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Dendritic cells (DCs) are sentinel immune cells that form a critical bridge linking

the innate and adaptive immune systems. Extensive research addressing the

cellular origin and heterogeneity of the DC network has revealed the essential

role played by the spatiotemporal activity of key transcription factors. In response

to environmental signals DC mature but it is only following the sensing of

environmental signals that DC can induce an antigen specific T cell response.

Thus, whilst the coordinate action of transcription factors governs DC

differentiation, sensing of environmental signals by DC is instrumental in

shaping their functional properties. In this review, we provide an overview that

focuses on recent advances in understanding the transcriptional networks that

regulate the development of the reported DC subsets, shedding light on the

function of different DC subsets. Specifically, we discuss the emerging

knowledge on the heterogeneity of cDC2s, the ontogeny of pDCs, and the

newly described DC subset, DC3. Additionally, we examine critical transcription

factors such as IRF8, PU.1, and E2-2 and their regulatory mechanisms and

downstream targets. We highlight the complex interplay between these

transcription factors, which shape the DC transcriptome and influence their

function in response to environmental stimuli. The information presented in this

review provides essential insights into the regulation of DC development and

function, which might have implications for developing novel therapeutic

strategies for immune-related diseases.
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1 Introduction

Our body is constantly exposed to danger in the form of pathogenic micro-organisms

that seek to break through the skin and the mucous membranes that provide the first

barrier of defense. The acquisition of mutations in our own cells resulting in their

transformation into malignant clones represents another form of danger to which the
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body must respond in order to avoid the development of cancer. A

rare group of heterogeneous immune cells known collectively as

dendritic cells (DCs) are central to sensing these dangers and

orchestrating the appropriate response, while at the same time

ignoring normal healthy cells and commensal micro-organisms.

DCs are a diverse group of cell types that are widely dispersed

throughout the body. They act as sentinels to capture exogenous

antigens that are processed and presented via either major

histocompatibility complex class II (MHC-II) to CD4+ T cells

(direct presentation) or shuttled through a specialized pathway to

MHC-I to engage CD8+ T cells (cross-presentation) (1–5). Antigen

uptake alone is insufficient to fully activate DCs, thus allowing DCs

to remain tolerant to harmless antigens derived from healthy tissue

or commensal microbes (6–12). However, DCs express an array of

pattern-recognition receptor (PRRs) and C-type lectin receptors

(CLRs) whose engagement induces maturation and migration, key

steps in promoting their interaction with antigen specific T cells and

thereby initiating adaptive immunity (13–15).

To face this variety of immune challenges, DCs have evolved

into a variety of phenotypically and functionally distinct cellular

subsets in both mouse and human (5, 16–19). DCs can be broadly

separated into conventional dendritic cells (cDCs), plasmacytoid

DCs (pDCs), and monocyte-derived DCs (moDCs), the latter

becoming prevalent during inflammation. Conventional DCs can

be further divided into type 1 cDC (cDC1s) and type 2 cDCs

(cDC2s). Of note Langerhans Cells that were traditionally classified

as DCs due to their morphological and phenotypic similarities with

DCs and their ability to prime T cell response, are now recognized

to be a specialized population of tissue macrophages (20, 21), and

therefore their ontogenetic and homeostatic properties differ greatly

from DC (22, 23).
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Generally, mouse cDCs and moDCs are defined by high cell

surface expression of the integrin CD11c (encoded by Itgax) and

MHC-II. Beyond the expression of CD11c and MHC-II, additional

cell surface markers can be used to distinguish mouse DC subsets.

cDC1s co-express the cell surface molecules XCR1, CD24, DEC205,

CD8a and CLEC9A (24, 25) (Figure 1). In the peripheral lymphoid

and non-lymphoid organs such as the lung, gut and LN, cDC1s also

can also be identified as CD103+CD11b- cDCs (26, 27). The splenic

cDC2 subset is defined by the presence of CD11b, Sirpa (CD172a)

and CD4 on the cell surface (28, 29). Adding to that cDC2s can co-

express CD103+CD11b+ in non-lymphoid organs (27, 30).

Although the cDC2 compartment has been described as a discrete

subset, the advent of single cell technology has revealed a high

degree of diversity within this population and some additional

markers have been proposed to define the basis of this heterogeneity

(discussed later). Under inflammatory conditions, moDCs can

respond to the chemokines such as CCL2 and CCL7 and

upregulate cell surface expression of MHC-II, CD11c and CD11b,

and thus can be easily mistaken as cDC2s (31). Additional markers

such as CD64 and MAR-1 can be used to discriminate moDCs from

cDC2s (32). pDCs are distinct from the other DC subsets in that

they exhibit a lower level of expression of CD11c and MHC-II.

pDCs also express a variety of unique markers (compared to cDCs

and moDCs), including BST2, B220, and SiglecH (33). Whether

pDC belongs to the DC lineage remains at present a matter of

debate given that pDCs express some lymphoid markers and overall

have a limited capacity to present antigens to T cells compared to

the cDC or moDC compartments (34–36).

Given their critical role in orchestrating adaptive immune

responses, high dimensional and throughput techniques such as

single cell RNAseq and Cytometry by time of flight (CyTOF), have
FIGURE 1

Transcription factors controlling DC specification and function. The figure highlights the development of cDCs subtypes and pDCs from the shared
common dendritic cell progenitors (CDP). Some other DCs subtypes (DC3) have also been reported recently in mouse and human and derive from
monocyte-dendritic cell progenitors (MDP). The common lymphoid progenitor (CLP) generates pDCs but lack cDC potential. Under inflammation,
monocytes can differentiate into monocyte-derived (mono)DCs. Each DC subtype has unique surface markers and attributes in regulating immune
response. The transcription factors governing DC lineage specification and function are shown.
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been applied to the DC lineages. These approaches have revealed

unexpected heterogeneity within the DC subsets in both mouse and

human, especially the cDC2s (37–39). Single-cell analysis of human

mononuclear phagocytes also identified an inflammatory subset of

CD5-CD163+CD14+ inflammatory DC3s that were distinct from

cDC2s and able to prime Th2 responses (40). The integration of

these newly identified subsets into the overall picture of DC

development is a very active area of current research (41–43). In

this review we will focus on the recent insights on both the

transcriptional programming and the ontogeny of the DC

lineages and discuss how these findings inform our understanding

of the functional specialization of the DC subsets.
2 cDC1 development and function

2.1 Transcriptional regulation of
cDC1 development

cDC1s differentiate principally from the common dendritic cell

progenitor (CDP), a population that also gives rise to cDC2s (44,

45). A CDP subset committed to cDC1 fate has been characterized

through the expression of CD11c–MHC-II-/intCD117intZbtb46-

GFP+ in the bone marrow (46) and pre-cDC1s (CD11c+MHC-II-/

intCD135+CD172-Siglec-H-Ly6C-) (47) in the bone marrow and

spleen (44, 48, 49). However, cellular barcoding and fate mapping

studies have challenged this linear model of differentiation, given

that cDC1 imprinting could be detected as early as the

hematopoietic stem cell (HSC) (50–52).

Despite the challenges surrounding their origin, there is a very

good understanding of the transcriptional mechanisms controlling

cDC1 differentiation. cDC1 commitment is dependent on the

expression of specific transcription factors (TFs), including

BATF3 (Basic Leucine Zipper ATF-Like Transcription Factor 3)

(53), IRF8 (Interferon Regulatory Factor 8) (54), PU.1 (55), NFIL3

(Nuclear Factor, Interleukin 3 Regulated) (56, 57), and ID2

(Inhibitor of DNA Binding 2) (58), where the specific inactivation

of any of these TFs is associated with a strong defect in cDC1

development (Figure 1). However, this cDC1 deficiency can be

rescued by short-term bone marrow reconstitution (59) or over-

expressing IRF8 in absence of BATF3 (60), highlighting the

significant role of IRF8 and the fine network of TFs allowing

cDC1 differentiation.

cDC1 differentiation is intimately linked to optimal expression

of IRF8 which is tightly regulated by the spatio-temporal

coordinated action of key TFs (Figure 2A). Indeed, its expression

is initiated in early DC progenitors, including Lymphoid Primed

Multipotent Progenitors (LMPPs) and is dependent on PU.1-

induced chromatin remodelling (61). At the LMPP stage, RUNX

and CBFb induce the activation of the distal +56Kb Irf8 enhancer

that is essential for the initiation of IRF8 expression (62). Further

down the path toward DC differentiation the activity of two

additional enhancers have been shown to be pivotal in dictating

cDC1 vs pDC fate: +41Kb and +32kb Irf8 enhancers. In progenitors,

E protein controls the activation of +41Kb Irf8 enhancer, which

results into the commitment of DC progenitors to the pDC lineage.
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As alluded to earlier IRF8 expression in progenitors is central for

cDC1 differentiation, therefore it has been proposed that the

upregulation of ID2 can counteract the action of E protein on the

+41Kb Irf8 enhancer, which results in the activation of the +32Kb

Irf8 enhancer whose accessibility is tightly regulated by BATF3, DC-

SCRIPT and IRF8 itself to maintain adequate IRF8 level in pre-

cDC1 and cDC1 (46, 63, 64). This key decisional step is also

controlled by additional transcription factors, namely ZEB2 (Zinc

finger E-box binding homeobox 2) and NFIL3. ZEB2 inhibits ID2

expression of in CDPs thereby promoting pDC differentiation(65,

66). In contrast, NFIL3 acts upstream of ID2 and ZEB2 to control

cDC1 differentiation as its binding in CDPs to the -165Kb Zeb2

enhancer prevents ZEB2 expression in CDPs, promoting the

transition from a ZEB2hiID2lo CDPs to ZEB2loID2hi CDPs (57,

63). This concomitant reduction in ZEB2 expression and increase in

ID2 expression drive the differentiation of cDC1s (63). Beyond the

important role for IRF8 in controlling DC fate in progenitors, a role

for IRF8 in maintaining cDC1 survival has been postulated (67).

However, recent studies suggested that rather than being essential

for their survival, IRF8 as well as BATF3 control cDC1 identity in

fully differentiated cells as their deletion, in both cases, enables the

appearance of cDC1-like cells expressing cDC2 features (68, 69).
2.2 Key attributes and function of cDC1s

The importance of cDC1s in the immune system has been

highlighted by the interrogation of cDC1-deficient mouse models

(53, 70). The absence of cDC1s is associated with a reduction in the

control of tumor growth (71–76) and impaired control of viral (53)

or parasitic (77) infections. The major role of cDC1s in these

contexts is inferred from their capacity to activate naïve CD8+ T

cells. Indeed, cDC1s can confer the 3 signals required for the

efficient activation of naïve T cells: 1) the presentation of antigen-

derived peptides mainly via cross-presentation, 2) co-stimulatory

signals and 3) cytokines.

cDC1 are not only important for the activation of naïve CD8+ T

cells (78–80) but also for the re-activation of memory CD8+ T cells

which confer a faster and higher control of secondary infection, as

for example in the case of Listeria monocytogenes (53). In this

setting, cDC1s are the main producer of IL-12 and CXCL9 which

facilitate the recruitment and activation of memory CD8+ T cells

(81). In the tumor context, the production of prostaglandin E2

(PGE2) by tumor cells leads to cDC1 dysfunctionality marked by

the downregulation of IRF8, and key effector cytokines such as

CXCL9 and IL-12, resulting in poor CD8+ T cell tumor infiltration

and ultimately in tumor immune evasion (82, 83). Moreover, cDC1s

play a major role in licensing CD4+ T cells for CD8+ T cells

activation (84, 85). The cDC1/CD4+ T cell interaction through

CD40/CD40L signaling increases expression of CD70 and BCL2L11

in the cDC1, allowing an increase in cDC1 survival and the

differentiation and expansion of tumor-specific memory CD8+ T

cells (84, 86, 87).

In addition to their role in the initiation of the CD8+ T cell

response, cDC1s restrain progenitor of exhausted T (Tpex) cells in

the white pulp niche of the spleen in an MHC-I dependent manner.
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FIGURE 2

Transcriptional network controlling the development and function of DCs subsets. (A) This figure depicts the transcriptional network that regulates
the development and function of cDC1s from bone marrow progenitors to peripheral tissues. The transcription factor IRF8 plays a crucial role in
cDC1 development, and its expression is regulated by several enhancers located at -50 kb, +56 kb, and +32 kb relative to the Irf8 gene locus. The
transcription factors PU.1, RUNX-CBFb, BATF3, and DC-SCRIPT activate these enhancers at different stages of cDC1 development. In addition, NFIL3
is required for cDC1 development, and it suppresses ZEB2 expression via binding at-165kb Zeb2 enhancer during the CDP stage. ZBTB46 expression
marks the commitment to the cDC1 lineage, while DC-SCRIPT and ETV6 promote the maturation process of cDC1s. WDFY4 is a co-activator that
primarily controls the cross-antigen presentation ability of mature cDC1s. (B) cDC2s express IRF4 and can be further divided into two subtypes:
cDC2a, which have an anti-inflammatory function, and cDC2b, which have a pro-inflammatory function. The development of cDC2a requires T-bet,
while the development of cDC2b requires RoRgt. Both cDC2a and cDC2b develop from a CDP and this process is controlled by C/EBP binding at
the -165kb zeb2 enhancer. (C) This figure illustrates the transcriptional network that controls the development and function of pDCs from bone
marrow to peripheral tissues. The development of pDCs from multiple lineages requires the transcription factors PU.1, CBFb, IRF8, and TCF3. The
primary regulator of pDC development is E2-2, controlled by a network of transcription factors, including BCL11A, ZEB2, and ID2. E2-2 also controls
the expression of IRF8 via binding to the Irf8 + 41kb enhancer region at the CDP stage, possibly through complex formation with other transcription
factors such as MTG16. The function of SPIB is to retain immature pDCs in the bone marrow, while RUNX2 expression promotes the egress of pDCs
from the bone marrow. Type I IFN production, a significant function of pDCs is mainly controlled by IRF5, IRF7, and IRF8. Other transcription factors,
such as E2-2, RUNX2, SPIB, NFATC3, and CXXC5, can directly control IRF7 expression and regulate type 1 IFN production. (D) moDCs develop from
Ly6Chi monocytes under the control of several transcription factors, including KLF4, MafB, and PU.1, as well as low levels of IRF8. The final
differentiation of moDCs also requires the activity of IRF4, ETV6, and ETV3. Arrows indicate positive regulation, while bars indicate negative
regulation.
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This improves the control of infection by limiting Tpex migration to

the red pulp and their differentiation into exhausted T cell (88).

How this mechanism can be transposed to the control of tumor

growth is still not clear despite evidence of the localization of Tpex

in distinct niche in the tumor (89, 90).
3 cDC2 development and function

3.1 Transcriptional control of
cDC2 development

Similar to cDC1s, cDC2s also develop from the CDP, although

the transcriptional circuitry controlling cDC2 development is less

well understood (Figure 2B). As opposed to cDC1s, cDC2s express

low amounts of IRF8 and instead highly express IRF4 (Interferon

Regulatory Factor 4). Conditional ablation of IRF4 in CD11c+ cells

has shown impaired, but not the complete loss of cDC2s (91). A

potential explanation for the observation that some cDC2s develop

in absence of IRF4 could be that the cDC2 population represents a

heterogeneous mix of IRF4-dependent and independent subsets. In

line with this possibility, a body of work has highlighted a certain

degree of diversity within that compartment and the involvement of

different TFs (39, 92).

The first report describing cDC2 diversity revealed that the

conditional ablation of NOTCH2 (Neurogenic locus notch

homolog protein 2) in CD11c-expressing cells resulted in the

reduction of ESAM+ splenic cDC2s and lamina propria

CD103+CD11b+ DCs (93). Subsequently, the transcription factor

KLF4 (Kruppel-like factor 4) was found to be important for the

development of ESAM- cDC2s (43, 94). This evidence indicates that

NOTCH2 and KLF4 independently control the development of

functionally distinct cDC2 subsets (94, 95).

Yet, a study addressing cDC2 heterogeneity at a single cell level

has put forward an alternative model to the one proposed here

above (39). Brown et al. suggested that cDC2 could be separated

instead into T-BET (T-box expressed in T cells) and RORgt (RAR-
related orphan receptor gamma) cDC2s, cDC2a and cDC2b

respectively. Importantly, in the aforementioned study, neither

the expression of Klf4 or Irf4 enable the discrimination of cDC2a

from cDC2b. Instead, the authors proposed the use of additional

cell surface markers, namely CLEC10A and CLEC12A, to separate

cDC2a and cDC2b. Interestingly, the interrogation of chromatin

accessibility revealed that open chromatin regions in cDC2a showed

an enrichment for RBPJ (Recombination signal binding protein for

immunoglobulin kappa J region) motifs. As RBPJ is the DNA-

binding component of the NOTCH TF complex, this finding is

compatible with the earlier reported role for NOTCH2 signaling in

controlling cDC2 heterogeneity (39, 93).

In addition to the aforementioned role for ZEB2 in controlling

pDC differentiation, a role for ZEB2 in controlling cDC2

development has been shown. However, its function remains

controversial as conflicting results have been reported. One study

showed that conditional deletion of ZEB2 in ItgaxcreZeb2fl/fl mice

led to reduced number of splenic cDC2s (65), but a subsequent

study failed to confirm this observation (66). This latest study is
Frontiers in Immunology 05
somewhat contrasting with the development of a novel mouse

model lacking cDC2s and other myeloid lineages (57). In this

study, a triple mutation of all three NFIL3-C/EBP sites within the

-165Kb enhancer of Zeb2 ablated its expression exclusively in the

myeloid compartment and led to the complete loss of pre-cDC2

specification and mature cDC2 development in vivo (57). Whilst the

nature of this discrepancy warrants further investigation, these

studies also highlighted ZEB2 as a critical regulator of pDC

development through its repressive activity on ID2, as well as its

important role for monocytes commitment as these 2 populations

were strongly affected in this mouse model (57).
3.2 Diversity and function of cDC2s in
mice and human

Compared to cDC1s, cDC2s appear more efficient in presenting

antigens via MHC-II molecules to CD4+ T cells (1, 96). However,

cDC2s are not equally able to present soluble versus cell associated

antigens. CD4+ T cell proliferation in response to soluble antigen

was unperturbed in mice lacking cDC1s (Xcr1DTR mice or Batf3-/-

mice), demonstrating that cDC2s compensate for the lack of cDC1s

in this setting (53, 97). In contrast, cDC2s are far less efficient than

cDC1s in the uptake and processing of cell-associated antigens, and

thus display a limited capacity to prime CD8+ T cells through this

route (98).

As alluded earlier, mice lacking IRF4 were originally used to

define the function of cDC2s (91). These studies led to define a key

role for cDC2s in the regulation of Th2 and Th17 immune

responses aiming to eliminate extracellular pathogens

(Nippostrongylus brasiliensis) and parasites (Aspergillus

fumigatus), respectively (91, 99). At that time, it remained unclear

how cDC2s could direct such distinctive responses. Some

clarification for this division of labor came from studies

highlighting the distinct roles for NOTCH2 dependent and KLF4

dependent cDC2s. For example, in the gut NOTCH2-dependent

cDC2s were the critical source of IL-23 that were required for

clearance of extracellular pathogens such as Citrobacter Rodentium

though the induction of a Th17 biased immune response (100, 101).

In addition, NOTCH2-dependent splenic cDC2s were required to

promote T follicular helper (TFH) cell and germinal center (GC) B

cell formation in response to Listeria monocytogenes (102, 103). In

contrast, it was found that conditional deletion of Klf4 in DCs was

detrimental for Th2, but not Th17, immune responses in mice (94).

In line with the above, a STAT6/KLF4 dependent CD11blow cDC2

population localized in the skin has been shown to mediate Th2

immune responses (43).

cDC2s are also important for the T cell response to viral

infection. Following PV (single-stranded RNA pneumonia virus)

infection, cDC2s can acquire a hybrid phenotype characterized by

increased IRF8 expression and the capacity to prime both CD4+ and

CD8+ T cells. The acquisition of these cDC1-like properties by

cDC2s was dependent on the signaling via Toll-like receptors and

the type 1 interferon receptor (104). Additionally, the induction of

TFH cell differentiation was dependent on the presentation of viral

antigens at the T/B border by migratory cDC2s (102). Furthermore,
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LN resident cDC2s are strategically positioned to capture the

influenza A virus (105) and other blood born antigens (106)

resulting in the rapid initiation of T cell responses, independent

of migratory DCs influx. While moDCs were also reported to

activate T cells under similar conditions (107, 108), some studies

have suggested that inflammatory cDC2s can acquire moDC like

features, such as the expression of MAR-1 and CD64, and the

moDCs will express cDC2 signature genes including CD11b and

CD172a, suggesting that the antigen presentation capacity of

moDCs may actually be due to contamination by inflammatory

cDC2s (104, 105). In agreement with this conclusion, the use of

CD26 as an additional marker to differentiate inflammatory cDC2

from moDCs, highlighted the limited antigen presentation capacity

of CD26- moDCs (104).

Collectively, these studies highlight the functional specificities

of the various cDC2 subtypes within different organs. Deciphering

the molecular mechanisms underpinning this diversity is a

prerequisite to define the role of these different subsets of cDC2s

in initiating adaptive immune responses in the context of

pathogens, virus infection and tumor clearance, as this knowledge

will provide a rational framework for their use in clinical settings.
4 DC3: a unique DC subtype or the
DCs with different cells state?

The application of single-cell RNAseq technology to DCs has

led to many reports of novel DC subtypes (38, 40, 92, 109). The use

of different annotation strategies to define populations with

otherwise very similar transcriptomic features has created a good

deal of confusion in the field (110). The status of the DC3

population represents an example of this issue.

DC3s were initially identified in the blood of humans

through single-cell RNA sequencing (38). The subsequent

studies phenotypically characterized the DC3 population as

CD163+CD14+ DCs that accumulate in the blood of patients with

systemic lupus erythematosus (SLE) (40). DC3s display an

intermediate phenotype and function between cDC2s and

monocytes and are characterized by low expression of IRF8 (111).

Unlike cDC1s and cDC2s, the development of DC3s relies on GM-

CSF, but not FLT3L, and it is developmentally independent of the

CDP (92). Functionally, these cells have been proposed to promote

the differentiation of naïve CD8+ T cells into tissue-homing CD103+

T cells (92).

The AXL+ DC subpopulation was also reported in the blood of

humans, alongside the DC3 population, displaying an

intermediate phenotype between cDC2s and pDCs (38). This

population was characterized by the expression of Siglec6 and

AXL. Similarly, in mice, transitional DCs (tDCs), also referred to

as “pDC-like” cells, with characteristics spanning between cDC2s

and pDCs, were observed during steady-state and influenza

infection, and appear to be the equivalent to the AXL+ DCs in

humans (109). It has been recently proposed that these “pDC-

like” cells are pre-cDC2s and require KLF4 for both their

development and function (112).
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Other similar single-cell transcriptomic studies have identified

another DC population that exhibits an “activated” DC phenotype

and is referred to as “DC3” in both mouse and human (113). This

DC population lacks the canonical cDC1s and cDC2s gene

signature but expresses the matured cDC1 and cDC2 signatures

(113). Similar population have also been described as

CCR7+LAMP3+ DCs, Mreg DCs or ISG+ DCs within tumors

(114–116). It is important to note that these “activated” DC

populations represent developmental states of both cDC1s and

cDC2s and therebefore they are not to be confounded with

CD163+CD14+ DCs (DC3s) reported by Dutertre, Cytlak,

Bourdely and Villani et al. Currently, it is recommended to

designate this “activated” DC population as “CCR7+ DCs” due to

the consistent detection of CCR7, a common marker for DC

activation and maturation, in various contexts except ISG+ DCs

(110, 116).

Sorting out the cellular relationships between the cDC1, cDC2,

DC3 and CCR7+DCs populations is one of the key goals for the

DC field moving forward. Regardless of their development

origins, identifying the environmental cues and the molecular

mechanisms driving DC3 and CCR7+ DC phenotype and

functional attributes also warrants further investigation.
5 pDC development and function

5.1 pDC ontogeny

pDCs are a distinct cell type first identified through their

capacity to rapidly produce large amounts of type I interferons

(IFNa/b) (117–120). Whether pDCs developed from lymphoid or

myeloid progenitors has remained a controversial question for

more than two decades (34, 121). Similar to the development of

cDCs, Flt3 signaling is required for optimal pDC development

(122). Yet as opposed to cDCs, that can only originate from the

myeloid progenitors, Flt3+ CMPs, CDPs and CLPs have all been

shown to retain pDC potential both in vitro and in vivo following

adoptive transfer (44, 45, 48, 49, 123–125). These findings led to the

concept that pDC have a dual origin: myeloid and lymphoid

(Figure 2C). However, the myeloid origin of the pDCs is being

disputed by different groups (35, 36, 125, 126). This issue has been

revisited with IL-7R+ lymphoid progenitors being proposed to be

the main source for pDCs in vivo (126). A predominantly lymphoid

origin for the pDCs is also supported by their expression history of

the recombination activating gene 1 (Rag1) and the rearrangement

of the D-J regions of the Igh locus (125, 127). In an effort to

distinguish the properties of myeloid- vs lymphoid-derived pDCs, it

was found that the myeloid-derived Zbtb46+ pDCs have a distinct

transcriptome that resulted in them being more efficient than

lymphoid-derived pDCs in their capability to present antigens to

T cells (125). While this study is accordance with earlier reports

pointing to the dual origin of pDC (127), these findings were

subsequently challenged by a study that proposed that a CD115-

Ly6D+ lymphoid progenitors are the sole source of pDCs in vivo

(126). Crucially, the definition of a lymphoid or myeloid origin of
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pDCs largely depends on the markers used to track the

development history of pDCs. For example, Dress et al. used CD2

as a lymphoid lineage marker to trace the development history of

pDCs, and conclude that the pDCs are of lymphoid origin (41, 126).

However, CD2 expression is not restricted to the lymphoid lineage

as 20% of the cDC are fate mapped in the hCD2-iCre+/–R26-stop-

EYFP+ mouse model (128), thus this model cannot completely rule

out the participation of myeloid biased progenitor to the pDC pool.

Adding to that, clonal tracing of HSC and CX3CR1+ progenitors

using FlipJump system and single-cell transcriptome and phenotype

analysis (CITE-seq) suggested that cDCs and pDCs share a

common progenitor (129). Further characterization of the pDCs

specific transcriptional program will be helpful to improve our

understanding of pDC ontogeny and the heterogeneity of

this population.
5.2 Transcriptional control of
pDCs development

The development of pDCs requires the TF E2-2 (E protein

encoded by Tcf4) (Figure 2C). E2-2 deficient mice die in utero, but

transfer of Tcf4-/- fetal liver cells into irradiated WT recipients

results in the complete loss of pDCs from the BM and all peripheral

lymphoid organs, but has no impact on the development of other

myeloid or lymphoid cell types (33). E2-2 is a member of the basic

helix-loop-helix superfamily of TFs that has long (E2-2L) and short

(E2-2S) isoforms (130). E2-2S is expressed in all hematopoietic

progenitors and different types of mature immune cells, but E2-2L is

preferentially expressed in pDCs and binds to the pDC specific 3’

enhancer of Tcf4 to maintain E2-2s expression via a positive

feedback loop (130). E2-2s expression initiates in HSCs and is

further upregulated during pDC development. E2-2s forms a

complex with Mtg16 (myeloid translocation gene on chromosome

16) to directly control the expression of key genes involved in pDC

development and function, including CCR9, TLR9, Bst2 and B220

(131). In DC progenitors, ID2 as an E protein inhibitor binds E2-2s

preventing its binding to DNA, and thereby inhibits their pDC

potential (63). In contrast, ZEB2 expression in progenitors prevents

ID2 expression, enabling E2-2s to promote pDC development. In

line with the above, constitutive deletion of -165kb Zeb2 enhancer

featuring a cluster of E box motifs, results in lack of ZEB2

expression, increased ID2 expression that prevents pDC

differentiation (132). Thus, the coordinate action of E2-2L, E2-2s,

ID2 and ZEB2 dictates pDCs development at steady state.

Other TFs have been implicated in the cellular fate of BM

progenitors. PU.1 is highly expressed in myeloid and lymphoid BM

progenitors, but its expression level is substantially reduced

following the commitment of progenitors to the pDC lineage (55,

122, 133, 134). High expression of PU.1 in cDC was shown to be

essential to maintain their identity as PU.1 deficient cDCs gained

pDC like features (55). Thus, it is conceivable that downmodulation
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of PU.1 in progenitors constitutes a key instrumental step in

allowing pDC differentiation (135). In line with this, the

expression of PU.1 is negatively regulated by BCL11A (B-cell

chronic lymphocytic leukaemia/lymphoma 11A), a critical

regulator of pDC development (136). Adding to that, loss of PU.1

in CD11c+ cells resulted in an increased differentiation of

progenitor toward the pDC lineage, although PU.1 deficient pDCs

were dysfunctional, as IFNa production was reduced in PU.1

deficient pDCs (55). In contrast to the down-modulation of PU.1

following pDCs commitment, IRF8 expression is increased

markedly during pDC development (67). Thus, it is somewhat

surprising, that IRF8 deficiency in CD11c+ cells has no impact on

the development of pDCs. This is in fact due to a compensatory

mechanism provided by IRF4 as double knockout mice lack pDCs

(67). Although IRF8 is dispensable for pDC differentiation, it is

essential for their IFNa production, thus indicating a nonredundant

role for IRF8 in controlling pDC function.

Spi-B is another ETS family TF that is highly expressed in pDCs

(137). In contrast to the decreased PU.1 expression following pDCs

development, Spi-B expression is substantially increased from

progenitors to mature pDCs. Germline deletion of SpiB results in

decreased pDC numbers in the BM but their numbers are increased

in peripheral organs (138). These data suggests that Spi-B is

dispensable for pDC differentiation but a critical regulator of pDC

homeostasis. Having said that, its role and its mode of action in

pDCs remains under investigated. In contrast to BM, the TF

RUNX2 (RUNX family transcription factor 2) promotes pDC

their egress, as germline ablation or tamoxifen induced deletion

of RUNX2 result in reduced number of peripheral pDCs, whilst

RUNX2 is dispensable for their differentiation in the BM (139, 140).

Two mechanisms were proposed. Sawai et al. showed that RUNX2

was required for the expression of chemokine receptors on the cell

surface of pDCs including CCR2 and CCR5 that were required for

the migration of pDCs from BM into the periphery in response to

their ligands (139). In contrast, Chopin et al. demonstrated that

RUNX2 deficiency resulted in increased expression of CXCR4, a key

chemokine receptor associated with BM tropism (140). Spi-B and

RUNX2 are not only critical regulators of pDC homeostatic in the

periphery but also have been both shown to be critical for IFNa
production by pDC, though the regulation of Irf7 (138, 140).

BCL11A is a zinc-finger TF and is known to regulate lymphoid

development (141). Both BCL11A and PU.1 control Flt3 expression

in early hematopoietic progenitors (142), which is required for pDC

development and their homeostasis. ChIP-seq data showed that

BCL11A bound to the Tcf4 proximal promoter and knockdown of

BCL11A strongly reduced E2-2 expression (136). Interestingly,

downregulation of Bcl11a occurred after Tcf4 deletion in BM

derived pDCs (143), indicating a positive feedforward loop

between BCL11A and E2-2 in controlling pDC development.

IKAROS (encoded by IKAROS Family Zinc Finger 1 (Ikzf1)) is a

zinc-finger DNA-binding protein that homo- or hetero-dimerizes

with other IKAROS family members to suppress the gene
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expression. IKAROS prevents premature cDC gene expression in

CDPs and promotes pDC development (144, 145). The relationship

between IKAROS with other TFs that control the development and

function of pDCs has not been studied.

Collectively, these studies have revealed a dynamic TF network

that regulates the development of pDCs within the hematopoietic

system. These studies also highlight a critical point in the current

debate about whether pDCs and cDCs share a common ancestor.

These findings suggest that the lineage trajectories of DCs are

dictated by mutual antagonism between transcription factors

(E2.2/ZEB2 vs ID2/NFIL3 or PU.1 vs BCL11A), thus inferring a

close relationship between pDCs and cDCs.
5.3 The function of pDCs in mouse
and human

Unlike cDCs, pDCs have limited capacity to present antigens.

Instead, their key feature is the rapid production of type I IFNs

(IFNa/b) after exposure to the ligands for TLR7 (recognize

ssRNA) and TLR9 (recognize CpG), especially after the viral

infection (33, 146, 147). The early production of type I IFNs by

pDCs initiates the anti-viral gene expression program in many cell

types and promotes the expansion of NK cells and virus specific

CTLs for viral clearance (146, 147). This type I IFN production

results in the apoptosis of activated pDCs, potentially limiting the

scale of inflammatory response and preventing pathology

associated with an overly active anti-viral immune response

(148). This control appears important as aberrant type I IFN

production by pDCs is strongly linked to the development of

autoimmune diseases like SLE and systemic sclerosis in both

mouse models and human (149, 150).
6 moDCs development and function

6.1 Transcriptional control of
moDCs development

The ambiguous nature of moDCs has hampered our capacity to

define some of the key TFs associated with their differentiation.

Lineage tracing experiments have demonstrated that moDCs derive

from a separate myelopoiesis branch distinct from the one

producing cDCs and pDCs (151). In contrast to the requirement

of high dose IRF8 for cDC1 development, moDCs develop in a

relatively low concentration of IRF8. This expression of IRF8 is

driven by Irf8 + 56kb enhancer whose activation is controlled by

RUNX-CBFb (62). The differentiation of Ly6C+ monocytes into

moDCs or macrophages is controlled by the TFs IRF4 and MafB

(MAF BZIP Transcription Factor B), and PU.1 (Figure 2D) (152–

154). The differentiation of mouse monocyte into moDCs in

presence of GM-CSF and IL-4 requires IRF4. In its absence, the

cells differentiate into macrophages (155). It also had been reported

that MafB expression will push the human monocytes into the

macrophage pathway, while high concentration of PU.1 will

suppress MafB and thus promote differentiation into moDCs
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(152, 156). Apart from PU.1, a most recent study found that

ETV3 and ETV6 are able to repress macrophages development

potential in monocytes by suppressing MafB expression in both

mouse and human (154). Thus, moDCs use a distinct repertoire of

TFs compared to those that promote cDC development.
6.2 The function of moDCs

Monocytes represent a major cell population in the circulation,

from which they are recruited into the tissues by inflammatory cues

and give rise to both macrophage and moDCs. Normally,

monocytes express Ly6C and macrophage colony stimulating

factor receptor (M-CSFR/CD115) and respond to GM-CSF (157).

The moDCs can be easily confounded for cDCs in tissues as they

share a variety of cell surface markers including the “canonical DC

markers” MHC-II and CD11c, as well as the cDC1 marker CD24

and the cDC2 marker CD172a (158). In addition to sharing cDC

phenotypic features, moDCs can present antigen to both CD4+ and

CD8+ T cells. Notably, moDCs can cross-present antigen released

from certain microorganisms to CD8+ T cells under acute

inflammation condition and might replace some (41), but not all

anti-infection functions of cDCs (77). As per their cDCs

counterpart, moDCs express costimulatory molecules that

support the differentiation of CTLs (159) and present antigen

directly to CD4+ T cells promoting their differentiation into Th17

cells (160). Furthermore, moDCs are strong producers of

proinflammatory cytokines including IL-1b, TNFa, IL-23 (161),

and IL-12 in cancer (162). Collectively, although moDCs arise from

a distinct myeloid branch compared to cDCs, both subsets share a

substantial number of overlapping phenotypic and functional

characteristics after activation.
7 Concluding remarks

Recent advances in the field of DC research have provided new

insights into the heterogeneity and functional diversity of DC

subsets. Studies on the transcriptional regulation of DC

development and function have led to the identification of key

TFs and their targets that shape the transcriptome and function of

DCs. In-depth phenotyping of DCs has also identified novel DC

subtypes, such as DC3, highlighting the need for continued

investigation into the ontogeny of DCs. While much progress has

been made, much is still to be learned about the intricate

connections between different TFs and their doses regulating the

differentiation and activation of DCs.

Whilst we try to build a comprehensive map of the

transcriptional network governing DC heterogeneity, which will

be essential for their clinical application, there is an urgent need to

understand how DC functionalities, independently of their origin,

are shaped by environmental signals. To fulfill the long-recognized

potential of DC based therapy to treat malignancies, we believe that

an in-depth characterization of the signals that drive their diversity

and a better under understanding of the environmental cues that

shape their functional attributes is urgently required.
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