the areas (24% macula; 25.7% temporal, 28.4% 
periphery). Missingnessness in metabolomics study is 
usually assumed to arise from two different mechanisms, 
either Missingness At Random (MAR, the missingness of 
the metabolite does not depend on the value of the metabo-
lite itself) or Missingness Not At Random (MNAR, the 
missingness of the metabolite depends on the value of 
the metabolite itself). Imputation of metabolic abundance 
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depends on such the assumption of mechanism, however, 
no common consensus has yet been reached on what type 
should be assumed (Bingol, 2018; Do et al., 2018; Wei 
et al., 2018a, b). Given the aforementioned result it is plau-
sible to assume that some metabolites in this study have 
retinal region specific abundance and additionally present 
as MNAR. Which metabolites were responsible for this 
effect was, however, unclear. To this end, we performed 
imputation of metabolic abundances in a flexible manner 
by using two different imputation approaches depending 
on the type of missingness that was most likely for each 
metabolite. Firstly, we discarded from further analyses 62 
metabolites (Table S4) with missingness rates of ≥ 80%. 
Secondly, for each metabolite i with at least one missing 
value, we identified two auxiliary metabolites (Ji and Zi) 
which had the two highest correlations with metabolite 
i (calculated over at least three observable abundances). 
The average correlation between metabolites and the first 
auxiliary variable J was r = 0.92 (sd = 0.06) while a cor-
relation of r = 0.89 (sd = 0.07) was observed for the auxil-
iary variable Z. Thirdly, auxiliary variables were then used 
for each metabolite to determine whether the missingness 
for that metabolite was MAR or MNAR. To this end, we 
performed a T-test comparing the observed values of both 
auxiliary variables when the metabolite of interest was 
missing or non-missing. We could not perform such a test 
for 41 metabolites as these presented with either one or 
two missing values. If metabolic values of either auxil-
iary variable were identified as being significantly lower 
(p < 0.05) when metabolite i presented missing values then 
the missingness of metabolite i was considered MNAR. If 
neither of the two auxiliary variables were significantly 
lower or metabolite i had no auxiliary variables available 
it was considered to present as MAR. This resulted in 132 
metabolites flagged as MAR and 37 as MNAR missing-
ness. The metabolomics dataset was then imputed using 
the MetImp software v1.2 (https:// metab olomi cs. cc. 
hawaii. edu/ softw are/ MetImp/) (Wei et al., 2018a, b; Wei 
et al., 2018a, b) using a MAR random forest approach 
which uses all available metabolic observations to impute 
missing values. Metabolites with MNAR missingness 
were imputed using the same tool with a Gibbs sampling 
approach. Both approaches have been used by several pre-
vious studies (Bingol, 2018; Do et al., 2018; Wei et al., 
2018a, b).

We then proceeded to quantile normalise each sample 
to reduce the effect of potential confounding due to batch 
effect using the NormaliseBetweenArrays function of the 
Limma package v 3.44.3. We assessed the gain of biologi-
cal separation between samples by comparing the first two 
metabolic principal components in the non-normalised data 
versus the normalised data (Figure S10 A-B). Investigation 
of preparation batches in the normalised data revealed an 

effect of batch preparation on metabolic abundance which 
was orthogonal to the biological differences (Figure S10 C).

Two metabolites were discarded due to the lack of any 
variability. The macula sample of one animal was discarded 
from further analyses since it was identified as incorrectly 
labelled based on clustering in the PC plots and examina-
tion of its carotene diol 1 and 3 levels. The final dataset 
comprised 32 samples and 371 metabolites. Metabolites 
were divided into 34 biological pathway groups. The list of 
metabolites and respective pathway membership is available 
in Table S5.

The data processing of the human serum metabolic data 
for the AMD study is presented in Supplementary Methods 
and are similar to those described above as well as a previ-
ously reported MacTel metabolomics study (Bonelli et al., 
2020).

5  Statistical analysis

To test for differential abundance between different areas of 
the retina we adopted the same strategy as in our previous 
MacTel metabolite study (Bonelli et al., 2020). This strategy 
involved the usage of the Limma software for gene expres-
sion analysis which exploits multivariate linear regression 
combined with the empirical Bayes approach (Ritchie et al., 
2006, 2015; Smyth, 2005). Metabolites were average-cen-
tred and standard deviation scaled. Primate age and gender, 
as well as preparation batch, were included as covariates in 
the model. Intra-primate correlation was taken into account 
by considering samples as biological replicates of the same 
primate using the function duplicateCorrelation in Limma 
(Smyth et al., 2005). For each metabolite, we tested three 
contrasts: Macular vs Temporal, Temporal vs Periphery 
and Macula vs Periphery. For this study, we used a false 
discovery rate cut-off of 5%. All metabolites with a Benja-
mini–Hochberg corrected p-value less than the FDRcut off 
of 0.05 were considered significant.

To test for pathway differential abundance between 
retinal areas we tested for enrichment of differential abun-
dance in the pathways by using the fry function from the R/
Limma package. The reason behind using these two differ-
ent approaches has been described elsewhere (Bonelli et al., 
2020)). Additionally, we prepared global pathway abundance 
by calculating the first principal component on all metabo-
lites in each pathway. The specific methodology to perform 
this has been described elsewhere (Bonelli et al., 2020).

Metabolites and metabolic pathways were then divided 
into clusters reflecting the patterns of significance and effect 
direction between contrasts (Macular vs Temporal, Temporal 
vs Periphery, Macula vs Periphery). A table of cluster names 
with contrast combinations is presented in Table S6.

https://metabolomics.cc.hawaii.edu/software/MetImp/
https://metabolomics.cc.hawaii.edu/software/MetImp/
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To assess the utility of our primate metabolomic study 
results for the interpretation of human retinal disease we 
extracted the results from our previous MacTel study 
(Bonelli et al., 2020) as well as the new study presented 
in this manuscript for AMD. Each metabolic family was 
divided into three subgroups dividing metabolites that were 
either, “enriched”, “not-differentiated” or “depleted” in the 
macula compared to the rest of the retina. With the new defi-
nition, we then tested for enrichment in each newly defined 
pathway using the R/limma fry module (Giner & Smyth, 
2016). Pathways with enrichment FDR < 0.05 were consid-
ered significant in MacTel. Given the very low level of sig-
nificance in the AMD study, a less stringent threshold of a 
nominal p-value < 0.05 was used instead for the enrichment 
analysis of this disorder.

Statistical analysis methodology used to analyse the 
serum metabolites of human samples comparing AMD to 
healthy controls is presented in Supplementary Methods.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11306- 022- 01969-6.
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