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Abstract 

Background  Typical symptoms of uncomplicated dengue fever (DF) include headache, muscle pains, rash, 
cough, and vomiting. A proportion of cases progress to severe dengue hemorrhagic fever (DHF), associated with 
increased vascular permeability, thrombocytopenia, and hemorrhages. Progression to severe dengue is difficult to 
diagnose at the onset of fever, which complicates patient triage, posing a socio-economic burden on health systems.

Methods  To identify parameters associated with protection and susceptibility to DHF, we pursued a systems immu-
nology approach integrating plasma chemokine profiling, high-dimensional mass cytometry and peripheral blood 
mononuclear cell (PBMC) transcriptomic analysis at the onset of fever in a prospective study conducted in Indonesia.

Results  After a secondary infection, progression to uncomplicated dengue featured transcriptional profiles associ-
ated with increased cell proliferation and metabolism, and an expansion of ICOS+CD4+ and CD8+ effector memory 
T cells. These responses were virtually absent in cases progressing to severe DHF, that instead mounted an innate-like 
response, characterised by inflammatory transcriptional profiles, high circulating levels of inflammatory chemokines 
and with high frequencies of CD4low non-classical monocytes predicting increased odds of severe disease.

Conclusions  Our results suggests that effector memory T cell activation might play an important role ameliorating 
severe disease symptoms during a secondary dengue infection, and in the absence of that response, a strong innate 
inflammatory response is required to control viral replication. Our research also identified discrete cell populations 
predicting increased odds of severe disease, with potential diagnostic value.
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Background
Dengue is an infection caused by one of four dengue 
viruses in the family Flaviviridae. The virus is transmit-
ted by infected Aedes aegypti and Aedes albopictus, which 
are day-biting urban mosquitoes that feed mainly on 
humans. These vectors are widespread throughout tropi-
cal and sub-tropical regions, leaving 70% of the world 
population at risk of dengue. The disease burden is esti-
mated to 390 million clinical cases per year [1], 500,000 
of which are severe enough to require hospitalization. 
Around 75% of the global population exposed to dengue 
is in the Asia-Pacific region [2], and the economic cost 
due to dengue-associated disease in this region has been 
estimated at US$ 2.36 billion, with a burden of disease as 
disability-adjusted life years (DALY) of 214,000 (~ 372 
DALYs per million inhabitants) [3, 4].

Dengue virus (DENV) is a positive-sense single-
stranded RNA virus, that encodes a polyprotein with 
three structural proteins and seven nonstructural pro-
teins. The envelope protein (E protein) is involved in 
receptor binding, membrane fusion, and viral assembly. 
E protein is the main target of neutralizing antibodies 
and contains the four DENV serotype-specific antigenic 
epitopes (DENV-1 to 4). Monocytes, macrophages and 
dendritic cells in the spleen, lymph nodes, lungs, liver, 
kidney, and stomach are the primary cellular hosts of 
DENV in humans [5, 6].

Dengue fever (DF) typically starts from four to seven 
days after a person is bitten by an infected mosquito. Dis-
ease manifests as a sudden onset of fever (up to 40 ºC) 
that lasts up to ten days and is accompanied by headache 
and muscle pain in the back and limbs. Other symptoms 
of moderate dengue include nausea, vomiting, pain in the 
eyes and rashes on the upper and lower limbs. A propor-
tion of cases can progress to severe dengue also known 
as dengue hemorrhagic fever (DHF), which is associated 
with increased vascular permeability leading to thrombo-
cytopenia and hemorrhages. If left untreated this could 
become life-threatening resulting in severe plasma leak-
age leading to dengue shock syndrome (DSS), character-
ized by fluid accumulation causing respiratory distress, 
severe bleeding and multi-organ failure. There is no spe-
cific treatment for dengue, and care is mainly support-
ive. Oral rehydration and analgesia are routinely used. 
Intravenous fluids, blood transfusions and intensive care 
are the required courses of treatment for severe cases. 
To date, at first presentation, there is no validated way 
of identifying which individuals will progress to severe 
manifestations of the disease [7, 8], and in endemic areas, 
patients are often admitted for inpatient observation, as 
doctors tend to err on the side of caution. It is estimated 
that the cost of a non-fatal hospitalized dengue case is US 
$1394 [3]. Thus, strategies to predict disease progression 

will not only improve patient management but will also 
have a substantial socio-economic impact on health 
systems.

The adaptive immune response plays a key role in pro-
tection against DENV, with both T cell-mediated and 
antibody responses contributing to the control of viral 
load. Neutralizing antibodies are an important immune 
defense mechanism against the virus. While primary 
dengue infection induces a serotype-specific long-lasting 
neutralizing antibody response able to protect from re-
infection [9], cross-reactive antibodies targeted against 
the other DENV serotypes only protect for a few months 
[10]. During secondary heterotypic infections, non-neu-
tralizing cross-reactive antibodies from the first infection 
bind to virions of the second serotype to form DENV-
antibody complexes, which are more readily taken up 
by Fc-gamma-receptor (FcγR)-bearing myeloid cells 
than uncoated virus particles [11]. This process, known 
as antibody dependent enhancement (ADE), results in 
higher levels of viral progeny and has been proposed to 
lead to severe dengue [12], explaining why secondary 
DENV infections are usually at higher risk of DHF com-
pared to primary infections.

Similar to antibodies, T cell responses also appear 
to play a dual role in dengue [13]. CD8+ T cells have 
been shown to protect against secondary DENV infec-
tion in mice and humans [14, 15] and contribute to the 
antiviral response by killing infected cells and secreting 
IFN-γ. CD4+ T cells contribute to the control of infec-
tion by facilitating B cell and CD8+ T cell activation and 
secreting cytokines [16]. On the other hand, it has been 
suggested that CD8+ T cells against a primary DENV 
serotype can dominate the response to secondary hetero-
typic infection, resulting in excessive cytokine responses 
that can worsen disease and induce pathology [17,  18]. 
It has been also suggested that in heterologous DENV 
infection, weak affinity cross-reactive CD8+ T cells 
expand and compete with protective T cells, resulting 
in inefficient control of the virus and immune pathology 
[19]. Moreover, DENV-specific CD4+ T cells also pro-
duce higher amounts of TNF, a cytokine contributing to 
disease in DHF patients, in response to heterotypic anti-
gen [20]. To date, the specific phenotypes of T cells asso-
ciated with protection and susceptibility to severe dengue 
have not been fully defined.

The fact that antibody-mediated and T cell-mediated 
responses appear to participate in both protection from 
infection and dengue pathogenesis has  complicated the 
identification of reliable correlates of immunity, which 
poses a caveat in the evaluation of effective anti-DENV 
vaccines. These considerations have also deterred the 
identification of cellular parameters or biomarkers to 
predict the clinical course of disease. To address these 
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issues, we pursued a systems biology approach inte-
grating plasma chemokine profiling, high-dimensional 
mass cytometry and peripheral blood mononuclear cell 
(PBMC) transcriptional profiling in a prospective study 
of individuals from a dengue-endemic area that pro-
gressed to develop either DF or DHF. High frequencies 
of CD4low non-classical monocytes were associated with 
progression to DHF and predicted increased odds of 
severe disease at the onset of fever. Progression to severe 
dengue was also associated with a transcriptional signa-
ture featuring impaired T cell activation and reduced cell 
metabolism compared to individuals with mild disease 
manifestation. In contrast, uncomplicated dengue cases 
featured an expansion of ICOShighCD4+ and CD8+ effec-
tor memory T cells. Our research suggests that efficient 
T cell activation might play a critical role in attenuating 
severe disease symptoms during secondary DENV infec-
tions. The results also provide proof of concept for the 
potential of systems biology approaches to identify 
immunological signatures predicting increased odds of 
DHF to develop diagnostic tools for early detection of 
complicated cases.

Methods
Study population
A prospective, observational study of dengue cases was 
conducted at Pondok Indah Hospital in Jakarta, Indo-
nesia. A dengue positive diagnosis was confirmed by 
detection of DENV NS1 antigen at point of care (SD Bio-
line, Korea). RT-PCR to determine DENV serotype was 
done using the Simplexa Dengue Real-time RT-PCR Kit 
(DiaSorin, Salugglia, Italy). The four DENV serotypes 
were found among participants, with DENV-2 being the 
most prevalent (58%), followed by DENV-4 (18%) and 
DENV-1/-3 (12% each). Consenting participants with 
a confirmed diagnosis (aged between 16 and 64 years) 
donated a venous blood sample at first presentation 
(day 1–3 of fever), and plasma and PBMCs were frozen. 
Virus-specific IgM and IgG antibodies were measured in 
plasma samples collected at first presentation using Pan-
bio Dengue Duo IgM and IgG Capture ELISA (Alere), to 
classify cases between primary and secondary infections 
based on the IgM/IgG ratio. Participants with a positive 
IgM and negative IgG result were classified as primary 
infections, while secondary infections were identified by 
a positive IgG which could be accompanied by positive 
IgM result. Participants were monitored daily for dis-
ease progression (DF or DHF) for 10 days as previously 
described [21]. Based on routine laboratory tests and 
clinical evaluation, the attending physicians classified 
the dengue disease grade based on 2011 WHO guide-
lines [22]. Briefly, cases with clinical symptoms, includ-
ing headache, retro-orbital or abdominal pain, vomiting, 

fluid accumulation, evidence of skin or mucosal bleed, 
liver enlargement and an increase in haematocrit with 
a concurrent rapid reduction of platelet count (below 
10 × 103/ml) were classified as DHF.

Luminex assay for chemokine assessment
Chemokines from uninfected healthy controls and con-
firmed dengue cases were quantified in plasma samples 
by Luminex® (R&D systems) assay. Magnetic beads were 
formulated into pre-designed microparticle cocktails 
with capture antibodies against human CCL2, CCL17, 
CXCL5, CXCL8, CXCL9, CXCL10 and CXCL11. Dilu-
tions for reagents, standards, and samples were per-
formed following the manufacturer’s protocol. Diluted 
samples, standards, and microparticle cocktails were 
added to microplate wells and incubated for 2 h at 22 ºC 
with agitation. After washing three times with washing 
buffer, a biotin-antibody cocktail was added, and plates 
were incubated for an additional hour at 22 ºC. After 
three washes, samples were incubated in the presence 
of a streptavidin-PE conjugate for 30  min. After a final 
wash, plates were read using a Luminex 100/200 instru-
ment with xPONENT software (Luminex Corp., Austin, 
TX, USA). Mean fluorescence intensity values were used 
to estimate chemokine concentration, extrapolating from 
standard curves.

Cytometry by time‑of‑flight
PBMCs (1–2 × 106) from DF and DHF cases as well as 
non-infected dengue-naive Melbourne controls were 
stained with 5 µM Cell-ID Cisplatin (Fluidigm) in PBS 
for 5 min at room temperature. Cells were then blocked 
with Human TruStain FcX (Biolegend) and stained 
with a cocktail of surface marker antibodies (Additional 
file 1: Table S1) in CyTOF staining buffer (PBS with 0.5% 
bovine serum albumin [BSA; Sigma] and 0.02% sodium 
azide [Sigma]) for 30  min at room temperature. After 
surface staining, cells were washed twice with CyTOF 
staining buffer and then incubated with 125 nM Cell-ID 
iridium intercalator (Fluidigm) in Maxpar fix and perm 
buffer (Fluidigm) for a minimum of 18  h. Prior to data 
acquisition, cells were washed twice by centrifugation 
in ultrapure water and then resuspended in a 1/10 dilu-
tion of 4-Element EQ normalization beads (Fluidigm) in 
ultrapure water. Cells were analysed on a Helios model 
mass cytometer (Fluidigm) at ~ 300 events/s. Data were 
normalized using the signal from 4-Element EQ Beads 
(Fluidigm) as previously described [23]. Manual gat-
ing was then performed using FlowJo version 10 (BD 
Biosciences) to exclude doublets and dead cells, before 
individual cell populations were selected and exported 
for further analysis in Cytobank [24]. Individual cell 
populations were then visualized using viSNE [25], while 
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FlowSOM [26] was used to identify cell sub-populations. 
Self-organizing maps (SOMs) were generated for each 
cell population using hierarchical consensus clustering 
on the tSNE axes. The parameters included in each viSNE 
analysis are shown in Additional file 2: Table S2. CITRUS 
[27] was used to identify differentially abundant cell pop-
ulations using the same parameters as the viSNE analysis 
at a 1% false-discovery rate (FDR).

RNA‑sequencing
RNA was extracted from 2 × 105 PBMCs from selected 
samples with sufficient material to allow assessment 
of multiple endpoints using the RNeasy Plus Mini Kit 
(QIAGEN) following manufacturers’ instructions. RNA 
was quantified with RNA Screen Tape on the Agilent 
TapeStation 2200 System. Libraries were prepared with 
either 50 ng or 25 ng of total RNA using the Illumina 
TruSeq RNA Library Prep Kit (< 100 ng) v1.0 following 
manufacturers’ instructions and submitted for sequenc-
ing by paired end, 80  bp reads on an Illumina NextSeq 
500 platform.

Transcriptional analysis
Raw sequence reads in FASTQ file format were aligned 
to the human reference genome GRCh38/hg38 using the 
align() function in Rsubread version 2.10.5 with default 
parameters [28, 29]. Fragments of aligned sequences 
overlapping Gencode human genes (GRCh38.p13) were 
quantified with featureCounts [30], with Gencode ver-
sion  38 primary assembly annotation used in the quan-
tification. Genes with no symbols, sex-linked genes, 
immunoglobulin genes, and non-protein-coding genes 
were filtered out from the analysis. Haemoglobin genes 
were found to be highly variable and were also filtered 
from the analysis. Genes with low counts in fewer than 5 
samples were determined as unexpressed and filtered out 
using the filterByExpr function in edgeR version 3.38.4 
[31], leaving 13,013 genes for differential expression anal-
ysis. Filtered counts were normalised using the trimmed 
mean of M-values method [32] in edgeR. A design matrix 
was constructed incorporating the group, and adjusting 
for day from fever onset as follows:

Counts were transformed to log2-CPM (logCPM), 
precision weighted and quantile normalised using the 
voomwithQualityWeights() function to down-weight 
within-group variability [33, 34] in limma version 3.52.2 
[35]. A linear model was fitted to each gene and differen-
tial expression was assessed using robust empirical Bayes 
moderated t-statistics [36] with a cut-off of 5% applied 

design ← model.matrix(0+ group+ feverday).

for calling differentially expressed genes. Entrez Gene IDs 
for differentially expressed genes were entered into the 
goana() and kegga() functions [37] in limma to determine 
over-representation of differentially expressed genes 
in Gene Ontology (GO) terms. Lists of differentially 
expressed genes between pairwise comparisons were also 
entered into the Ingenuity Pathway Analysis software 
platform (QIAGEN Inc., https://​www.​qiage​nbioi​nform​
atics.​com/​produ​cts/​ingen​uity-​pathw​ay-​analy​sis) for 
canonical pathway and upstream regulator analysis. Dif-
ferential enrichment of functional immune pathways was 
determined using the tmodLimmaTest() function in the 
tmod package version 0.46.2 [38] with blood transcrip-
tion modules [39] and hallmark gene signatures from the 
molecular signatures database (mSigDB) [40, 41] as gene 
sets. Significant GO pathways were visualised using the 
GOPlot package version 1.0.2 [42]. Heatmaps were gen-
erated using the pheatmap (version 1.0.12) and Com-
plexHeatmap (version 2.12.1) [43] packages, and chord 
diagrams were generated using the circlize package ver-
sion 0.4.15 [44] Rotational gene set testing and barcode 
plots were generated using the limma package in R [35].

Statistical analysis
Characteristics of clinical groups were compared using 
unpaired t-tests or ANOVA for continuous data that 
was normally distributed, while Mann–Whitney tests or 
Kruskal Wallis tests were used for data that did not fol-
low normal distribution. Chi-squared tests were used to 
evaluate nominal data. The false discovery rate was con-
trolled to below 5% using the method of Benjamini and 
Hochberg [45] throughout the study. Correlations were 
determined using Spearman’s rank correlation as indi-
cated and visualised using the network_plot() function in 
the corrr package version 0.4.4. Logistic regression mod-
els were fitted between groups to determine the odds 
ratio for cell populations. Hierarchical clustering heat-
maps were calculated using the complete method and 
Euclidian distance matrix. Statistical analyses were per-
formed in GraphPad prism version 9 and R version 4.2.0.

Results
Cohort characteristics
The clinical characteristics of the study participants are 
summarised in Fig.  1. The study recruited individuals 
with a confirmed dengue positive diagnosis. Study par-
ticipants with a confirmed secondary DENV infection 
were selected for this analysis. Consenting participants 
donated a venous blood sample at enrolment (day 1–3 of 
fever) and were then monitored daily for disease progres-
sion to DF or DHF for 10 days as described in Methods. 
There was no difference in age or gender composition 
between study participants (Fig.  1A, B) and viral loads 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
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were similar between clinical groups (Fig.  1C). Assess-
ment of antibody responses to the DENV envelope pro-
tein at first presentation revealed that all DF and DHF 
cases had high virus-specific IgG titres (Fig. 1D). Plasma 
chemokine levels were also assessed at first presenta-
tion. CCL17, CXCL5 and CXCL8 levels in both clinical 
groups were similar to background levels in healthy con-
trols. While CXCL9 levels were comparable in DF and 

DHF cases, CCL2, CXCL10 and CXCL11 levels were 
increased in DHF cases compared with the DF group 
(Fig. 1E–K). Thus, all individuals in this arm of the study 
have a confirmed secondary  DENV infection, and indi-
viduals progressing to severe illness produced high levels 
of inflammatory chemokines at the onset of fever.

Fig. 1  Study cohort characteristics. Individuals with a confirmed secondary DENV infection were recruited for the study at the onset of fever 
and followed up for progression to DF (n = 7) or DHF (n = 10). A–D. Clinical parameters determined in the study include age (A), gender (B) 
and CT-value (C), and anti-DENV IgG antibody titres (D). Boxes represent the 25th to 75th percentiles, whiskers show the range (minimum to 
maximum), and lines represent the median of biological replicates. The dotted line depicts the average antibody background levels of uninfected 
healthy controls (n = 5). Line plots depict mean ± SD. Significance was determined by the Kruskal–Wallis test (A), the Chi-square test (B), and the 
Mann-Whitney test (C, D), *p < 0.05. E–K. Mean chemokine levels. CCL2 (E), CCL17 (F), CXCL5 (G), CXCL8 (H), CXCL9 (I), CXCL10 (J) and CXCL11 (K) 
were determined in plasma samples of study participants. Boxes represent the 25th to 75th percentiles, whiskers show the range (minimum to 
maximum), and lines represent the median of 7 (DF) and 10 (DHF) biological replicates. The dotted line depicts the average antibody background 
levels of uninfected healthy controls (n = 5). Significance was determined by the Mann-Whitney test. *p < 0.05, **p < 0.01
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High‑dimensional mass cytometry identifies lymphocyte 
sub‑populations associated with different dengue disease 
outcomes
To identify lymphocyte sub-populations associated with 
progression to DF or DHF after a secondary DENV infec-
tion, PBMCs of study participants collected at the onset 
of fever were stained with a panel of metal-labelled anti-
bodies against a range of B cell, T cell, Natural Killer (NK) 
cell and monocyte markers (Additional file  1: Table  S1) 
and analysed by cytometry by time of flight (CyTOF). 
Within the circulating memory CD4+ T cell compart-
ment, surface expression of the chemokine receptors 
CCR6 and CXCR3 allows the identification of T helper 
(TH)1-like (CCR6−CXCR3+), TH2-like (CCR6−CXCR3−) 
and TH17-like (CCR6+CXCR3−) cells, while circulating 
memory T follicular helper (TFH) cells can be identi-
fied by expression of CXCR5 (Additional file 3: Fig. S1). 
To explore the composition of these memory CD4+ T 
cell populations, tSNE analysis and FlowSOM clustering 
were performed, and marker expression was assessed in 
each cell population. This approach allowed for the iden-
tification of five distinct sub-populations of TH1 memory 
CD4+ T cells, TH2 memory CD4+ T cells, TH17 memory 
CD4+ T cells and memory TFH cells expressing vari-
able levels of chemokine receptors and surface markers 
including CCR7, ICOS, PD-1, CD25, CD27 and CD127 
(Fig. 2A–D). A similar approach was used to explore the 
composition of the memory CD8+ T cell pool, with six 
distinct sub-populations identified (Fig. 2E).

Within the circulating memory B cell (MBC) pool, 
CD21 and CD27 expression can be used to identify 
classical MBCs (CD27+CD21+) and atypical MBCs 
(CD27−CD21−). tSNE analysis and FlowSOM cluster-
ing of the CD19+CD20+CD10− MBC pool facilitated 
the identification of five classical and three atypical 
MBC sub-populations, including populations of both 
IgM+IgD+ and class-switched (IgM−IgD−) cells express-
ing variable levels of the chemokine receptors CCR6, 
CCR7, CXCR3 and CXCR5 (Fig. 2F), present in the blood 
of dengue patients at first presentation. Within the innate 
cell compartment, FlowSOM clustering of gated CD14+ 
monocytes revealed two classical (CD14+CD16−), two 
intermediate (CD14+CD16low) and one non-classical 
(CD14+CD16high) monocyte sub-population (Fig.  2G) 
in the blood of dengue patients. Four sub-populations 
expressing different levels of CD16 were also identified 
among CD3−CD56+ NK cells (Fig. 2H).

The frequency of each cell sub-population identified 
by FlowSOM clustering was determined. Unsupervised 
hierarchical clustering (Fig.  2I) and multi-dimensional 
scaling (Fig.  2J) of all sub-populations segregated most 
DF and DHF cases. Four main groups of cell populations 

were identified by unsupervised hierarchical cluster-
ing, with trends towards cell populations more abundant 
in cases progressing to DHF in clusters 1 and 2, and 
cell populations preferentially expressed among indi-
viduals progressing to DF in clusters 3 and 4 (Fig.  2I). 
Interestingly, cluster 4 included classical monocytes as 
well as sub-populations of memory TFH cells, TH1 and 
TH2-polarised CD4+ T cells expressing high levels of 
inducible T cell costimulatory (ICOS), programmed cell 
death protein 1 (PD-1) and CD27. Spearman correlation 
analysis indicated that frequencies of these T cell popula-
tions (marked in brown in Fig. 2K) were highly correlated 
with each other (Fig. 2K). In contrast, subsets of memory 
TFH cells, TH1, TH2 and TH17 polarised CD4+ T cells in 
clusters 1–2 (marked in purple in Fig.  2K),  apparently 
enriched among individuals progressing to DHF were 
also correlated with each other and were characterized by 
high expression levels of CCR7 and CD127.

To further explore these responses, unsupervised 
identification of differentially abundant cell popula-
tions between clinical groups was performed using 
the CITRUS algorithm [27] (FDR < 1%). This analysis 
identified two populations of memory TH1-polarised 
CD4+ T cells differentially abundant between clinical 
groups. ICOS+PD-1+CD27+CCR7− cells were virtu-
ally absent in DHF cases. These cells, resembling an 
effector memory phenotype, were highly abundant in 
individuals that progressed to DF. In contrast, CD127+ 
cells were significantly higher in DHF cases relative to 
DF counterparts (Fig.  3A). A highly similar pattern was 
observed in the memory TH2 CD4+ T cell pool, with a 
subset of ICOS+PD-1+CD27+CCR7− cells significantly 
higher in DF compared to DHF cases and CD127+ cells 
enriched in DHF individuals compared to those with 
mild disease (Fig.  3B). Furthermore, the same popula-
tion of ICOS+PD-1+CD27+CCR7− cells was also iden-
tified as significantly higher in DF compared to DHF 
cases in the memory TH17-CD4+ T cell compartment 
(Fig. 3C). CITRUS analysis also identified one population 
of CXCR3+ memory TFH cells and an additional popula-
tion of CXCR3+ memory CD8+ T cells significantly more 
abundant in DF compared to DHF cases, also display-
ing high levels of ICOS, PD-1, and CD27 (Fig.  3D, E). 
Thus, together these results suggest that during a sec-
ondary infection, progression to uncomplicated dengue 
is associated with the expansion of CD4+ and CD8+ T 
cells consistent with an effector memory phenotype and 
expressing high levels of co-stimulatory molecules.

CITRUS analysis revealed two populations of MBCs 
differentially abundant between clinical groups. Whereas 
CXCR5+CCR6+ class-switched classical MBCs were 
higher in DF individuals, class-switched atypical MBCs 
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Fig. 2  Identification of memory CD4+ and CD8+ T cells, MBCs, monocyte and NK cell sub-populations in DENV-infected individuals. 
A–K PBMCs collected at first presentation from DENV-positive individuals progressing to DF (n = 6) or DHF (n = 6) were stained with a panel 
of metal-labelled antibodies and analysed by CyTOF. tSNE analysis was performed and FlowSOM clustering was used to identify individual 
cell sub-populations within gated: A TH1 memory CD4+ T cells (CD19−CD3+CD4+CD45RA−CCR6−CXCR3+), B TH2 memory CD4+ T cells 
(CD19−CD3+CD4+CD45RA−CCR6−CXCR3−), C TH17 memory CD4+ T cells (CD19−CD3+CD4+CD45RA−CCR6+CXCR3−), D Circulating memory TFH 
cells (CD19−CD3+CD4+CD45RA−CXCR5+), E Memory CD8+ T cells (CD19−CD3+CD8+CD45RA−). F MBCs (CD3−CD19+CD20+CD10−), G Monocytes 
(CD3−CD19−CD14+), H. NK cells (CD3−CD19−CD14−CD56+). The tSNE plots in the top panel display cell density and represent the pooled data 
for each group, while the lower panel shows a projection of the FlowSOM clusters on a tSNE plot. Heatmaps show the median marker expression 
for each FlowSOM cluster. I Unsupervised hierarchical clustering heatmap showing the frequency of all FlowSOM clusters across all clinical 
samples. J Unsupervised multi-dimensional scaling of all populations identified by FlowSOM clustering across all clinical samples. K Spearman 
correlation networks were used to examine the relationship between cell populations identified by FlowSOM clustering induced in response to 
infection. Blue lines represent positive correlations, and red lines represent negative correlations. The distance between variables is determined by 
multidimensional scaling and represents the strength of the correlation, where highly correlated variables are positioned closer together
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were significantly enriched in DHF cases compared to 
DF counterparts (Fig.  3F). In the monocyte compart-
ment, classical monocytes and CD4+ classical monocytes 
were significantly higher in DF compared to DHF cases, 
while a population of CD4low non-classical monocytes 
and a population of CD10low intermediate monocytes 
were higher in individuals that developed DHF (Fig. 3G). 
Moreover, highly abundant in patients progressing to 
DHF was a subset of CD16+ NK cells, whereas their 
CD16− counterparts were significantly higher in DF 
cases (Fig. 3H). Importantly, downstream analysis of the 
15 populations identified as differentially abundant by 
CITRUS using manual gating, showed that except for 

classical MBCs, CD4+ classical monocytes (which were 
significantly reduced in DHF cases), and CD16+ NK cells, 
blood frequencies of all cell types were negligible among 
dengue-naive healthy controls compared to dengue-
exposed study participants (Additional file  3: Fig. S2), 
confirming the expansion of these cellular compartments 
in response to DENV infections progressing to different 
disease outcomes. Thus, whereas CD16+ NK cells and 
non-classical monocytes appear to be associated with 
progression to severe dengue, TH1-polarised TFH cells 
and ICOShigh CD4+ and CD8+ effector memory T cells 
are features associated with more favourable infection 
outcomes after a secondary DENV infection.

Fig. 3  Subsets of T cells, MBCs, monocytes and NK cells associated with progression to different dengue fever outcomes. A–H. Unsupervised 
identification of differentially abundant cell populations between DF (n = 6) or DHF (n = 6) clinical groups was performed using CITRUS (FDR < 1%). 
Differentially abundant populations were identified among: (A) TH1 memory CD4+ T cells; (B) TH2 memory CD4+ T cells; (C) TH17 memory CD4+ T 
cells; (D) circulating memory TFH cells; (E) memory CD8+ T cells; (F) MBCs; (G) monocytes; (H) NK cells. The tSNE plots in the top of each panel display 
cell density and represent pooled data for each clinical group as calculated in the clustering analysis shown in Fig. 2A-G, while the middle panels 
show differentially abundant populations identified in colours on a tSNE overlay, and the viSNE plots on the left-hand side from each top panel 
depict relevant marker expression on tSNE overlays. The lower left panels show the frequency of differentially abundant cell populations identified 
by CITRUS. Boxes represent the 25th to 75th percentiles, whiskers show the range (minimum to maximum), and lines represent the median of 6 
(DF) and 6 (DHF) biological replicates. The lower right panels illustrate marker expression in differentially abundant populations (pink histograms), 
relative to background expression (lilac histograms)
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RNA sequencing of PBMCs at the onset of fever segregates 
transcriptional profiles of individuals progressing to DF 
or DHF
To identify molecular pathways associated with progres-
sion to DF or DHF, selected study participants with suf-
ficient material were chosen for transcriptional profiling 
by RNA-sequencing (RNA-seq). Multi-dimensional scal-
ing and unsupervised hierarchical clustering of tran-
scriptional profiles discriminated between individuals 
progressing to DF and DHF (Fig. 4A, B). A design matrix 
was created with clinical groups as a factor with adjust-
ment for day of fever upon hospital presentation. The 
design matrix was then incorporated into linear model-
ling and gene expression estimation for the identifica-
tion of differentially expressed genes between DHF and 
DF. A total of 2411 genes were found to be differentially 
expressed, with 929 upregulated and 1482 downregulated 
in patients progressing to DHF compared with patients 
progressing to  DF (Fig.  4B). To identify immunological 
processes underlying differences in transcriptional pro-
files, differential enrichment was assessed with the gene 
set enrichment tool tmod [38], using pairwise compari-
sons between clinical groups and blood transcriptional 
modules (BTMs) [39] as gene sets (Fig. 4C, D). Modules 
involved in type-I interferons, apoptosis and an NK cell 
signature were significantly enriched in DHF compared 
to DF cases. Conversely, modules involved in cell divi-
sion, cell cycle, glycolysis, oxidative phosphorylation as 
well as plasma cells were significantly underrepresented 
in cases progressing to severe DHF compared to DF 
counterparts.

Progression to DHF features transcriptional profiles 
supporting innate inflammatory responses, reduced cell 
division and reduced oxidative metabolism relative to DF
To further define transcriptional signatures preferen-
tially activated by individuals progressing to DF or DHF, 
various platforms were pursued for gene set enrich-
ment analysis (Fig.  5A–D). Gene ontology (GO) terms 
(Fig.  5B), Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways (Fig.  5C), and Ingenuity Pathway 
Analysis (IPA) (Fig.  5D) showed significant upregula-
tion of pathways involved in innate immune response to 
microorganisms in individuals progressing to DHF. This 
included genes encoding several cytokine/chemokines 
and cytokine/chemokine receptors such as IL1R1, 
IL7R, CCL8 and CXCL11, signalling molecules and 

transcription factors governing the stress response such 
as JAK2 and GATA2, various guanylate-binding pro-
teins (GBP1, GBP4, GBP5), all IFN-γ-inducible proteins 
known to exert anti-microbial activity, along with TLR3, 
a toll like receptor responsible for recognition of double 
stranded RNA. Furthermore, genes encoding protein 
products involved in apoptosis, such as FAS, FASLG and 
CD274 (also known as programmed death-ligand 1), and 
metalloproteinases (MMP8, MMP9), upregulated in vari-
ous pathogenic conditions, were also among the genes 
upregulated in patients progressing to DHF.

Upstream regulator analysis identified increased activa-
tion of rapamycin-insensitive companion of mTOR (RIC-
TOR) and La-related protein 1 (LARP1) pathways in DHF 
compared to DF patients (Fig.  5E). Both pathways are 
critical in the control of mTOR signalling that governs 
cell proliferation and metabolism and have been shown 
to be modulated by viral infections to support viral rep-
lication [46–48]. The transcription regulator Non-POU 
domain-containing octamer-binding protein [49] as well 
as the cytokine IFN-alpha-2 (IFNA2) and its receptor 
IFNAR were also upstream regulators in patients pro-
gressing to DHF, with several genes involved in stress 
response and inflammatory processes predicted as tar-
gets in these type I IFN-mediated pathways (Fig. 5E). A 
graphical summary, used to identify the main entities 
featured by transcriptional profiles of DHF cases predicts 
that TLR3 activation (recognising viral RNA) activates 
this inflammatory cytokine response, resulting mainly in 
NK cell and monocyte activation, a strong antimicrobial 
response and downstream inhibition of viral replication 
(Fig. 5F).

Two main signature pathways appeared to be down-
regulated in individuals progressing to DHF and enriched 
in patients with milder disease manifestations: cell pro-
liferation and cell metabolic processes including, oxida-
tive phosphorylation, cellular respiration and glycolysis. 
These included genes encoding cyclins such as CCNB1 
and CCNB2, cell activation marker MKI67, replication 
factors such as PCNA and CDC20, as well as transcrip-
tional regulator FOXM1 (Fig.  5A–D). Genes encoding 
several enzymes critical for cell metabolic processes such 
as GAPDH, NDUFB7, NDUFS5 as well as ATP5MC3, 
ATP51F1 and ATP5PF required for ATP metabolism, 
were also reduced in DHF compared to DF patients. 
Upstream regulator and graphical summary analysis pre-
dicted key transcription factors involved in the control of 

(See figure on next page.)
Fig. 4  RNA-seq of PBMCs segregates transcriptional profiles of individuals progressing to DF or DHF. A–D PBMCs collected at first presentation from 
DENV-positive individuals progressing to DF (n = 5) or DHF (n = 6) were selected for RNA-seq analysis. A Unsupervised multi-dimensional scaling 
of the top 500 most variably expressed genes across all samples. B Unsupervised hierarchical clustering of the 2411 differentially expressed genes 
between DF and DHF cases using the complete method and Euclidian measure of distance. C–D tmod gene set enrichment analysis showing 
significant BTMs differentially enriched for pairwise comparisons (FDR < 5%).
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Fig. 4  (See legend on previous page.)
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cell division such as MYC, FOXM1 and FOXO1, as well 
as T cell activation molecules (CD3, CD40, and CD28) as 
key elements responsible for these transcriptional signa-
tures, suggesting that these pathways could become pref-
erentially activated in individuals who progressed to mild 
DF (Fig. 5D, G).

To address this, and to specifically confirm that these 
pathways modulated before the onset of DF or DHF are 
enriched or diminished relative to homeostatic tran-
scriptional levels of healthy uninfected controls, we 
compared our list of 2411 differentially  expressed genes 
with a previously described transcriptional signature 
of 1303 genes differentially expressed upon unclassi-
fied DENV infection relative to uninfected controls 
[50]. This analysis identified a significant enrichment 
of 393 genes in common between both data sets (Addi-
tional file  3: Fig. S3A–C). Notably, gene set enrichment 
of these 393 genes using GO terms, KEGG pathways, 

and IPA showed identical transcriptional signatures 
compared to the results in Fig.  5, with an innate-like 
anti-viral stress response featuring upregulation of TNF 
and type-1 interferons before progression to DHF, and a 
significant enrichment of terms involved in cell prolifer-
ation, cell metabolism, and T cell activation in individu-
als that did not develop severe hemorrhagic symptoms. 
Thus, together these results suggest that after a second-
ary DENV infection, progression to DHF is associated 
with an innate immune transcriptional signature as 
well as impaired activation and expansion of the T cell 
compartment.

Since other studies have previously analysed tran-
scriptional profiles of cases progressing to DF or DHF 
in other locations, we sought to determine if our results 
were aligned with findings obtained in different settings. 
To that end, we identified two multi-cohort analyses [51, 
52] that together integrated 12 unique gene expression 

Fig. 5  Transcriptional profiles supporting inflammatory processes and reduced cell proliferation and metabolism in individuals progressing to DHF. 
A–G Gene expression profiles of PBMCs from DENV-infected individuals progressing to DF (n = 5) or DHF (n = 6) were compared. A Mean-difference 
plot displaying genes differentially expressed between DF and DHF cases. Each gene is plotted as a single point determined by log-fold-change 
and average transcript abundance. Red genes are overrepresented, and blue genes are underrepresented in DHF relative to DF. B Plots showing 
significantly enriched GO terms scaled by Log10(P-value). Red GO terms are upregulated and blue GO terms are downregulated in DHF compared 
to DF. C Bar plots showing significantly enriched KEGG pathways scaled by Log10(P-value). Red KEGG pathways are upregulated and blue KEGG 
pathways are downregulated in DHF compared to DF. D IPA canonical pathways significantly overrepresented in differentially expressed genes 
between DF and DHF cases scaled by Log10(P-value). Pathways with a positive z-score in red are activated in DHF relative to DF, and pathways with 
a negative z-score in blue are inhibited in DHF compared to DF. The red line corresponds to a P value of 0.05. E Upstream regulator analysis of the 
2411 differentially expressed genes between DHF and DF. The red lines represent a significant activation z-score of ±2. F–G Graphical summaries 
depicting networks of genes and downstream processes activated in cases progressing to DHF relative to DF (F) or processes enriched in patients 
progressing to DF relative to DHF (G)
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datasets [53–64] capturing 466 [51] and 365 [52] clini-
cal samples of patients progressing to DF or DHF (Addi-
tional file  3: Fig. S4A). Whereas the first multi-cohort 
analysis framework discovered a 20-gene set predictive of 
severe dengue, the second one identified an 8-gene pre-
dictive signature. Importantly, the accuracy of these sig-
natures was validated in independent prospective cohort 
studies. When these two gene signatures were com-
bined and compared with our list of 2411  differentially 
expressed genes, rotational gene set testing using the 
ROAST test in limma [35] revealed a significant enrich-
ment (p < 0.01) of 10 genes from the 28-gene signature 
(Additional file  3: Fig. S4B, C, D). Gene set enrichment 
analysis of these shared genes using GO terms showed 
transcriptional profiles featuring innate and antimicro-
bial humoral immunity (Additional file 3: Fig. S4E). Thus, 
despite the limitations of a small sample size, our findings 
appear to be significantly aligned with validated gene sig-
natures predicting progression to DHF.

Uncomplicated dengue fever transcriptional profiles 
correlate with effector memory T cell responses to DENV 
infection
To integrate immune responses associated with pro-
gression to DF or DHF identified by CyTOF and 
blood transcriptional signatures, Spearman correla-
tions (Benjamini-Hochberg adjusted FDR < 5%) were 
applied (Fig.  6A, B). For this analysis, genes identified 
to be under the control of signature upstream regula-
tors identified in Fig.  5 by IPA analysis were used. In 
general, cell populations overrepresented in individuals 
progressing to DF were positively correlated with the 
proliferation/metabolism and T cell activation tran-
scriptional signatures, with ICOS+ memory TH1 and 
TH17 cells, as well as CXCR3+ TFH cells featuring the 
highest number of associations with gene expression 
profiles (Fig. 6A). Hierarchical clustering of these tran-
scriptional signatures confirmed that most of the  dif-
ferentially expressed genes in the data set predicted to 
be under the control of upstream regulators MYC and 
FOXM1 were upregulated in cases progressing to DF 

compared to DHF and featured GO terms specifically 
associated with cellular metabolic processes (Fig.  6C, 
D). Nearly half of the genes predicted to be under the 
control of upstream regulators CD3, CD28 and CD40 
were upregulated in DF relative to DHF cases (Fig. 6E). 
Gene set enrichment analysis revealed that whereas 
terms involved in lymphocyte activation were upregu-
lated in DF cases, genes encoding protein products 
supporting apoptosis and IFN-γ responses were upreg-
ulated in cases progressing to DHF (Fig. 6F).

In general, the inflammatory transcriptional signature 
featured by cases progressing to DHF was negatively 
correlated with cell clusters abundant in DF cases, 
but showed positive associations with cell populations 
overrepresented in DHF cases, with CD4low non-clas-
sical monocytes and memory CD127+ TH1 cells show-
ing the highest number of correlations (Fig.  6B). The 
10-gene set shared between our differentially expressed 
gene list and multi-cohort defined gene signatures [51, 
52] also showed positive correlations with atypical 
MBCs, abundant among DHF cases (Additional file  3: 
Fig. S5). Almost all these genes, under the control of 
upstream regulators NONO, IFNA2 and IFNAR and 
featuring GO terms involved in antiviral and inflam-
matory cytokine response, were clearly upregulated in 
individuals progressing to DHF compared to DF coun-
terparts. Thus, together these findings suggest that the 
expansion of the effector memory CD4+ and CD8+ T 
cell pool observed in DF cases (Figs. 2, 3) might be sup-
ported by increased metabolic rates, required to induce 
activation and proliferation of this compartment, 
and in the absence of this adaptive response, a type-
I innate response is required to control the infection, 
which is associated with progression to severe disease 
manifestations.

The balance between classical and non‑classical 
circulating monocytes predicts risk of DHF after primary 
and secondary DENV infection
Figures  2, 3, 4, 5 and 6 suggest that in the absence of 
robust effector memory T cell responses in DHF cases, a 

(See figure on next page.)
Fig. 6  Integrative analysis of cellular signatures and transcriptional profiles in cases progressing to DF or DHF. A Chord diagram integrating 
associations between DF signature genes, immune cell populations and chemokine responses. Blue lines within the chord diagram represent 
positive correlations between two variables, while red lines represent negative correlations. (Benjamini-Hochberg adjusted Spearman’s Rho, 
FDR < 5%). B Chord diagram integrating associations between DHF signature genes, immune cell populations and chemokine responses. 
Blue lines within the chord diagram represent positive correlations between two variables, while red lines represent negative correlations. 
(Benjamini-Hochberg adjusted Spearman’s Rho, FDR < 5%). C Hierarchical clustering heatmap of genes predicted to be under the control of 
upstream regulators MYC and FOXM1 amongst patients progressing to DF or DHF. D Bar plots showing significantly enriched GO terms scaled by 
Log10(P-value) for genes in heatmap in C. E Hierarchical clustering heatmap of genes predicted to be under the control of upstream regulators 
CD3, CD28 and CD40 amongst patients progressing to DF or DHF. F Bar plots showing significantly enriched GO terms scaled by Log10(P-value) for 
genes in heatmap in E. Red GO terms are upregulated and blue GO terms are downregulated in DHF compared with DF. G Hierarchical clustering 
heatmap of genes predicted to be under the control of upstream regulators NONO, IFNA2 and IFNAR amongst patients progressing to DF or DHF. 
H Bar plots showing significantly enriched GO terms scaled by Log10(P-value) for genes in heatmap in G
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innate immune response, including activation of NK cells 
and monocytes is the main defence against the virus dur-
ing a secondary DENV infection. Therefore, we sought 
to determine (1) whether a similar response pattern was 
observed in cases progressing to DHF after a primary 

DENV infection, and (2) if defined innate cell popula-
tions in the blood could be good predictors of odds of 
severe hemorrhagic illness at the onset of fever. To that 
end, PBMCs collected at first presentation from par-
ticipants that had a confirmed primary DENV infection 

Fig. 6  (See legend on previous page.)
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(high IgM and no detectable IgG virus-specific antibod-
ies) were stained with a panel of metal-labelled antibod-
ies against monocyte and NK cell markers (Additional 
file 1: Table S1) and analysed by CyTOF.

The clinical characteristics of the primary infection 
arm of the study were similar to those with secondary 
infection and are summarized in Additional file  3: Fig. 
S6. There was no difference in age or gender composi-
tion between study participants (Additional file  3: Fig. 
S6B), with a trend towards higher viral loads that did not 
reach significance in DHF cases (Additional file  3: Fig. 
S6C). Unlike the secondary infection arm of the  cohort 
that identified high levels of some chemokines in cases 
progressing to DHF, no significant differences were found 
in plasma CCL17, CXCL5, CXCL8 and CXCL9, CCL2, 
CXCL10 and CXCL9 levels between clinical groups 
(Additional file 3: Fig. S6D–J).

To explore the composition of innate cells after pri-
mary DENV infection, tSNE analysis and FlowSOM 
clustering were performed within gated monocytes 
(Fig. 7A) as well as CD3−CD56+ NK cells (Fig. 7B), and 
marker expression was assessed in each cell popula-
tion. Similar to our findings after secondary infection, 
this analysis revealed two classical (CD14+CD16−), two 
intermediate (CD14+CD16low) and one non-classical 
(CD14+CD16high) monocyte sub-population (Fig. 7A) in 
the blood of primary dengue cases. Four subsets of NK 
cells, expressing different levels of CD16 were also identi-
fied by FlowSOM clustering (Fig. 7B). The CITRUS algo-
rithm was then applied for unsupervised identification of 
differentially abundant cell populations between clinical 
groups (FDR < 1%). Whereas no differentially abundant 
populations of NK cells were found, similar to secondary 
infection, CD4+ classical monocytes were significantly 
higher in individuals developing DF compared to cases 
progressing to DHF, and CD4low non-classical monocytes 
were highly abundant in cases that progressed to DHF 
(Fig. 7C).

Next, all samples from the primary and secondary arms 
of the study were combined, and tSNE and FlowSOM 
analysis performed to obtain frequencies of all mono-
cyte and NK cell sub-populations across the entire cohort 
(Additional file 3: Fig. S7). To define associations between 
cell populations and risk of developing DHF, logistic 
regression models were applied (Benjamini-Hochberg 
adjusted FDR < 5%). Whereas high frequencies of CD4+ 
classical and CD4+CD10+CD45RA+ intermediate mono-
cytes were associated with reduced odds of DHF, high 
frequencies of CD4low non-classical monocytes predicted 
increased odds of progressing to DHF at the onset of 
fever (Fig. 7D). The frequencies of these cell populations 
were then assessed for their ability to classify individu-
als progressing to DF or DHF. Figure 7E F show the ROC 
curve and predicted frequencies of the best performing 
model. Circulating levels of CD4+ classical and CD4low 
non-classical monocytes were able to correctly classify 
individuals developing either DF or DHF with a high 
degree of accuracy (AUROC 0.8455, p = 0.0075), provid-
ing proof of concept for the potential of defined mono-
cyte populations in the blood identified by single cell 
approaches to predict odds of severe dengue at the onset 
of fever.

Discussion
Secondary DENV infections are usually more severe than 
a primary exposure to the virus and are a well-accepted 
risk factor for DHF and DSS [65]. A large body of data 
supports the concept that exposure to DENV results in 
the development of protective as well as disease-enhanc-
ing adaptive immune responses upon re-infection, with 
both antibody-mediated and T cell responses contribut-
ing to these processes [9, 11, 16–18, 66]. To untangle the 
complexity of this immunological landscape, this study 
pursued a systems biology approach integrating clinical 
parameters, plasma chemokine levels, high-dimensional 
mass cytometry, and blood transcriptional profiling in 

Fig. 7  High frequencies of circulating CD4low non-classical monocytes predict increased odds of DHF. A–C PBMCs collected at first presentation 
from DENV-positive individuals progressing to DF (n = 5) or DHF (n = 4) after a primary infection were stained with a panel of metal-labelled 
antibodies and analysed by CyTOF. tSNE analysis was performed and FlowSOM clustering was used to identify individual cell sub-populations within 
gated CD3−CD19−CD14+ monocytes (A) and CD3−CD19−CD14−CD56+ NK cells (B). The tSNE plots in top panels display cell density and represent 
the pooled data for each group, while the lower panel shows a projection of the FlowSOM clusters on a tSNE plot. Heatmaps show the median 
marker expression for each FlowSOM cluster (C). Differentially abundant populations were identified by CITRUS among gated monocytes. The top 
panels show differentially abundant populations identified in colours on a tSNE overlay, and the viSNE plots on the right-hand side from each top 
panel depict relevant marker expression on tSNE overlays. The lower left panels show the frequency of differentially abundant cell populations 
identified by CITRUS. Boxes represent the 25th to 75th percentiles, whiskers show the range (minimum to maximum), and lines represent the 
median of 6 (DF) and 6 (DHF) biological replicates. The lower right panels illustrate marker expression in differentially abundant populations (pink 
histograms), relative to background expression (lilac histograms). D Odds ratios as determined by logistic regression showing associations between 
cell frequencies and the risk of progressing to DHF. Symbols represent the odds ratio estimated using 10 patients progressing to DHF, and 11 
patients progressing to DF after primary or secondary infection. The vertical lines depict the 95% confidence interval. *p < 0.05, **p < 0.01. E–F ROC 
curve (E) and predicted probability plot (F) classifying individuals progressing to DF (n = 11) or DHF (n = 10) at first presentation based on the 
frequency of CD4+ classical monocytes and CD4low non-classical monocytes

(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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adults from a dengue-endemic area in Indonesia to iden-
tify cellular and molecular processes associated with pro-
gression to DF or DHF after a second exposure to DENV. 
We found that whereas progression to uncomplicated 
disease manifestations was associated with increased 
cell proliferation and metabolism transcriptional profiles 
and an expansion of CD4+ and CD8+ effector memory 
T cells, progression to severe DHF featured a type-I 
immune response characterised by inflammatory tran-
scriptional profiles as well as high circulating levels of 
inflammatory chemokines and non-classical monocytes. 
Thus, our results are consistent with a model in which 
effector memory T cell activation could play an impor-
tant role to ameliorate severe disease during a secondary 
DENV infection, and in the absence of these processes, 
a strong innate response is required to control viral rep-
lication, at the expense of producing an inflammatory 
environment that contributes to the induction of clinical 
symptoms.

Over the past decade, numerous studies investigated 
transcriptional profiles of dengue cases to identify mark-
ers of disease progression, with varied results. Similar 
to our findings here, progression to severe dengue has 
been shown to be often [52, 53, 57, 59, 67–69] but not 
always [54, 58, 61, 70] associated with transcriptional sig-
natures featuring NK cell activation, increased apoptosis, 
upregulation of type I interferon and IFN-γ-mediated 
pathways. In contrast to this innate-like inflammatory 
transcriptional response associated with progression to 
DHF, our bioinformatic analysis identified T cell activa-
tion molecules and master transcription factors such as 
MYC, FOXM1 and FOXO1, known to support cell pro-
liferation and govern a range of metabolic processes, as 
regulators of transcriptional profiles in patients progress-
ing to uncomplicated disease manifestations. These gene 
expression profiles were tightly correlated with frequen-
cies of ICOS+ effector memory T cells and CXCR3+ TFH 
cells, lending support to the idea that the increased meta-
bolic transcriptional signature observed had developed 
to support the energy demands of a proliferating T cell 
pool, which was expanding upon a secondary encounter 
with the virus.

Elegant longitudinal studies demonstrated that both 
effector memory CD4+ and CD8+ T cells are induced 
after exposure to DENV and that these cells are long-
lived, persisting for 12 months post-infection [71–73]. 
Consistent with those findings, our high-dimensional 
single-cell cytometry analysis identified various popu-
lations of ICOS+PD-1+CD27+CCR7− TH1, TH2 and 
TH17-polarised CD4+ T cells as well as CD8+ T cells 
with an effector memory phenotype only 2–3 days after 
the onset of fever, suggesting the prior presence and 
rapid expansion of these cells upon a secondary DENV 

infection. Notably, these cells were only present in 
individuals progressing to mild disease manifestations 
and virtually absent in patients that developed DHF. 
Similarly, transcriptional profiles of asymptomatic 
DENV-infected individuals [62] featured increased T 
cell activation relative to clinical dengue counterparts, 
and multi-functional CD4+ and CD8+ T cells have been 
found at higher frequencies in outpatients compared to 
hospitalized dengue cases [74]. Together, this evidence 
supports the concept that adaptive T cell immunity, and 
particularly effector memory T cells, might play a criti-
cal role in attenuating disease severity during a second-
ary DENV infection and associate with good infection 
outcomes. In our study, all effector memory CD4+ and 
CD8+ T cell subsets found in individuals progressing 
to uncomplicated dengue expressed high level of co-
stimulatory molecules, including ICOS. Expression of 
this co-stimulatory molecule is usually found in various 
T cell types, including T regulatory cells, TFH cells and 
effector T cells. In these cells, ICOS plays an important 
role in cell activation, maintenance, and survival [75]. 
Emerging research is highlighting the importance of 
ICOS co-stimulation to deliver efficient anti-tumour 
effector T cell responses [76–78], with various ICOS 
agonist antibodies currently in clinical trial showing 
promising results [79, 80]. Targeting this co-stimula-
tory pathway could be also beneficial to boost adaptive 
immunity and improve disease outcomes in secondary 
dengue infections.

Unsupervised analysis of the B cell compartment 
identified a subpopulation of CD21−CD27− atypical 
MBCs preferentially expanded in DHF cases. These 
cells have been detected in other viral [81] and para-
sitic [82] infections and share features in common 
with a subset called age-associated B cells [83]. In 
these settings, atypical MBCs have been found to have 
low differentiating capacity into antibody-secreting 
cells upon re-encounter with antigen and similar to 
our results here, associations with poor disease out-
comes [83, 84, 85]. In contrast, class-switched classical 
MBCs dominated the response in individuals progress-
ing to DF. Although anti-DENV antibody titres in the 
study were comparable across individuals with differ-
ent infection outcomes, our results do not exclude the 
possibility that antibodies with different neutralising 
capacity and/or affinity for antigen could arise after 
stimulation and differentiation of these MBC subsets 
present in DF or DHF cases and play a role in the pro-
gression towards different clinical outcomes.

CXCR5+CD4+ circulating memory TFH cells have been 
shown to provide help to B cells and share many func-
tional features with TFH cells in the lymphoid organs 
[86]. These cells have been previously found to become 
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activated in response to DENV and to correlate with 
plasmablast frequencies [87, 88]. Similar to conventional 
T helper cells, the expression of the lineage-defining 
chemokine receptors CXCR3 and CCR6 allows the dif-
ferentiation of TH1-, TH2- and TH17-polarised memory 
TFH cells, and previous findings suggested that CXCR3 
expression in TFH cells is associated with their functional 
capacity. Although it was initially proposed that CXCR3+ 
cells have reduced helper capacity compared to CXCR3− 
cells [89], CXCR3+ TFH cells have been also found to 
succesfully expand and secrete cytokines, particularly in 
response to various viral infections [90, 91]. Consistent 
with these findings, our analysis here identified a popula-
tion of CXCR3+ TFH cells correlating with classical MBCs 
and only present in study participants with mild disease 
manifestations. Further work will be required to deter-
mine if CXCR3+ TFH cells provide help to support the 
production of efficient neutralising antibody responses 
that protect against severe dengue disease symptoms.

Monocytes are one of the main targets of DENV and 
several studies have assessed the relative abundance of 
classical, intermediate and non-classical subsets during 
acute infection [56, 92–94]. How the composition of this 
compartment fluctuates in patients with different disease 
severity in DENV infections is less understood. Here, 
using unsupervised high-dimensional data analysis, we 
found that whereas populations of classical monocytes 
are abundant at the onset of fever in individuals devel-
oping uncomplicated dengue, non-classical monocytes 
dominate the blood response in patients progressing to 
DHF, suggesting that these cells could contribute to the 
induction of severe clinical symptoms. In support to this 
idea, non-classical monocytes have been shown to upreg-
ulate expression of adhesion molecules and chemokine 
receptors that facilitate endothelial cell adhesion [94] in 
response to acute DENV infection. These cells are also 
major producers of pro-inflammatory cytokines includ-
ing TNF, IL-1β, and IL-6 [95]. TNF is a potent activator 
of the vascular endothelium known to modulate the per-
meability of endothelial cells [96], raising the possibility 
that local production of TNF by non-classical monocytes 
could contribute to vascular leakage in DHF cases. Non-
classical monocytes may also promote ADE by support-
ing the differentiation of B cells into plasmablasts [56] 
that produce short-lived, low affinity antibodies and 
have been identified as one of the main cellular targets 
of DENV in the blood that becomes activated in severe 
cases [68].

The currently used warning signs to identify dengue 
cases at risk of developing severe ilness are based on 
clinical parameters that appear late in the disease and 
are not always specific. This situation promotes ineffec-
tive patient triage and resource allocation [7, 8]. Recent 

studies estimated that the total cost per hospitalized den-
gue case raises to US$1,250 [97] in Indonesia, with the 
total economic burden associated to hospitalized dengue 
cases estimated to US$355.2 million [97]. Thus, strategies 
to predict the burden of disease will have a substantial 
socio-economic impact in dengue endemic regions. From 
all parameters induced in response to DENV identified 
by our systems biology approach, the balance between 
defined populations of classical and non-classical mono-
cytes in the blood was the best predictor of odds of DHF 
after 1–3 days of fever. Furthermore, unlike inflamma-
tory chemokines, CD4low non-classical monocytes were 
detectable in cases progressing to DHF, not only after 
secondary but also primary DENV infections, in which 
other risk factors such as cross-reactive antibodies can-
not be detected.

Conclusions
Despite the limitations of a small sample size, this pro-
spective study provided new insights on processes asso-
ciated with favourable disease outcomes and protection 
from severe dengue upon a second encounter with 
DENV. Thus, single cell cytometry approaches combined 
with molecular profiling like the one presented here 
could be useful to help identify correlates of protection 
and define disease-protecting CD4+ and CD8+ T cell 
phenotypes that emerging anti-DENV vaccines under 
efficacy testing could aim to reproduce. The results also 
provide proof of concept for the potential of systems 
immunology approaches to identify discrete popula-
tions in the blood associated with increased odds of DHF, 
encouraging more granular examination of these cell 
compartments to identify specific biomarkers, useful for 
the design of diagnostic tools to predict disease outcomes 
of patients presenting with dengue fever at point of care.
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