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Plasmodium falciparum coronin 
organizes arrays of parallel actin filaments 
potentially guiding directional motility 
in invasive malaria parasites
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Abstract 

Background: Gliding motility in Plasmodium parasites, the aetiological agents of malaria disease, is mediated by an 
actomyosin motor anchored in the outer pellicle of the motile cell. Effective motility is dependent on a parasite myo‑
sin motor and turnover of dynamic parasite actin filaments. To date, however, the basis for directional motility is not 
known. Whilst myosin is very likely orientated as a result of its anchorage within the parasite, how actin filaments are 
orientated to facilitate directional force generation remains unexplained. In addition, recent evidence has questioned 
the linkage between actin filaments and secreted surface antigens leaving the way by which motor force is transmit‑
ted to the extracellular milieu unknown. Malaria parasites possess a markedly reduced repertoire of actin regulators, 
among which few are predicted to interact with filamentous (F)‑actin directly. One of these, PF3D7_1251200, shows 
strong homology to the coronin family of actin‑filament binding proteins, herein referred to as PfCoronin.

Methods: Here the N terminal beta propeller domain of PfCoronin (PfCor‑N) was expressed to assess its ability to 
bind and bundle pre‑formed actin filaments by sedimentation assay, total internal reflection fluorescence (TIRF) 
microscopy and confocal imaging as well as to explore its ability to bind phospholipids. In parallel a tagged PfCoronin 
line in Plasmodium falciparum was generated to determine the cellular localization of the protein during asexual para‑
site development and blood‑stage merozoite invasion.

Results: A combination of biochemical approaches demonstrated that the N‑terminal beta‑propeller domain of 
PfCoronin is capable of binding F‑actin and facilitating formation of parallel filament bundles. In parasites, PfCoronin 
is expressed late in the asexual lifecycle and localizes to the pellicle region of invasive merozoites before and during 
erythrocyte entry. PfCoronin also associates strongly with membranes within the cell, likely mediated by interactions 
with phosphatidylinositol‑4,5‑bisphosphate (PI(4,5)P2) at the plasma membrane.

Conclusions: These data suggest PfCoronin may fulfil a key role as the critical determinant of actin filament organiza‑
tion in the Plasmodium cell. This raises the possibility that macro‑molecular organization of actin mediates directional 
motility in gliding parasites.
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Background
The infectious stages of Plasmodium parasites, the etio-
logical agents of malaria, are exquisitely designed for cell 
motility and targeted host cell invasion. Despite travers-
ing several very different tissue environments and invad-
ing divergent host cells in the mosquito and vertebrate 
hosts [1, 2], each life cycle stage retains a conserved cel-
lular architecture [3, 4] and mode of actomyosin-based 
cell movement, called gliding motility. The mechanics 
of gliding is intimately linked to the cellular architecture 
of the apicomplexan cell, the phylum to which malaria 
parasites belong [4]. The pellicular region underlying the 
plasma membrane houses much of the machinery asso-
ciated with motility. Comprised of a series of membrane 
bound structures, termed the inner membrane complex 
or IMC, this compartment lies some 20–50  nm under 
the plasma membrane [4], the space between housing the 
gliding motor complex. Current models predict that this 
structure is composed of a single headed myosin motor, 
anchored between the IMC and plasma membrane via 
a series of binding partners [5]. Motor action then pro-
vides the requisite force necessary for motility [6]. Myo-
sin engages directly with transient, short actin filaments 
that are themselves linked to the extracellular milieu via 
the cytoplasmic tails of surface bound adhesins [7]. Until 
recently, the linkage between actin filaments and the ter-
minal residues of surface-bound adhesins was thought to 
involve the glycolytic enzyme fructose 1,6 bisphosphate 
aldolase [7], which is known to bind actin [8]. Accord-
ing to this model, directional passage of the actin-aldo-
lase-adhesin complex rearwards by the myosin motor 
would then generate rearward force driving the parasite 
forwards.

Whilst the current model for gliding is appealing it 
does not explain how directional motility is generated. 
To date, efforts to visualize motor organization or actin 
in the pellicle of the parasite have not been successful 
[9, 10]. Recent evidence from the apicomplexan parasite 
Toxoplasma gondii, a distant relative of Plasmodium par-
asites, has also brought into question not only the role of 
aldolase, beyond its metabolic contribution [11], but also 
the essential contribution of each motor complex compo-
nent to motility in general [12]. Thus, the question of how 
directional force generation and subsequent directional 
gliding is achieved remains entirely unresolved.

Drugs that perturb microfilament turnover demon-
strate the importance of dynamic actin to gliding motil-
ity [13, 14]. Since actin forms a polar filament, proteins 
that interact in an orientated fashion constitute attractive 
candidates that might impact significantly on directional 
motility. Computational analysis of available apicom-
plexan genomes has revealed a remarkable reduction 
in the repertoire of identifiable actin regulators and 

actin-binding proteins in this phylum [15–17]. The mini-
mal set in Plasmodium parasites includes two formins 
[18], a single profilin [19], two actin depolymerizing fac-
tors (ADF) [20, 21], a homologue of the yeast-actin regu-
lator srv2 or CAP protein [22, 23], capping subunits alpha 
and beta [24] and coronin [25]. Among this minimal 
repertoire of core actin regulators only coronin appears 
to fulfil the role of a specific filament binding protein. 
Coronins are a family of proteins implicated in several 
roles involving actin dynamics across eukaryotic systems 
including filament binding and bundling [26–28]. Based 
on sequence comparison coronins have been divided 
into three groups, Types I-III [26]. Type I coronins are 
defined by a three-part structure consisting of an N ter-
minal seven bladed beta-propeller motif composed of 
WD40 repeats [29], a ‘‘unique’’ middle region that var-
ies in sequence and length between variants and species, 
and a C-terminal coiled-coil (CC) domain that mediates 
homo-oligomerization [30] and interactions with the 
Arp2/3 complex [31], a key nucleation complex entirely 
absent in malaria parasites. Apicomplexan coronins are 
predicted to resemble Type I coronins, with recent struc-
tural analysis of T. gondii coronin (TgCoronin) revealing 
a conserved N-terminal beta propeller motif and mostly 
conserved actin-binding residues, as well as a potential 
dimerization motif in the C-terminal CC domain [32].

Here the biochemical interactions of the Plasmodium 
falciparum coronin-like protein (PfCoronin) and actin 
were addressed towards dissecting its role in organizing 
directional actin-based motility in Plasmodium parasites. 
Using genetic, cellular, biochemical and single molecule 
approaches, we show that PfCoronin is a true actin-fila-
ment binding protein able, in vitro, to direct filamentous 
(F)-actin into parallel bundles. PfCoronin peak expres-
sion is centred in late schizogony, where the protein 
localizes to the merozoite pellicle throughout invasion 
consistent with a role in motility. PfCoronin interacts 
with membrane fractions of the parasite cell, likely bind-
ing via phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). 
Given its potential for organizing actin filaments in  situ 
at the parasite periphery into parallel bundles, a model in 
which coronin is a key determinant of directional gliding 
motility in apicomplexan parasites can be proposed.

Methods
Cloning, protein expression and purification
PfCoronin: The full-length gene encoding 6×His-PfC-
oroninFL was codon optimized for expression in Sf21 
cells (GeneArt). The synthetic gene was cloned into the 
pFastBacHTB vector using BamHI/XhoI restriction sites. 
Bacmid DNA was produced according to the Bac-to-
Bac manual (Invitrogen) using MultiBac cells. Bacmid 
DNA was transfected into Sf21 cells using Cellfectin II 
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(Invitrogen) according to the manufacturers instruc-
tions. Viral stocks were amplified and used at a 1:1,000 
dilution for protein expression. Following addition of 
virus, Sf21 cells were incubated in suspension at 27°C and 
harvested by centrifugation after 72 h. Cells were re-sus-
pended in lysis buffer (50 mM Tris pH 8.0, 300 mM NaCl, 
10  mM MgCl2, 5  mM 2-mercaptoethanol, 0.5% Triton 
X-100) supplemented with cOmplete EDTA-free pro-
tease inhibitors (Roche) and subjected to two rounds of 
freeze–thaw in liquid N2. The lysate was incubated with 
1 mg/mL DNAseI for 30 min rocking at 4°C, followed by 
centrifugation at 30,000g for 30  min. The soluble frac-
tion was recovered, adjusted to 10 mM imidazole pH 8.0 
and incubated with Profinity™ IMAC resin for 2 h at 4°C. 
The resin was washed sequentially with buffer 1 (50 mM 
Tris pH 8.0, 300  mM NaCl, 5  mM 2-mercaptoethanol, 
20  mM Imidazole), buffer 2 (50  mM Tris pH 8.0, 1  M 
NaCl, 5  mM 2-mercaptoethanol) and buffer 1. Protein 
was eluted in elution buffer (50 mM Tris pH 8.0, 300 mM 
NaCl, 5  mM 2-mercaptoethanol, 250  mM Imidazole) 
and analysed by SDS PAGE. Fractions containing His-
PfCoronin were pooled and cleaved overnight with TEV 
protease during dialysis against buffer 3 (50 mM Tris pH 
8.0, 300 mM NaCl, 5 mM 2-mercaptoethanol) to remove 
the 6×His tag. The dialyzed protein was incubated with 
Profinity™ IMAC resin for 2 h to bind un-cleaved protein. 
The cleaved protein was collected and the resin washed 
with buffer 3 until no more protein came off as moni-
tored by Bradford reagent (BioRad). The cleaved sample 
and washes were pooled and concentrated to 0.5 mL. The 
protein was subjected to size exclusion chromatography 
on a Superdex 200 10/300 GL column (GE Healthcare) 
pre equilibrated in 30  mM Tris pH 8.0, 300  mM NaCl, 
5  mM 2-mercaptoethanol. Full length PfCoronin eluted 
at ~12  mL. The N-terminal breakdown product PfCor-
onin 1-388 (called herein PfCor-N), eluted at ~16  mL. 
Peak fractions were analysed by Coomassie-stained SDS 
PAGE to assess protein purity. Fractions containing 
PfCor-N were pooled, concentrated and stored at 4°C.

PfAldolase The gene for PfAldolase was amplified from 
P. falciparum genomic DNA using the primers PfAl-
doF 5′GATCGGATCCATGGCTCATTGCACTGAATA 
TATG and PfAldoR 5′GATCCTCGAGTTAATAGA 
CATATTTCTTTTC, and ligated into the pProEX-HTb 
vector (Invitrogen) via BamHI/XhoI restriction sites, 
introducing an N-terminal 6×His tag. The plasmid was 
transformed into BL21 (DE3) Escherichia coli cells and 
the protein expressed for 4  h at 37°C after addition of 
1  mM IPTG. The cells were harvested, re-suspended 
in lysis buffer (20 mM Tris pH 8.0, 300 mM NaCl, 0.3% 
Triton X-100, 5  mM 2-mercaptoethanol) supplemented 
with cOmplete EDTA-free protease inhibitors. The sus-
pension was sonicated and clarified by centrifugation at 

30,000g for 30 min at 4°C. The supernatant was collected, 
adjusted to 10  mM imidazole pH 8.0 and incubated for 
2  h at 4°C with Profinity ™ IMAC resin. The resin was 
washed sequentially with Wash Buffer 1 (50  mM Tris 
pH 8.0, 300 mM NaCl, 20 mM imidazole pH 8.0, 5 mM 
2-mercaptoethanol), Wash buffer 2 (50 mM Tris pH 8.0, 
1  M NaCl, 5  mM 2-mercaptoethanol) and Wash Buffer 
3 (50  mM Tris pH 8.0, 300  mM NaCl, 5  mM 2-mer-
captoethanol). His-PfAldolase was eluted with elution 
buffer (Wash Buffer 3 + 250 mM imidazole pH 8.0) and 
assessed for purity and quantity by SDS PAGE. Elution 
fractions containing His-PfAldolase were pooled and 
dialysed against Buffer A (50 mM MES pH 7.0, 100 mM 
NaCl, 2 mM DTT, 1 mM EDTA) for 2 h, then subjected to 
cation exchange chromatography using HiTrap SPFF (GE 
Healthcare). A gradient from buffer A to buffer B (50 mM 
MES pH 7.0, 1 M NaCl, 2 mM DTT, 1 mM EDTA) was 
used to elute the protein. Peak fractions containing His-
PfAldolase, as determined by Coomassie-stained SDS 
PAGE, were pooled, concentrated and subjected to size 
exclusion chromatography using a Superdex 200 10/300 
gel filtration column (GE Healthcare) pre-equilibrated in 
Buffer A. His-PfAldolase eluted off the column as a sin-
gle peak at ~13 mL, corresponding to a molecular weight 
of ~160 kDa which approximates the size of a tetramer. 
Peak fractions were pooled, concentrated to 100 uM, 
aliquoted, flash frozen in liquid N2 and stored at −80°C. 
Actin was purified from rabbit skeletal muscle acetone 
powder (Sigma-Aldrich) using established protocols [33].

Sedimentation assays
High speed 2  μM RSMA in CaBG was adjusted by 
the addition of 10× Mg-EGTA exchange buffer (ME) 
(10 mM MgCl2, 2 mM EGTA) to make Mg bound RSMA 
(Mg-ATP-Actin). Mg-ATP-Actin was polymerized by the 
addition of 10× KMEI (0.5 M KCl, 0.1 M imidazole pH 
7.0, 0.01 EGTA pH 8.0, 0.01 M MgCl2) and incubation for 
2  h at room temperature. Proteins of interest [PfCor-N, 
PfAldolase and alpha-Actinin (Cytoskeleton Inc.)] were 
added to the appropriate concentration and the mixture 
incubated for a further 30 min at room temperature. The 
samples were centrifuged at 60,000  rpm in a Beckman 
preparative ultracentrifuge for 1 h at room temperature. 
The supernatant was carefully removed and adjusted 
with 5× RSB. The pellet was rinsed with MgBG (2 mM 
Tris pH 8.0, 0.2 mM ATP, 0.5 mM DTT, 0.1 mM MgCl2) 
and centrifuged at 60,000 rpm in a Beckman preparative 
ultracentrifuge for 1 h at room temperature. The super-
natant was carefully removed and discarded, and the pel-
let re-suspended in 2× RSB to a volume equivalent to the 
first supernatant after addition of RSB. The supernatant 
and pellet samples were boiled for 5 min and equal vol-
umes were separated by SDS PAGE, the gels stained with 
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Coomassie brilliant blue (BioRad) and the bands analysed 
by densitometry.

Low speed Low-speed sedimentation assays were per-
formed as per high-speed sedimentation assays with the 
following alterations. Mg-ATP-Actin was polymerized in 
the presence of the proteins of interest for 2  h at room 
temperature. Samples were centrifuged at 13,000 rpm in 
a standard benchtop centrifuge at 4°C. Supernatants were 
carefully collected and the pellet discarded. Supernatants 
were adjusted with 5× RSB, boiled for 5 min and sepa-
rated by SDS PAGE. The gels were stained with Coomas-
sie brilliant blue and the bands analysed by densitometry.

Kd determination Pre-polymerized Mg-ATP-Actin, pre-
pared as per the high-speed sedimentation assay protocol, 
was incubated with the protein of interest for 30 min then 
centrifuged at 60,000  rpm for 1 h at 22°C. The superna-
tants were collected, and adjusted with 5× RSB. The pel-
lets were rinsed with 1× KMEI and centrifuged as per 
the high-speed sedimentation assay protocol. The pellets 
were re-suspended in 2× RSB to the equivalent volume of 
the supernatant samples. Equal volumes were separated 
by SDS PAGE and the gels stained with Coomassie bril-
liant blue. For assays involving proteins too close in size 
to resolve by standard Coomassie staining, following SDS 
PAGE the proteins were subjected to Western blot analy-
sis. Band densities were analysed by densitometry and Kds 
determined according to the methods outlined in [34, 35].

Electron microscopy
Appropriate amounts of purified PfCor-N or PfAldo-
lase were added to 2 μM preformed Mg-ATP-Actin fila-
ments for 30 min at room temperature. The samples were 
adsorbed onto Formvar-carbon films supported on 200-
mesh copper grids. Grids were glow discharged before 
sample application, then negatively stained with aqueous 
uranyl acetate (1%). Samples were observed with an FEI 
Tecnai F30 microscope at 300 kV.

Fluorescence microscopy
Mg-ATP-Actin was polymerized by the addition of 2× 
TIRF buffer alone or in the presence of proteins of inter-
est and incubated in a covered tube at room temperature 
for 1  h. The samples were incubated with 1 μM Alexa 
Fluor ® 488 Phalloidin (Life Technologies) for 5  min at 
room temperature. 3 μL of the samples were adsorbed 
onto coverslips coated with 0.05  μg/μL poly-l-Lysine 
(Sigma-Aldrich). Fluorescence images were acquired 
using a Zeiss inverted LSM-510 confocal microscope and 
processed using ICY image analysis software [36].

TIRF microscopy
Oregon Green (OG) labelled RSMA was prepared as pre-
viously described [37]. 1.5 μM  Mg-ATP-Actin (33% OG 

labeled) alone and in the presence of proteins of inter-
est (Pf-Cor or Fimbrin, a kind gift from Colleen T. Skau) 
was prepared for TIRF microscopy by the addition of 2× 
TIRF buffer (10 mM imidazole pH 7.0, 50 mM KCl, 5 mM 
MgCl2, 1 mM EGTA, 0.5 mM DTT, 0.2 mM ATP, 50 μM 
CaCl2, 15  mM glucose, 20  μg/mL catalase, 100  μg/mL 
glucose oxidase, 0.5% methylcellulose 400 cP) to stimu-
late polymerization. The samples were immediately loaded 
into a pre-made flow chamber and excited by evanescent 
wave fluorescence on an IX-71 Olympus microscope fit 
with through the objective TIRF illumination. Images were 
acquired every 15  s for 10–20  min by an iXon EMCCD 
camera (Andor Technology) as previously described [38]. 
Movies were processed and analysed using ImageJ.

Plasmodium falciparum culture and maintenance
The 3D7 P. falciparum isolate was cultured as previ-
ously described [39]. Parasites were maintained in O+ 
erythrocytes (Australian Red Cross Blood Bank, South 
Melbourne, Australia) at approximately 4% haemato-
crit, in a culture medium of RPMI-HEPES supplemented 
with 0.18% (w/v) NaHCO3 and 10% (v/v) pooled human 
serum from unexposed Melbourne blood donors or 0.5% 
(w/v) AlbumaxII (Gibco). Cultures were incubated at 
37°C under a 94% N2, 1% O2, 5% CO2 gas environment. 
Transfected lines were maintained in the presence of 
appropriate drugs to select for the corresponding resist-
ance marker included in the transfection vectors.

Reverse transcriptase PCR (RT‑PCR)
RT-PCR was performed as described [40]. Briefly, total 
RNA was extracted from synchronized 3D7 parasites 
at appropriate time points post-invasion using TRIzol ® 
(Invitrogen), residual genomic DNA was removed using 
an RNAeasy ® column (Qiagen), and 5 μg of total RNA 
was reverse transcribed with or without SuperScript ™  
II reverse transcriptase using random hexamers (Invit-
rogen), all according to the manufacturers instructions. 
The following primers were used: Cor_RT_fwd (5′-CCTT 
TAATCAAGAATTTATA-TCC-3′) and Cor_RT_rev (5′-C 
CTCATTCACATTCTCATCCTC-3′); ACT1_RT_fwd (5′-C 
CAAAGAATCCAGGAATTATGG-3′) and ACT1_RT_rev 
(5′-GGAACAGTGTGTGATA-CACCATC-3′).

Vector construction and tagging
Endogenous tagging of PfCoronin (PF3D7_1251200) 
at the C-terminus was performed as described using 
the pD3HA vector with parasite transfection following 
standard protocols [41].

Antisera and immunoprecipitation
Antisera was raised in rabbits against PfCor-N, expressed 
and purified from BL21 (DE3) E. coli using standard 
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methods. Immunoprecipitation was performed as pre-
viously described [40]. Briefly, 40–48  h 3D7 PfCoron-
inHA schizonts were subjected to protein extraction 
using 1% TNET (1% Triton X-100, 50  mM Tris pH 7.4, 
150 mM NaCl, 5 mM EDTA) supplemented with cOm-
plete EDTA-free protease inhibitor cocktail (Roche). Pull 
downs were performed using anti-PfCoronin or anti-HA 
coupled to protein G-Sepharose (Amersham Biosciences) 
according to the manufacturers instructions. Proteins 
were separated by SDS PAGE and subjected to western 
blot analysis. The blots were probed with rat anti-HA 
[1:1,000] or rabbit anti-PfCoronin [1:1,000] and pro-
cessed as previously described.

Immunofluorescence assays
Parasites were synchronized according to established 
methods to obtain late schizonts or merozoites for re-
invasion using either sorbitol or heparin treatment [42, 
43]. Schizonts or invading parasites were fixed in a fixing 
solution of 4% paraformaldehyde (ProSciTech)/0.0075% 
gluteraldehyde (ProSciTech) in phosphate buffered saline 
(PBS) while rocking at room temperature for 30  min. 
Cells were permeabilized using 0.1% Triton X-100 (Bio-
Rad) for 10 min at room temperature and blocked over-
night using Blocking Solution [3% (w/v) Bovine Serum 
Albumin (BSA) (Sigma-Aldrich) in PBS], while rocking at 
4°C. Cells were incubated with appropriate primary anti-
bodies diluted in Blocking Solution for 1  h at 4°C. Pri-
mary antibodies used were rat anti-HA [1:1,000] (Roche), 
rabbit anti-PfGAP45 [1:500] [40], rabbit anti-Act 239-253 
[1:300] [10], mouse anti-PfRON4 [1:500] [44]. Samples 
were washed twice in PBS and incubated for 1 h at 4°C 
with appropriate secondary antibodies: Alexa Fluor ® 488 
or 594 goat anti-mouse, Alexa Fluor ® 488 or 594 goat 
anti-rabbit and Alexa Fluor ® 594 goat anti-rat (Invitro-
gen) [1:500] in Blocking Solution. Samples were washed 
three times in PBS and cells were settled onto coverslips 
(type 1.5, Zeiss) coated with 1% polyethyleneimine (PEI) 
(Sigma-Aldrich). Cells were mounted with VectaShield 
® (Vector Laboratories) with 0.1  ng/μL 4′,6-diamidino-
2-phenylindole (DAPI) (Invitrogen). Fluorescence images 
were acquired using Plan-Apochromat 100×/1.40 oil 
immersion Phase contrast lens (Zeiss) on an AxioVert 
200  M microscope (Zeiss) equipped with an AxioCam 
Mrm camera (Zeiss). Deconvolution of image stacks was 
undertaken using Axiovision release 4.7 or 4.8 software. 
Routine image manipulation was performed using FIJI 
and Adobe Photoshop.

Solubility profile analysis
For solubility analysis of PfCoronin purified 3D7 P. fal-
ciparum merozoites were hypotonically lysed by re-
suspending the merozoites in water supplemented with 

complete EDTA-free protease inhibitor cocktail (Roche). 
The samples were snap frozen in liquid N2 and incubated 
on ice for 10  min to thaw, releasing the cell contents. 
Water soluble and insoluble proteins were separated 
by ultracentrifugation at 1,00,000g for 30  min at 4°C 
(TLA100.2 rotor, Beckman Optima TL Ultracentrifuge, 
Beckman Coulter). Water insoluble fractions were fur-
ther treated with Na2CO3 pH 11.5 for 1  h at 4°C. Car-
bonate soluble and insoluble fractions were isolated by 
ultracentrifugation as described. Samples were adjusted 
with 4 x reducing sample buffer (RSB) and subject to 
sodium dodecyl sulfate polyacrylamide gel electrophore-
sis (SDS PAGE) followed by Western blot analysis.

Biosensor analysis
The amino analogue of PI(4,5)P2 (NH2-PI(4,5)P2 was 
synthesized with an ω-amino group on the sn-1 posi-
tion of a saturated lipid side chain as described previ-
ously [45]. NH2-PI(4,5)P2 was then conjugated with 
Sulfo-NHS-biotin (Thermo Scientific) to enable immobi-
lization onto the NeutrAvidin derivatized sensor surface 
according to a previously described protocol [46]. Experi-
ments were performed using a Biacore 3000 biosensor 
(Biacore Life Sciences, GE Healthcare). Various concen-
trations of PfCor-N (2.6 μM, 1.3 μM, 650 nM, 325 nM, 
162.5  nM and 81.2  nM) and PfADF1 (3.8 μM, 1.9 μM, 
950 nM, 475 nM, 237.5 nM, and 188.8 nM) were injected 
over PI(4.5)P2, immobilized onto a CM5 sensor surface 
derivatized with NeutrAvidin using NHS/EDC chem-
istry (140RU immobilized) (Catimel 2013). A NeutrA-
vidin channel was used as the control. The reactivity of 
immobilized PI(4,5)P2 was assessed by injecting various 
concentrations of the GST-tagged Pleckstrin Homology 
domain of Phospholipase C, gamma 1 (GST-PLCδ-PH) 
(350, 175, 87.5, 43.8, 21.9 and 11 nM) [46].

Kinetic constants were derived from the resulting sen-
sorgrams with BIAevaluation 4.1 software (Biacore Life 
Sciences, GE Healthcare) using Global analysis using a 
1:1 Langmuir model that includes terms for mass transfer 
of analyte to the surface.

Results
Full length PfCoronin is unstable
To begin to explore the contribution of P. falciparum 
coronin (PfCoronin) to gliding motility, an N-termi-
nally 6×His tagged PfCoronin was expressed and puri-
fied using a baculovirus expression system (Figure  1). 
Purification was performed according to an established 
method [29], consisting of immobilized metal affinity 
chromatography (IMAC), TEV cleavage to remove the 
His-tag and size exclusion chromatography. Throughout 
the purification process full-length PfCoronin (~69 kDa) 
rapidly degraded into a stable breakdown product of 
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~45  kDa (Figure  1). This was identified by mass spec-
trometry as the N-terminal portion of PfCoronin (amino 
acids 1–388) and agrees with the findings of others who 
observed a similar instability of purified murine coronin, 
which degraded from full length into a stable N-ter-
minal breakdown product consisting of a seven bladed 
β-propeller domain [29]. Size exclusion chromatography 
demonstrated that PfCoronin (1–388), referred herein 
as PfCor-N, exists as a monomer in solution (Figure 1c). 
The degradation of predicted C terminal dimerization 
motifs precludes assessment of full length PfCoronin’s 
ability to form multimeric complexes. Structural model-
ling demonstrates a likely conservation of the N-termi-
nal β-propeller structure with that in the murine and T. 
gondii coronin structures [29, 32], suggesting structural 
and functional conservation (Figure  2). Sequence com-
parison with the Salamun et  al. structure revealed only 
minor divergences in the potential actin binding residues 
between Apicomplexan coronins and those in yeast Crn1 
[32], hinting towards evolutionary conservation in the 
interaction between Apicomplexan coronins and their 

actins. Given the instability of the full length PfCoronin, 
all biochemical analyses were performed using the stable 
breakdown product, PfCor-N, containing the β-propeller 
domain, which contains the predicted conserved actin-
binding regions.

PfCor‑N binds to F‑actin
To investigate the interaction between PfCor-N and 
F-actin, sedimentation assays using purified rabbit 
skeletal muscle actin (RSMA) were preformed (Fig-
ure  3). PfAldolase was used as a positive control as a 
known F-actin binding protein [47]. The similarity in 
size between PfAldolase and actin required the use of 
western blots to differentiate specifically between these 
proteins (Figure  3ai). Both PfCor-N and PfAldolase co-
pelleted with F-actin in a concentration dependant man-
ner, indicating that each is able to efficiently bind F-actin 
(Figure 3a). To determine the affinity of the PfCor-N-F-
actin interaction, an established supernatant depletion 
method was utilized [34]. PfCor-N binds F-actin with a 
Kd = 0.96 μM, a value between the range of Kd’s found 

Figure 1 Purification of PfCoronin. a IMAC elution fractions 1–12. b PfCoronin pre‑ and post‑removal of the N‑terminal 6×His tag with TEV pro‑
tease. c Size exclusion chromatography elution profile of PfCoronin. d Size exclusion chromatography elution fractions between 12 and 16 mL as 
indicated by the red line in (c) with PfCor‑N eluting as monomer.
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among other type I coronins such as human variants Cor-
onin 1A–1C (1A, 2.57 µM; 1B, 0.47 µM; and 1C 0.26 µM) 
[48] (Figure 3b). PfAldolase has been previously reported 
to bind F-actin with a Kd = 0.37 μM [47]. These results 
confirm PfCor-N as a verified F-actin binding protein.

PfCor‑N bundles F‑actin into parallel bundles
Low speed sedimentation assays were used as a pre-
liminary measure of F-actin bundling, where bundles 
being larger than individual actin filaments are able to 
sediment at lower speeds [49, 50]. Depletion of actin 
from the supernatant was, therefore, used as a meas-
ure of for bundling capability (Figure  3c). PfCor-N 
successfully depleted actin from the supernatant in a 
concentration dependant manner, indicating an abil-
ity to bundle F-actin (Figure  3ci). As positive control, 
α-actinin, a well-characterized F-actin crosslinking/
bundling protein [51, 52] was also analysed, showing 
highly effective bundling at sub-micromolar concen-
trations (Figure  3ciii). PfAldolase, however, did not 
cause bundling even at the highest concentration tested 

(Figure  3cii), in contrast to reports of other species of 
aldolase bundling F-actin [8].

To ensure that the results of the sedimentation analy-
sis were the result of bundling and not protein aggrega-
tion samples were visualized by Transmission Electron 
Microscopy (TEM) to distinguish the formation of true 
filament bundles (Figure 4a, b). In the absence of PfCor-
N, actin filaments were randomly settled across the field 
of view (Figure  4a). In contrast, filament bundles were 
observed in the presence of PfCor-N (Figure 4b). This is 
particularly noteworthy since, in other coronins, actin fil-
ament bundling has only been seen when the C-terminal 
oligomerization motifs are present [32, 53, 54].

Due to limitations of negative-stain TEM for imag-
ing large, dense structures, a lower resolution confocal 
imaging approach using phalloidin-labelled F-actin was 
used to visualize higher order F-actin networks formed 
in the presence of the bundling/crosslinking proteins 
(Figure  4c–f ). As expected, single actin filaments were 
visualized in the absence of bundling/crosslinking pro-
teins (Figure  4c). In the presence of α-actinin, large 

Figure 2 Homology model of PfCoronin. a Side view of homology model for PfCoronin generated using the I‑TASSER server. b Top view of model. 
Potential blades within the propeller numbered 1–7 as per MmCoro1A and TgCoronin. c Alignment of PfCoronin homology model (purple) with 
MmCoro1A structure (2AQ5.pdb, [29]) (blue). d Alignment of PfCoronin homology model (purple) with TgCoronin structure (4OZU.pdb, [32]) (green).
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networks of crosslinked F-actin appeared, similar in 
structure to previous reports (Figure 4d) [52, 55]. In the 
presence of PfCor-N however, two different structures 
emerged: extensive sheets of evenly distributed actin 
filaments and organized rows of cable-like structures 
(Figure 4e, f ).

Actin filaments are polarized, with elongation occur-
ring predominantly at the barbed end of the filament. As 
such, bundles can either be parallel, where the barbed 
ends of the filaments are aligned and growing in the same 
direction, or antiparallel, where barbed ends are pointed 
away from each other and elongation occurs in both 

Figure 3 PfCor‑N binds to and bundles F‑actin. ai High speed sedimentation of PfCor‑N (2 µM) or PfAldolase (2 µM) with 0–10 μM pre‑assembled 
F‑actin. Supernatant (S) and pellet (P) fractions shown for representative gel of PfCor‑N (Coomassie stained) or PfAldolase (Western, probed with 
anti‑His). ii Densitometry showing % protein co‑pelleting with F‑actin, values = mean ± SEM (n = 3). bi Supernatant depletion assay showing 
unspun (U) and spun (S) samples PfCor‑N (2 μM) incubated with pre‑assembled F‑actin (0–20 μM) ii Densitometry of bound PfCor‑N based on 
amount of free actin in solution post‑centrifugation, providing a dissociation constant (Kd) = 0.956 μM. c Low‑speed sedimentation assay of 2 uM 
F‑actin assembled in presence of 0–10 μM PfCor‑N (i), PfAldolase (ii) or α‑Actinin with densitometry (iv) shown as % actin remaining in supernatant 
post‑centrifugation, values = mean ± SEM (n = 3).
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directions along the bundle. To distinguish parallel from 
antiparallel bundles the formation of actin filaments was 
observed in real time using total internal reflection fluo-
rescence (TIRF) microscopy of Oregon Green labelled 

RSMA. In the absence of binding protein, actin filaments 
are seen to elongate randomly across the full field of view 
(Figure 5a; Additional file 1: Movie S1). In the presence 
of PfCor-N actin filaments can be seen being bundled 

Figure 4 PfCor‑N organizes F‑actin into bundles and higher order sheets and networks. TEM of F‑actin (2 μM) alone (a) or in presence of 0.2 μM 
PfCor‑N (b, top three panels) and 1 μM PfCor‑N (b, lower panel). Scale bars 50 nm (a), 100 nm (b). c–f Confocal micrographs of Phalloidin‑488 labelled 
F‑actin (1.5 μM) (c) alone, or in the presence of d 0.5 μM α‑actinin, (e–f) 0.5 μM PfCor‑N. Scale bars 10 μm.
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Figure 5 PfCor‑N produces parallel actin bundles observed by TIRF microscopy. 2 μM Mg‑ATP‑actin with 1 μM Oregon Green Mg‑ATP‑actin (a) 
alone (b) + 0.1 μM PfCor‑N. Arrowheads indicate growing ends of filaments. Scale bars 5 μm. c Pixel intensity quantification of a and b across 45 
frames represented as measure of filament bundling. Actin alone pixel intensity mode = 701 arbitrary units (au) (red line). 100 nM PfCor‑N pixel 
intensity mode = 1,189 au (red line). d Actin assembled in presence of 100 nM Fimbrin. Top panel antiparallel bundle, bottom panel parallel bundle. 
Arrowheads indicate growing ends of the filaments. Scale bar 15 μm.
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together as they elongate (Figure  5b; Additional file  2: 
Movie S2). Bulk analysis of pixel intensity was used as a 
measure of filament bundling [50, 56, 57]. Actin alone 
showed a Gaussian distribution of pixel intensity, while in 
the presence of PfCor-N the pixel intensity is skewed to 
the right (Figure 5c). This shift is again indicative of fila-
ment bundling, wherein bundles have higher pixel inten-
sities compared with single filaments [50].

Critically, tracking of the individual microfilaments 
elongating into a bundle demonstrated a clear direction-
ality. In all cases, tracking the barbed end of each filament 
in the presence of PfCor-N showed evidence for exclu-
sively parallel forming filament bundles (Figure  5b col-
oured arrows; Additional file 3: Movie S3 and Additional 
file  4: Movie S4). For comparison the bundling protein 
fimbrin was used, which is known to mediate both paral-
lel and antiparallel bundles [50]. As expected, both types 
of bundles were visualized in the same experiment (Fig-
ure 5d; Additional file 5: Movie S5 and Additional file 6: 
Movie S6). Taken together, the biochemical and micros-
copy data suggest that PfCor-N is capable of both binding 
to F-actin and organizing filaments into parallel bundles, 
which can then organize into large, sheet and cable like 
structures.

PfCoronin is expressed during schizogony and localizes 
to the periphery of merozoites before and during invasion
Given its potential to form filamentous macroscopic 
structures in  vitro the spatial localization of native 
PfCoronin was explored in P. falciparum parasites to 
assess its potential role in the asexual life cycle. Evalu-
ation of mRNA transcript levels by RT-PCR revealed 
that the gene for PfCoronin is transcribed late in intra-
erythrocytic development, with a peak around 40–48 h, 
corresponding to late schizonts/maturing merozoites 
(Figure  6a), consistent with predicted levels [58]. Of 
note, the size differential between genomic and mRNA 
PCR products conforms to the predicted presence of two 
introns in the native gene [59], totalling 336 base pairs, 
which causes a visible size shift of the band compared to 
a gDNA control (Figure  6a). In parallel, analysis of the 
PfACTI gene showed transcription levels across the asex-
ual lifecycle.

To confirm this expression profile for the transcribed 
protein, a polyclonal rabbit antibody was generated 
against the N-terminal portion of PfCoronin (residues 
1–388, anti-PfCoronin) and validated for use in immu-
noblot analysis (see below). Analysis of parasite material 
by immunoblot probed with anti-PfCoronin confirmed 
a peak of protein expression late in the asexual lifecycle, 
in accordance with the level of the gene transcript (Fig-
ure  6b). The same samples were also probed with anti-
PfACTI (anti-Act239-253 (rabbit), [10]), anti-PfAldolase 

[40] and anti-PfAMA1 [60]. PfACTI was detected across 
the time-course with a broad peak over the later stages 
of the lifecycle. PfAldolase levels were consistent with 
those of actin. PfAMA1, in its processed and unpro-
cessed forms (80 kDa/62 kDa respectively, [61]), showed 
a distinct peak in late schizonts and early in invasion, 
consistent with its known role as an invasion ligand [62] 
(Figure  6b). The similarity between the expression pro-
files of PfCoronin and PfAMA1 is consistent with PfCor-
onin playing a role in blood stage merozoite invasion of 
the erythrocyte, a process dependent on active actomyo-
sin motility [13].

Given a variable background in immunofluorescence 
microscopy assays (IFA) with anti-PfCoronin due to 
background non-specific labelling, endogenous tag-
ging of the native coronin gene (PF3D7_1251200) with a 
C-terminal 3× haemagglutinin (HA) tag was attempted. 
Expression of PfCoroninHA was confirmed by Western 
blot of schizont lysate probed with anti-HA (Figure 6c), 
revealing a dominant band running above the 75  kDa 
marker absent in WT controls. This is moderately higher 
than the predicted molecular weight of PfCoroninHA 
(~72  kDa), but could be indicative of membrane inter-
actions or net negative charge that may effect protein 
migration through SDS. As validation, immunopre-
cipitation of tagged PfCoronin from late-stage schizont 
was performed using both anti-PfCoronin and anti-HA, 
with probing using the reciprocal antibody (Figure  6d). 
In both combinations the same band above 75 kDa was 
found, which was absent in pre-immune serum control. 
Taken together, this data validated the antibody and con-
firmed incorporation of the C-terminal HA-tag on PfC-
oronin. Visualization of PfCoroninHA in parasites in late 
stage schizonts revealed a distribution predominantly 
at the periphery of the merozoites within the schizont 
(Figure  6e). Co-labelling of schizonts with antibodies 
against PfGAP45, a myosin motor accessory proteins that 
is bound to the outer face of the IMC and plasma mem-
brane [5], and PfACTI, which is known to concentrate 
to the parasite periphery [10], demonstrated a broadly 
consistent spatial localization of both proteins within the 
pellicular space (Figure 6e).

Many proteins that show a pellicular localization in schiz-
onts will re-distribute during merozoite invasion, indicating 
their involvement in the tight junction or the acto-myosin 
motor, such as PfAMA1 and PfACTI [10, 41]. To deter-
mine if PfCoroninHA redistributed during invasion, invad-
ing merozoites captured early, mid and late in the invasion 
process were co-labelled with RON4, a marker of the tight 
junction ring (Figure 7a) [41]. The localization of PfCoron-
inHA, in contrast to expectations, was stable throughout 
the invasion process with no major redistribution occur-
ring. Co-localization of PfCoroninHA with PfACT1 during 
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Figure 6 PfCoronin is expressed in schizonts/merozoites and is located at the periphery of mature merozoites. a RT‑PCR of P. falciparum cDNA 
for PfCoronin and PfACTI genes across asexual life‑cycle post invasion (pi). gDNA positive control (with introns). Negative control—no reverse 
transcriptase. b Western blots across asexual life‑cycle post invasion (pi), probed with anti‑PfCoronin, anti‑PfACT1 (anti‑Act239‑253 (rabbit), [10]), 
anti‑PfAldolase [40] and anti‑PfAMA1 [60]. c Western blot WT 3D7 P. falciparum versus PfCoroninHA, probed with anti‑HA. d Reciprocal western blots 
of immunoprecipitations from 3D7 PfCoroninHA schizont lysates with anti‑PfCoronin bait, probed with anti‑HA (left panel) or anti‑HA bait, probed 
with anti‑PfCoronin (right panel). Control lanes = WT 3D7 P. falciparum. Arrow indicates PfCoroninHA. Asterisks heavy and light chain cross‑reactivity. 
e IFA of schizonts probed with anti‑HA (Coronin, red), DAPI (nucleus, blue), anti‑GAP45 (IMC, green) (middle panel) [40] or anti‑PfACTI (IMC/cytosol 
green) (bottom panel). Scale bar 2 μm.
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invasion did not reveal any striking correlation with that 
of F-actin (the major epitope of the Act239-253 antibody) 
[10] (Figure 7b). Thus PfCoronin appears to occupy a fixed 
localization at the pellicle of invasive merozoites during 
their entry into the erythrocyte.

Membrane association of PfCoronin is likely via PI(4,5)P2 
binding
Since PfCoronin lacks any obvious post-translational lipi-
dation motifs or a transmembrane domain, the nature 

of the peripheral localization of PfCoroninHA in mero-
zoites was explored. Towards this, purified merozoites 
were subjected to hypotonic lysis followed by centrifu-
gation to separate cytoplasmic proteins from those that 
are membrane associated. The membrane-associated 
fraction was then treated with Na2CO3 to allow dis-
crimination between integral membrane proteins and 
those that are associated with membranes. Western 
blot analysis demonstrated that approximately 40% of 
PfCoroninHA is membrane-associated (Figure  8a). As 

Figure 7 PfCoroninHA remains peripherally located in merozoites throughout erythrocyte invasion. a Invading merozoite IFA early (top panel), mid 
(middle panel) and late (bottom panel) in invasion. Labeling is anti‑RON4 (tight junction, green), anti‑HA (Coronin, red) and DAPI (nucleus, blue). Scale 
bar 2 μm. b Invading merozoite IFA early (top panel) and midway (bottom panel) through invasion. Labeling is anti‑PfActin (IMC/cytosol, green), anti‑
HA (Coronin, red) and DAPI (nucleus, blue). Scale bar 2 μm.
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controls, the samples were also probed with antibod-
ies against PfADF1, a soluble cytoplasmic protein [63], 
GPI-anchored MSP1-19 which remains in the pellet [64], 
and MSP1p83, a cleaved membrane associated product 
which is lost to the supernatant post carbonate treat-
ment (Figure  8a) [64]. PfCoroninHA was found in the 
carbonate-dependent supernatant confirming that whilst 
not directly integrated into the membrane, it is bound via 
alternate means.

Coronin proteins from other eukaryotes have been 
shown to associate with cellular membranes via interac-
tion with phosphatidylinositol 4,5-bisphosphate (PI(4,5)
P2) [65]. This was tested using recombinant PfCor-N, 
measuring its affinity for PI(4,5)P2 via Surface Plas-
mon Resonance (SPR) with chip-bound amino-ter-
minal PI(4,5)P2. As controls, PfADF1, a Plasmodium 
actin binding protein that does not have strong affin-
ity for phosphatidylinositol derivatives [63], and the PH 

Figure 8 Membrane association of PfCoroninHA is mediated by PI(4,5)P2. a Western blot of PfCoroninHA. Lanes 1 and 2 supernatant (S) and 
pellet (P) post hypotonic lysis. Lanes 3 and 4 S and P post Na2CO3 treatment. Top panel probed with anti‑HA (Coronin). Second panel probed with 
anti‑PfADF1 [63]. Third panel probed with anti‑MSP1p83 (non‑membrane associated protein). Fourth panel probed with anti‑MSP1‑19 (membrane 
associated GPI anchor). b–d SPR sensograms of (b) PfCor‑N (c) PfADF1 and (d) PH‑PLCdelta binding to immobilized PI(4,5)P2, shown above panel b. 
Concentrations of each analyte displayed by curves. Determined Kds = inset in graph.
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domain of Phospholipase C delta (PH-PLCdelta), a well 
defined PI(4,5)P2 binding protein [66] were also tested. 
Calculation of the Kd for each protein revealed values of 
0.36 μM for PfCor-N, 5.5 μM for PfADF1 and 27 nM for 
PH-PLCdelta (Figure 8b–d). This establishes that PfCor-
N binds to PI(4,5)P2 with sub-micromolar affinity. Com-
bined with IFA determined localization of PfCoroninHA, 
this data supports the notion that PfCoronin associates 
with the parasite plasma membrane likely via interaction 
with resident phospholipids. Placement in this compart-
ment with other components of the motor complex com-
bined with biochemical data is consistent with PfCoronin 
playing an organizing role for actin during Plasmodium 
blood stage cell motility.

Discussion
Apicomplexan gliding and host cell invasion are known 
to be reliant on a conserved actomyosin motor that gen-
erates the force necessary for directional motility. This 
motor requires dynamic actin filaments, anchored in the 
parasite pellicular space, to provide a track along which 
myosin can engage and drive forward cell motion. The 
actin filaments at the core of the motor are short, unsta-
ble and highly dynamic with unusual kinetics [67–73]. 
Furthermore, they show no evidence of forming any 
ordered actin structure within the parasite cell [9, 10]. 
Indeed, current evidence suggests that the majority of 
actin in cells is monomeric, with only ~2% predicted to 
be incorporated into filaments [74]. Indeed, their highly 
dynamic nature is essential for functional motility, as 
treatment of parasites with actin inhibitors impedes host 
cell invasion and gliding motility [13, 14, 75, 76]. Given 
such dynamics there is still a major gap in current under-
standing as to how directional motility, specifically the 
provision of oriented actin microfilament tracks for myo-
sin, is achieved.

Until recently, it was believed that part of the process 
of motor engagement, and potentially a major organizing 
component, came from anchoring of actin filaments to 
secreted adhesins via the tetrameric enzyme fructose 1,6 
bisphosphate aldolase [7]. Indeed several adhesins from 
the thrombospondin related anonymous protein (TRAP) 
family [7, 40, 77] and other unrelated proteins [47, 78] 
have been independently linked to aldolase. However, 
recent evidence suggests that whilst the binding may 
occur readily in vitro (via pull downs) or in the native cell, 
the interaction in vivo is not a functional requirement for 
normal motility. Rather it is primarily involved in energy 
metabolism in the parasite cell [11]. Thus whilst its role 
in recruiting energy sources to regions of motor activity 
may still be critical to motility, it may not play any organ-
izing role in the motor. These observations highlight the 
clear lack in understanding about the entire organization 

of the motor complex and how it leads to directional 
force and movement. Evidence presented here suggests 
coronin as a first organizing factor that links F-actin with 
the parasite plasma membrane, arranging these into par-
allel bundles and as such contributing directly to directed 
gliding motility.

Here, evidence clearly describes the ability of the 
β-propeller domain of PfCoronin to bundle actin fila-
ments together using bulk biochemical assays and mul-
tiple microscopic techniques. The filament-bundling 
capacity is somewhat surprising, as previous reports of 
bundling by other coronins required homo-oligomeri-
zation mediated by the C-terminal CC domain to bring 
multiple actin filaments together into a bundle [30, 32, 
53, 79]. However, recent mutational studies have identi-
fied multiple binding sites for F-actin on coronin [48, 
49], which form a ridge that spans the length of the 
β-propeller domain [49]. It has been postulated that these 
multiple binding sites could be interacting with two or 
more actin monomers within the filament [49, 80], or 
perhaps, given the results of this study, with two or more 
monomers from different filaments. Further mutational 
analysis of the actin binding sites in PfCoronin will be 
essential to address this phenomenon of F-actin bundling 
by monomeric coronin.

In vivo, PfCoronin was shown to display a peripheral 
localization, consistent with the pellicle space (Figure 6e). 
This data, in combination with a peak of protein expres-
sion in maturing and invading merozoites (Figure  6a, b), 
alludes to a role for PfCoronin in the invasion process. 
However, the consistent spread of PfCoronin at the para-
site periphery during invasion suggests that this role is not 
limited to linking actin filaments to the plasma membrane 
at regions of known motor engagement (Figure 7). Indeed, 
the interaction of PfCor-N with PI(4,5)P2 in vitro suggests 
that the linkage between actin and the membrane may be 
more direct than previously envisaged. Rather than actin 
linking via exclusive interactions with tetrameric aldolase 
to the tails of secreted surface adhesins [7] the entire track 
for myosin force generation may be bound to the plasma 
membrane or sub-domains within it. Whilst the caveats of 
PfCor-N interactions with vertebrate actin need to be veri-
fied with a reliable source of correctly folded Plasmodium 
actin, if validated, the bundling ability of the protein com-
bined with its in vivo distribution would suggest that native 
PfCoronin may be constantly organizing actin into ordered 
arrays underlying the plasma membrane, which are tempo-
rarily stabilized during motor engagement, permitting any 
associated adhesin to facilitate the transmission of motor 
force. Such a scenario would make the apicomplexan acto-
myosin motor look more muscle-like with an organized 
face at the IMC side of the pellicular space dedicated to 
myosin motor organization, and at the plasma membrane 
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arrayed patches of parallel-bundled actin filaments ready 
for myosin engagement. Further mutational, optical and 
detergent extraction approaches may provide insights into 
this organization in support of such a model.

Although PfCoronin may be providing an organizing 
template for motility, there is still a need to explain how 
myosin motor force is directed and how actin filament 
polarity is determined within the context of the pellicu-
lar space. A portion of directionality determination may 
fall to the other actin regulators, such as the formins [18]. 
Further work in this area is clearly needed. In addition, 
the exact contribution of PfCoronin to parasite motility, 
the effect PfCoronin binding to actin (and importantly 
native actin) has on the myosin motor and further com-
prehensive genetic dissection in P. falciparum, via knock-
out, conditional knockdown or expression of domain 
deletions, will be important for understanding the overall 
regulation of the spatial organization of actin in the para-
site pellicle, and consequently the mechanics of host-cell 
invasion and directional gliding motility.

Conclusion
In summary, evidence is presented demonstrating actin 
filament bundling by PfCoronin in vitro that, combined 
with in vivo imaging data and phospholipid binding, sup-
ports a role for PfCoronin being an important effector for 
organizing actin filaments in the invasive malaria para-
site. If validated this would open up the possibility that 
Coronin across apicomplexan parasites, and across Plas-
modium life cycle stages, may be a key organizing force 
for directional actin filaments and by extension gliding 
motility in these key human pathogens.

Additional files

Additional file 1: Movie S1. TIRF OG‑Actin alone. The movie demon‑
strates TIRF microscopy of actin filaments polymerising alone.

Additional file 2: Movie S2. TIRF OG‑Actin plus PfCoronin, full view. The 
movie demonstrates TIRF microscopy of actin filaments polymerising in 
the presence of PfCoronin‑N terminal protein.

Additional file 3: Movie S3. TIRF OG‑Actin plus PfCoronin, zoom view I. 
The movie demonstrates TIRF microscopy of actin filaments polymerising 
in the presence of PfCoronin‑N terminal protein zoomed into demon‑
strate a first example of parallel filament‑bundling.

Additional file 4: Movie S4. TIRF OG‑Actin plus PfCoronin, zoom view II. 
The movie demonstrates TIRF microscopy of actin filaments polymerising 
in the presence of PfCoronin‑N terminal protein zoomed into demon‑
strate a second example of parallel filament‑bundling.

Additional file 5: Movie S5. TIRF OG‑Actin plus Fimbrin, parallel 
filaments. The movie demonstrates TIRF microscopy of actin filaments 
polymerising in the presence of purified Fimbrin, demonstrating parallel 
bundling of filaments.

Additional file 6: Movie S6. TIRF OG‑Actin plus Fimbrin, anti‑parallel 
filaments. The movie demonstrates TIRF microscopy of actin filaments 
polymerising in the presence of purified Fimbrin, demonstrating anti‑
parallel bundling of filaments.
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