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Simple Summary: Enhancers serve as logic gates of the regulatory mechanism of gene expression,
and their malfunction is associated with numerous diseases. Therefore, the functional validation of
enhancer elements is of great importance in genomics research. Recent technological advancements
have enabled the perturbation of enhancers and the examination of their impact on the expression of
nearby genes. Here, we review the progress made in experimental and computational methods, which
have equipped researchers with a promising arsenal to uncover relationships between enhancers and
phenotypes, providing mechanistic insights into diseases.

Abstract: Higher eukaryotic enhancers, as a major class of regulatory elements, play a crucial role in
the regulation of gene expression. Over the last decade, the development of sequencing technologies
has flooded researchers with transcriptome-phenotype data alongside emerging candidate regulatory
elements. Since most methods can only provide hints about enhancer function, there have been
attempts to develop experimental and computational approaches that can bridge the gap in the
causal relationship between regulatory regions and phenotypes. The coupling of two state-of-the-art
technologies, also referred to as crisprQTL, has emerged as a promising high-throughput toolkit
for addressing this question. This review provides an overview of the importance of studying
enhancers, the core molecular foundation of crisprQTL, and recent studies utilizing crisprQTL to
interrogate enhancer-phenotype correlations. Additionally, we discuss computational methods
currently employed for crisprQTL data analysis. We conclude by pointing out common challenges,
making recommendations, and looking at future prospects, with the aim of providing researchers
with an overview of crisprQTL as an important toolkit for studying enhancers.

Keywords: single-cell perturbation; enhancer; CRISPR; crisprQTL; epigenome

1. Introduction

The human genome contains about 19,000 protein-coding genes, which make up less
than 1–2% of the genome. The expression of these genes is regulated by DNA elements that
occupy the remaining part of our DNA, making up approximately 99% and known as ‘dark
matter’. It is estimated that about 15 million transcription factor binding sites are located in
more than 3 million regulatory DNA regions [1]. Understanding the mechanisms of gene
expression regulation in cells is a necessity and is at the forefront of genomics research.
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Non-coding regions play a crucial role in gene expression regulation, and it is estimated
that more than 90% of disease- and trait-associated variants fall in these regions [2,3].

Our fascination with enhancers dates back to the 1980s [4]. Enhancers are non-coding
sequences and a major class of cis-regulatory elements. They can regulate gene expression
independent of their distances and orientation to the transcription starting site when
bound by transcription factors [5]. Many causal non-coding loci, identified by genome-
wide association studies (GWAS) that are associated with human diseases, are located in
enhancer regions [6]. The contributions of single-nucleotide polymorphisms (SNPs) located
in enhancers to several diseases, developmental disorders, tumorigenesis, and cancers,
underscore the therapeutic potential of enhancers [7].

The Encyclopaedia of DNA Elements (ENCODE) project and the Roadmap Epige-
nomics Program have identified key features and characteristics of active enhancers, reveal-
ing a significant view of the global map of regulatory elements [8,9]. Despite a large body
of work focused on enhancer prediction through biochemical and structural tools such as
profiling of chromatin accessibility and histone marks, distinguishing between functional
and non-functional enhancers remains one of the greatest challenges in the field. Besides
the large distance between enhancers and their target genes, the cell-type-specific gene
regulation makes predicting their target genes challenging. Advances in large-scale parallel
perturbations of enhancers allow for analysis of enhancer–phenotype correlations and the
proposal of causal relationships. Inspired by the research surrounding the expression-
quantitative trait loci (eQTL), Gasperini et al. developed an experimental strategy, termed
crisprQTL. In an analogous manner, they replaced individuals, variants, and tissue-level
RNA sequencing in eQTL with cells, various combinations of sgRNAs, and single-cell RNA
sequencing (scRNAseq) readouts in crisprQTL, respectively [10].

This review highlights the use of crisprQTL as a versatile toolkit for dissecting enhancer
functions.

2. A High-Throughput Toolkit for Precision Epigenome Editing

The emergence of precision editing tools targeting the epigenome, without altering
the genome, provides a versatile approach in interrogating causal relationships between
the epigenome and transcriptome [11]. Different DNA-binding proteins such as zinc finger
proteins (ZFPs), transcription-activator-like effectors (TALEs), and clustered regularly
interspaced short palindromic repeats (CRISPR)/nuclease-deactivated Cas9 (dCas9), have
been employed to target fused epigenetic modifiers to specific loci in the genome. Among
these, dCas9 offers a robust adjustable DNA recognition mechanism without altering the
underlying DNA sequence [12].

CRISPR was first discovered in the adaptive immune systems of bacteria and has
advanced our understanding of gene function [13]. The CRISPR-Cas9 system consists
of two main components: a Cas9 endonuclease and a guide RNA molecule, the latter
directing the first component to a specific genomic location. Deactivated Cas9 coupled
with various activators or repressors has been employed to investigate enhancer function.
Compared to Cas9, dCas9 does not cut the DNA, but can be linked to chromatin modifiers
such as Krüppel-associated box (KRAB) to induce chromatin changes [14,15]. The fusion
of KRAB, a transcriptional repressor domain, with dCas9 equipped researchers with an
incredibly powerful tool known as CRISPR interference (CRISPRi) [16]. A single-guide
RNA (sgRNA) directs dCas-KRAB to the genomic location, wherein KRAB induces a
heterochromatin state of DNA, thereby promoting histone methylation and deacetylation.
The precise epigenome editing capability of the dCas9-KRAB platform, enables the targeting
of candidate enhancers in a highly specific manner [17]. A recent study has identified a
novel putative enhancer located upstream of colony-stimulating factor 1 (CSF1), a highly
expressed gene in triple-negative breast cancer cells. They used CRISPRi assays (dCas9-
KRAB) followed by bulk RNA sequencing to validate the contribution of this enhancer
to CSF1 expression [18]. Despite the capability of this precise perturbation in enhancing
understanding of the correlation between enhancers and phenotypes, the need for a more
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high-throughput toolkit becomes evident when investigating multiple perturbations within
cell type and state-specific scope.

The introduction of scRNA-seq has significantly deepened the understanding of
individual cells. Although single-cell technologies provide unprecedented descriptive
information, they should be combined with other functional genomics tools to study
causality of genes [19]. By combining CRISPRi and scRNA-seq toolkits, Perturb-seq and
CRISP-seq have equipped scientists with new powerful tools to investigate and explore
genomic element interactions. In these methods, sgRNA was not directly detectable via
scRNA-seq due to the lack of a poly (A) tail [20–22]. However, by including the sgRNA at
the 3’ end of a polyadenylated mRNA transcript, CROP-seq made the direct sequencing of
sgRNAs possible and further simplified the construction of sgRNA libraries [23].

One such approach, ‘direct-capture Perturb-seq’, implemented a hybridization-based
target enrichment strategy, offered a flexible guide design and targeted sequencing in a
cost-efficient way. The 5’ and 3’ platforms of this method were commercialized by 10×
Genomics [24]. By integrating direct-capture Perturb-seq with CRISPR gene-tiling screen,
Sc-Tiling was developed to investigate the functional domain of a gene at a sub-gene
resolution [25]. In another study, expanded CRISPR-compatible cellular indexing of tran-
scriptomes and epitopes by sequencing (ECCITE-seq) combined crisprQTL with cell surface
antigen readouts to detect several modalities at a single-cell resolution. Given that pro-
tein detection is more sensitive than mRNA, ECCITE-seq, by detecting both modalities,
can provide a more robust characterization of cellular phenotypes in response to pertur-
bations. This can be particularly useful in studying heterogeneous cell populations in
diseases like cancer [26]. Later, ECCITE-seq was applied to identify new regulatory genes
involved in the differentiation mechanism of acute myeloid leukemia [27]. In another
study, CRISPR–sciATAC was developed to capture changes in chromatin states following
single-cell perturbation screens. This method can be applied to investigate the interplay
between specific genetic variants and the chromatin accessibility profile, which can ul-
timately provide valuable insight into the underlying mechanisms of phenotypes and
diseases [28]. Linking genotypes to the phenotype of individual cells has been achieved
through the integration of CRISPR perturbations with image-based phenotyping in optical
pooled screens. This approach facilitates the measurement of phenotypic features such as
cellular morphology, cell–cell interactions, and the localization of molecules at single-cell
resolution [29].

The use of crisprQTL to alter a large number of enhancers (pooled screens) in a large
population of cells (Figure 1) serves as an efficient and high-throughput platform for the
interrogation and validation of the function of enhancers in their native genomic contexts.
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Figure 1. The overall workflow of the crisprQTL toolkit: (1) Transduction: lentiviral delivery of
sgRNAs library designed to target candidate regions and the generation of stable cell lines at high
multiplicity of infection (MOI). (2) Droplet generation: after screening and selection for the phenotype
of interest, polyclonal cells go through droplet generation. (3) Lysing and barcoding: cell lysis is
followed by reverse transcription and barcoding. (4) Library generation: pooling samples is followed
by PCR to prepare the library ahead of sequencing. (5) Data analysis: data processing, mapping, and
assigning sgRNAs to cells.

3. Enhancer Interrogation via crisprQTL

The pace of utilizing crisprQTL in functional genomics research has been astonishing,
and so far, several research studies have been exploiting this toolkit to functionally explore
enhancers. In one study, Mosaic-seq was employed to systematically perturb enhancers and
to analyze their activity in both individual and combinational manners. Xie et al. showed
that perturbing an enhancer has as significant an impact on gene expression, as targeting
the gene itself. They also found that while only a few enhancers within each large cluster
of enhancers, also known as super-enhancers, play a major role in repression, perturbing
multiple weak enhancers can also change the expression of the target gene [30]. Later, they
introduced Mosaic-seq2, which was optimized for the 10× Genomics platform, and also
adopted polyadenylation from the CROP-seq method, as mentioned above [31].

In another study, this team optimized their method by increasing the number of
utilized sgRNAs per enhancer and performing a gene-specific p-value correction. They
used this method to identify the secondary target genes regulated by enhancers and to
construct an enhancer-driven gene regulatory network. They showed that targeting an
enhancer that regulates a transcription factor can result in downregulation of multiple
secondary targets [32].

In a separate study conducted by Gasperini et al., crisprQTL mapping was utilized
to investigate the presence of multiple sgRNAs within each individual cell. By avoiding
an assumption about the target gene, crisprQTL avoids the limitations of gene-specific
assays. They showed that introducing sgRNA at a high multiplicity of infection (even to
~28) within individual cells does not reduce the power of CRISPRi [10].
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CROP-seq-based methods have certain drawbacks when it comes to genes with a
low level of gene expression. Targeted Perturb-seq (TAP-seq) has increased the sensitivity
of these approaches by amplifying only a limited number of genes of interest ahead of
sequencing, thereby reducing sequencing requirements. TAP-seq not only increases the
sensitivity of capturing low-level RNA transcripts but also increases the efficiency of
retrieving the gRNA identity. This method also addresses the multiple hypothesis testing
problems by focusing on a predefined set of genes and targeted readout of their relevant
transcripts [33]. In another study, systematic targeting and inhibition of non-coding GWAS
loci with single-cell sequencing (STING-seq) utilized crisprQTL to study gene-regulatory
functions of multiple GWAS variants. This approach connects GWAS variants with their
respective target genes, enabling high-throughput exploration of relationships between
genetic variants and their functional outcomes, and holds a potential to discover therapeutic
targets [34].

A recent study by Armendariz et al. employed crisprQTL to investigate the con-
tribution of enhancers to developmental diseases by examining how they alter cell fate
determination. They functionally interrogated 25 enhancers associated with congenital
heart defects in stem cells, ahead of their differentiation to cardiomyocytes. They measured
the transcriptome and found a subset of 16 enhancers where the perturbation caused a
delay in the specification of human cardiomyocytes [35]. In another study, a multi-assay
evaluation of GWAS target genes was carried out using functional CRISPR screens, High-
throughput Chromosome Conformation Capture with Chromatin Immunoprecipitation
(HiChIP), and crisprQTL to evaluate the relationship between candidate breast cancer-
associated enhancers and their target genes [36].

Most recently, crisprQTL has been implemented in a comprehensive study, which
focused on regions containing mutations associated with psychiatric disorders, perturbing
almost one thousand enhancers in primary human astrocytes. They found almost one hun-
dred active enhancers that contain disease-associated variants and additionally pinpointed
140 enhancer target genes linked to these disorders [37].

To date, most functional studies have focused on unraveling the mystery of gene regu-
lation by perturbing enhancers at a DNA level. However, a recent study introduced Cas13
RNA Perturb-seq (CaRPool-seq) that can perform multiplexed combinatorial perturbations
by targeting enhancer RNAs [38].

4. Computational and Statistical Toolkits

In parallel with the development of the experimental procedures of crisprQTL, there
is an ongoing effort to develop computational methods to assist downstream analysis and
improve the interpretation of generated data.

Large-scale functional studies have been conducted to evaluate the efficiency of the
Cas system as a toolkit for functional genomics [39–42]. However, the design of sgRNA
has been a major bottleneck across these studies, given its crucial role in determining the
success of knockouts or knockdowns. To address this issue, several computational models,
based on these functional studies, have been developed with the aim to identify design
principles for highly effective sgRNA [43–46]. These models incorporate state-of-the-art
machine learning [43,46] and deep learning [47,48] models to identify biological features
that influence the sgRNA efficiency. This research has led to the development of high-
performing libraries of sgRNA [46]. Both experimental and computational studies have
shown that features related to the structural stability and flexibility of sgRNA, such as GC
content and self-folding energy significantly contribute to the efficiency of the CRISPR
system [43,44]. Tools are available online and via the command line for scoring highly
effective sgRNA for any given library.

For the downstream analyses, a few public datasets exist for functional analysis of
enhancers using crisprQTL. In two early reported datasets, different statistical methods
were applied to analyze differential expression. In the first one, Xie et al. [30] used nonpara-
metric test for independence, Chi-squared-like tests, which had limitations in dealing with
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technical confounders. In the second one, Gasperini et al. [10] applied negative binomial
general linear models (GLMs), which were not robust to the misspecification of the gene
expression model. These two datasets were later reanalyzed with SCEPTRE and GLM-EIV.
SCEPTRE implemented a form of conditional randomization test to address the miscalibra-
tion problem highlighted in the two aforementioned studies. By examining negative control
sgRNAs, SCEPTRE provided a reassessment of the calibration of these methods. Upon
applying SCEPTRE, a new set of enhancers (>40) was introduced to Gasperini’s dataset,
while a set of introduced enhancers (>20) in the original research was removed [49]. SCEP-
TRE demonstrates the sensitivity and specificity of crisprQTL and addresses the previously
mentioned limitations. However, like other standard analysis methods, SCEPTRE imputes
perturbation assignments onto cells by applying the thresholded regression method on the
sgRNA counts and assumes away measured noise. In another attempt, a method known as
GLM-based errors-in-variables (GLM-EIV), used a new class of measurement error models
to select a threshold and estimate the probability of perturbation in each cell, as well as
the effect size of it on differential gene expression. GLM-EIV was applied to both datasets
and outperformed the thresholded regression method in settings with high background
contamination, where an sgRNA incorrectly assigned to a cell [50].

In another computational approach, the single-cell model-based analysis of genome-
wide CRISPR/Cas9 knockout (scMAGeCK) utilized the negative binomial distribution, a
generalized linear model, and expectation maximization approach to model perturbation.
This approach introduced two different modules. (1) The first module can detect enhancers
linked to only one single target gene, based on the robust rank aggregation algorithm.
(2) The second module can assess the impact of perturbation on thousands of target genes
based on linear regression [51].

In a different study, a computational pipeline was developed to remove the clonal
cell expansion effect in crisprQTL experiments, leading to significant reduction of false
discoveries. This pipeline leverages the combination of multiple sgRNAs in each cell, using
them as a barcode to identify distinct clones [52]. In another separate study, GLiMMIRS
was developed using negative binomial generalized linear models, accounting for sgRNA
efficiency and several other covariates. Reanalysis of Gasperini’s dataset [10] using this
method, which investigated interactions between 3,808 enhancer pairs, showed that en-
hancers act in a multiplicative manner; however, the results provided no evidence for
strong interactions between pairs of enhancers [53]. Most recently, SCREE has been intro-
duced as a comprehensive workflow that facilitates crisprQTL data analysis. This flexible
pipeline offers a platform for performing pre-processing and downstream analysis of RNA
sequencing data, assay for transposase-accessible chromatin with sequencing (ATAC-seq)
data, and multimodal 10x-based readout. It is implemented in open-source Python and R
packages, and is accompanied by a tutorial [54].

5. Pitfalls and Recommendations

The experimental design of a pooled CRISPR screen was comprehensively described
in a recent review [55]. Despite the great promise of crisprQTL, a plethora of variables may
affect the experiment and should be considered prior to the experiment design and during
the data analysis. The number of perturbations in each cell depends on the number of
sgRNA stochastically introduced into that cell [33]. One of the primary stages of the experi-
ment is designing optimal sgRNA. However, the design is limited by requirements of the
protospacer adjacent motif (PAM), which restricts the number of target regions, including
those involved in gene regulation. Another limitation is the trade-off between efficiency
and specificity; sgRNAs with high specificity may have lower efficiency, whereas sgRNAs
with high efficiency may have a higher likelihood of off-target effects. Computational pre-
diction of off-target candidate regions can help overcome this limitation [56,57]. Recently,
significant progress has been made in both experiment and computational methods to
overcome these limitations. A recent study presented high-performance computational
models for assessing the impact of sgRNA on different targets across Cas9 variants and
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orthologs. The study generated high-throughput datasets for all Cas9 variants [58] and
orthologs [59], and identified relevant biological features, such as GC content, melting
temperature, and self-folding energy of spacer sequence, that influence sgRNA activity. The
paper provides a web tool link for researchers to utilize variants and orthologs based on
experiment needs. Although the current designs are highly efficient, further improvements
can be achieved by integrating the structural features of both the spacer and scaffold of
sgRNA. Previous research has suggested that altering the secondary structure of sgRNA
through engineering sequences within tetra loop regions improves editing efficiency [60].
For assessing off-target effects, both heuristic and machine-learning-based methods have
been developed, which could be incorporated to identify highly active and specific sgRNAs.
However, they currently work only for the human genome and, to some extent, for mice.
Assessments on major model organisms like drosophila, zebrafish, and C. elegans, have yet
to be achieved [56,61]. In the context of CRISPR multiplexing perturbations, the competi-
tion of several sgRNAs for endonucleases in a cell, known as retroactive effects, can change
the efficacy of every sgRNA [62]. A focused validation, through targeting enhancers by an
active Cas9 protein, can also help to balance speed with accuracy [35].

KRAB induces histone deacetylation, H3K9 methylation and a heterochromatin do-
main formation. During an investigation of enhancers located more than 1 kb distant from
the transcription start site, it was observed that the KRAB effect does not spread toward
promoter linearly along the DNA [33]. Moreover, due to three-dimensional interactions
in the genome, KRAB can induce heterochromatin formation in a non-linear manner [17].
Therefore, the repression of the putative gene might be induced by KRAB rather than
the enhancer itself. The extent of spreading of the KRAB effect within DNA depends on
different factors, including time, and can range from 1 kb to 200 kb. Other factors, such as
the level of activation, genomic locus, and neighboring elements like insulators, enhancers,
and promoters can also influence this spreading [63]. Considering the time dependency of
enhancer functions, a delay in the KRAB function could pose a technical challenge while
sgRNAs are introduced at a fixed time point [35].

The interaction between neighboring cells can confound gene expression and should
be taken into account [64]. Gene expression can be regulated by multiple enhancers,
which may mask the effect of perturbation. Moreover, the activity of enhancers and their
contribution to gene expression are heterogeneous across a cell population. It is also
important to note that enhancers can compensate for one another, therefore sometimes
targeting multiple weak enhancers among some super-enhancers is necessary to repress
gene expression [30,65].

As discussed above, despite the high efficiency of CRISPRi for perturbation across a
cell population, it is susceptible to incomplete inhibition. The variability in sgRNA targeting
efficacy and dCas9-KRAB perturbation should be considered [10], and GLiMMIRS uses a
statistical model to account for this covariate [53].

While a high ratio of a lentiviral transduction to the number of target cells, known
as the multiplicity of infection (MOI), can improve the sensitivity and specificity of the
screen [51], an excessively high MOI could also affect the physiological response of the
cell. Therefore, it is important to consider the MOI tolerance threshold for different cell
types, especially when most sgRNAs have an effect. Thus, it might be necessary to carefully
optimize and calibrate the MOI tolerance. Multiple perturbations in a cell can either
facilitate or impede the cell proliferation rate and trigger a clonal expansion, introducing
a potential bias in sampling. By considering the clonal expansion artifacts during the
experimental design and applying computational methods to filter out clonal cells, biases,
and false discoveries can be minimized [52].

From a technical perspective, scRNA-seq data is intrinsically noisy data. Various
studies have addressed data correction and noise reduction [66]. A low amount of start
material can affect the success of screening, particularly for genes with low expression
levels. Targeted sequencing or high-content read-outs can address this issue, although
the latter is limited by sequencing costs [33]. Simultaneous profiling of gene expression
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and other modalities within the same cell, such as multiome [67] and CITE-seq [26], offer
potential solutions to overcome the drop-out limitation associated with the low abundance
of transcripts.

Finally, to avoid unintended interferences and biases, it is crucial to consider and eval-
uate the influencing variables mentioned above prior to, during, and after the experimental
process, throughout the data analysis.

6. Conclusions and Future Prospective

The crisprQTL toolkit has enabled a facile parallel perturbation of a large number of
enhancers and the analysis of the resulting phenotype in each cellular comportment. We
highlighted several recent research studies, and collectively, these studies have demon-
strated the potential of crisprQTL in investigating the correlation between enhancers and
their target genes. With an ever-growing generation of epigenomic data, such as enhancer-
RNA expression, high-throughput chromosome conformation capture (Hi-C), ATAC-seq,
and chromatin immunoprecipitation, followed by sequencing (ChIP-seq), introducing
more candidate enhancers, the functional testing of enhancers will be indispensable. As-
tonishing progress has been made in single-cell multi-omics approaches, specifically the
commercial multi-omics product 10x Multiome [67], which provides an unprecedented
opportunity to profile the gene expression and chromatin accessibility within the same cell.
Recruiting multiome instead of scRNA with the crisprQTL toolkit can multiply the power
of enhancer interrogation. In the future, the incorporation of long-read sequencing and
computational tools such as FLAMES (full-length alternative splicing quantification) [68]
into the crisprQTL toolkit could also lead to significant advances in our understanding
of enhancer roles in splicing and regulation of isoform usage. Other omics modalities
could be integrated into the crisprQTL toolkit, along with advancements in genomics, to
significantly deepen our understanding of the way enhancers regulate gene expression.
In the near term, this will depend on the development of computational and statistical
methods. We envision that crisprQTL, as a promising toolkit, can change the landscape
of high-throughput functional epigenomics and play a pivotal role in the comprehensive
analysis and interrogation of non-coding regions, which could ultimately pave the way to
the discovery of novel therapeutic targets.
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