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In Brief
The number of proteins
quantified across samples by
label-free mass-spectrometry
(MS) is limited by technical and
biological variability resulting in
missing values that challenge
downstream analysis. We
present an imputation algorithm
for label-free MS data that is
aware of the type of missingness
affecting data. Missing value
estimation
by msImpute outperforms state-
of-the-art imputation methods in
the accuracy of variance
estimates for peptide abundance
and better controls the false
discovery rate in MS
experiments. msImpute is
available from the Bioconductor
repository.
Highlights
• msImpute provides imputation that is aware of the type of missingness in data• More-accurate estimates of variance and better control of the false discovery rate• The msImpute software package is available from the Bioconductor repository
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TECHNOLOGICAL INNOVATION AND RESOURCES
MsImpute: Estimation of Missing Peptide
Intensity Data in Label-Free Quantitative Mass
Spectrometry
Soroor Hediyeh-Zadeh1,2,3 , Andrew I. Webb2,3,4, and Melissa J. Davis1,2,5,6,7,*
Mass spectrometry (MS) enables high-throughput identi-
fication and quantification of proteins in complex biolog-
ical samples and can provide insights into the global
function of biological systems. Label-free quantification is
cost-effective and suitable for the analysis of human
samples. Despite rapid developments in label-free data
acquisition workflows, the number of proteins quantified
across samples can be limited by technical and biological
variability. This variation can result in missing values
which can in turn challenge downstream data analysis
tasks. General purpose or gene expression-specific
imputation algorithms are widely used to improve data
completeness. Here, we propose an imputation algorithm
designated for label-free MS data that is aware of the type
of missingness affecting data. On published datasets ac-
quired by data-dependent and data-independent acquisi-
tion workflows with variable degrees of biological
complexity, we demonstrate that the proposed missing
value estimation procedure by barycenter computation
competes closely with the state-of-the-art imputation al-
gorithms in differential abundance tasks while out-
performing them in the accuracy of variance estimates of
the peptide abundance measurements, and better con-
trols the false discovery rate in label-free MS experiments.
The barycenter estimation procedure is implemented in
the msImpute software package and is available from the
Bioconductor repository.

Liquid chromatography–coupled tandem mass spectrom-
etry (LC-MS/MS) is the leading technology for quantitative
analysis of proteins expressed in samples. Proteins in cell or
tissue lysates are first prepared for analysis by extracting the
protein content, followed by enzymatic digestion, converting
them into peptides. Peptides are separated using LC which is
interfaced with the source of the mass spectrometer, where
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they are ionized and converted to the gas phase. The sepa-
rated and ionized peptide precursors are subjected to mass
analysis in a mass spectrometer. During conventional data-
dependent acquisition (DDA), peptide ions are sampled for
fragmentation and identified from the spectra produced by
tandem mass (MS/MS) analysis using peptide identification
software (1). The mass spectrometer, however, only selects a
small subset (usually 10) of the most abundant peptides for
sequencing by MS/MS at each MS1 survey scan in a run.
This impedes consistent identification of peptides across
runs, as the sets of peptide precursor ions selected for
sequencing could differ between runs. The low sampling ef-
ficiency and stochastic nature of intensity-dependent sam-
pling of peptide ions for MS/MS analysis limits the number of
peptides and proteins common to all runs and hinders
quantification of low abundance ions in complex samples,
which contributes to the pervasive occurrence of missing
values. Alternative data acquisition workflows such as data-
independent acquisition (DIA), which requires prior knowl-
edge about the fragment ion spectra of targeted peptides,
have substantially enhanced the reproducibility of proteome
quantification across runs and reduced the prevalence of
missing values (2). However, the broad dynamic range of
proteome quantification in DDA acquisition and the ability to
identify peptide sequences from spectral searching makes it
the preferred method of choice for label-free quantification in
discovery-based proteomics studies, and so missingness
remains a problem that is important to address.
Missing values are generally classified into three categories:

Missing Completely At Random (MCAR), Missing At Random
(MAR), and Missing Not At Random (MNAR) (3). MCAR
missing values in proteomics data can originate from random
errors or stochastic fluctuations during the experimental
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process. Several different factors are reported to impact ac-
curacy and reproducibility, including sample preparation,
sample processing, peptide separation, changes in sample
complexity, matrix effects and ion suppression, detector
saturation, and other technical factors (4–7). MAR describes a
situation where the possibility of a variable being missing is
dependent on other observed variables. In contrast, MNAR
is defined as the possibility of a variable being missing is
dependent on unobserved variables (3, 8). MAR data in pro-
teomics are produced during data preprocessing, for example,
by inaccurate peak detection and deconvolution of co-eluting
compounds. MCAR and MAR missing values are both
intensity-independent and can be difficult to distinguish (9,
10), while MNAR missing values are considered intensity-
dependent (9–11). Furthermore, MNAR missing values can
occur in a group-specific manner due to the downregulation of
a protein in a treatment arm or real variation in the biology of
samples in different groups (10). It has been reported that
proteomics data often contain a mixture of MAR and MNAR
missing values, with the exact MAR/MNAR ratio and compo-
sition of missing values difficult to determine in a given dataset
(9, 10).
A common approach to increase data completeness is to

replace the missing intensity measurements of peptides and
proteins that are not quantified commonly across LC-MS/MS
runs with some reasonable values by imputation. Imputation
methods in proteomics are broadly categorized as left-
censored, local similarity, and global similarity approaches
(12). Imputation of left-censored MNAR missing values is
typically performed by replacing the missing value with the
smallest observed value in the run, a random draw from a
Gaussian distribution parameterized around such value, or
with zero. More sophisticated methods such as quantile
regression imputation (QRILC) have also been applied to left-
censored data (13). MAR/MCAR is generally difficult to
distinguish and can be imputed by local methods based on
observed values in the neighborhood using k-nearest neigh-
bors (KNN) (14) or global similarity approaches such as
Expectation Maximization (15), Random Forest (RF) (16),
Bayesian Principal Component Analysis (BPCA) (17),
sequential imputation (18), or multiple imputations by chained
equations (19). In contrast to imputation with fixed values,
there are also methods that model missing values in an
intensity-dependent probabilistic manner (20) to test for dif-
ferential abundance instead of imputation. While the argu-
ments for this approach focus on the valid and reasonable
drawbacks of imputation, such strategies are designed spe-
cifically for differential abundance testing. There are many
analysis tasks such as clustering, classification, pathway
enrichment, and network analysis, that still benefit from ac-
curate imputation procedures.
Previous studies have demonstrated that depending on the

composition of missing values in the DDA and DIA mode,
several imputation methods or a combination of MAR/MNAR
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imputation algorithms may be needed (9, 10, 21), in part
because existing imputation algorithms were not specifically
developed for MS data and are not aware of the compositional
natureofmissingvalues inproteomicsdatasets. In thiswork,we
present an imputation procedure that can adapt to the MAR/
MNAR composition of missing values in the proteomics data
and demonstrate its performance in the context of differential
abundance and empirical false discovery rate (FDR) control.
EXPERIMENTAL PROCEDURES

Datasets

Publicly available data containing controlled mixtures or Universal
Protein Standards (UPS) spiked-in, where the differentially abundant
proteins are known, acquired and analyzed by label-free DDA or DIA
were used to benchmark msImpute against state-of-the-art imputa-
tion algorithms. A publicly available dataset containing HeLa cell
lysate replicates in which no biological variability is present was also
used to benchmark empirical FDR control. We have referred to these
datasets by the acquisition mode and study throughout this article.
Here we describe each dataset.

DDA:Bruderer2015 (22) is a controlled mixture dataset with 12
proteins spiked into a constant human background in different con-
centrations generating samples from eight groups (n = 3 replicates)
resulting in 24 LC-MS runs. The runs were acquired on a Q Exactive
mass spectrometer. The DDA dataset was used. Details of sample
preparation and data generation can be found in the original publi-
cation. DDA data were analyzed by MaxQuant (1, 23). We used the
published evidence.txt results. The evidence table was then pro-
cessed as follows: We only retained the feature with the highest in-
tensity, if multiple ions were reported for a peptide in the evidence
table. Contaminants and Reverse Complement identifications were
discarded. Peptide intensities were log2 transformed, imputed, and
normalized by Quantile Normalization. For imputation using the
Accelerated Time Failure model in MSstats (24), we followed the
MSstats workflow on Bioconductor for obtaining the abundance ma-
trix. We tested for differential abundance using linear models with
Empirical Bayes moderated t-statistics implemented in limma (25, 26).
Differential abundance was called if the FDR for a peptide was <0.05.
The FDR was computed by the Benjamini–Hochberg procedure. We
compared the Sample8 group versus Sample1 group. The accession
number for this dataset is PASS00589.

DIA:Huang2020 is a controlled mixture dataset with biological
background variation (27). Tissue lysates from 25 mouse cerebellum
samples were prepared and five samples (n = 5) were generated in
which the UPS2 proteins were spiked in known concentrations,
resulting in 25 LC-MS runs in total. The spike-in concentrations were
S1: 0.75 amol/μl, S2: 0.83 amol/μl, S3: 1.07 amol/μl, S4: 2.04 amol/μl,
and S5: 7.54 amol/μl. The runs were acquired on a Q Exactive HF
mass spectrometer followed by the DIA method. Details of sample
preparation and data generation can be found in the original publi-
cation. DIA data were analyzed with Spectronaut Pulsar X (28). We
used the published Spectronaut results in Spike-in-biol-var-OT-SN-
Report.txt. Peptide intensities were log2 transformed, imputed, and
normalized by Quantile Normalization. We tested for differential
abundance using linear models with Empirical Bayes moderated t-
statistics implemented in limma (25, 26). Differential abundance was
called if the FDR for a peptide was <0.05. The FDR was computed by
the Benjamini–Hochberg procedure. We compared the S5 group
versus S1 group. The accession number for this dataset is
PXD016647.
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DDA:Giai Gianetto contains Label-free quantification of various
concentrations of Universal Proteomic Standard (UPS1, Sigma-
Aldrich) spiked in yeast extract (29). Three concentrations of UPS1
(25 fmol, 10 fmol and 5 fmol) were spiked in yeast extract generating
two samples (n = 3) where UPS1 was spiked in 2:1 ratio, and another
set of two samples (n = 3) where the UPS1 proteins were spiked in
2.5:1 ratio. The LC-MS runs were acquired on a Q Exactive mass
spectrometer. Details of sample preparation and data generation can
be found in the original publication. DDA data were analyzed by
MaxQuant. We used the published evidence.txt results for these two
datasets (that is ratio 2 and ratio 2.5). The evidence table was then
processed as follows: We only retained the feature with the highest
intensity, if multiple ions were reported for a peptide in the evidence
table. Contaminants and Reverse Complement identifications were
discarded. Peptide intensities were log2 transformed, imputed, and
normalized by Quantile Normalization. For imputation using the
Accelerated Time Failure model in MSstats (24), we followed the
MSstats workflow for obtaining the abundance matrix. We tested for
differential abundance using linear models with Empirical Bayes
moderated t-statistics implemented in limma (25, 26). Differential
abundance was called if the FDR for a peptide was less than 0.05. The
FDR was computed by the Benjamini–Hochberg procedure. We
compared the D group versus C group in DDA:Giai Gianetto-Ratio 2.5,
and the E group to D group in DDA:Giai Gianetto. The accession
number for this dataset is PXD002370.

DDA:Choi2017 is the IPRG-2015 Study (30) in which a set of pro-
teins were spiked in different concentrations in four samples (n = 3)
resulting in 12 LC-MS runs. The runs were acquired on a Q Exactive
mass spectrometer. Details of sample preparation and data genera-
tion can be found in the original publication. DDA data were analyzed
by MaxQuant. We used the published evidence.tsv results from this
study (retrieved from MSV000079843). The evidence table was then
processed as follows: We only retained the feature with the highest
intensity, if multiple ions were reported for a peptide in the evidence
table. Contaminants and Reverse Complement identifications. Peptide
intensities were log2 transformed, imputed, and normalized by
Quantile Normalization. For imputation using the Accelerated Time
Failure model in MSstats (24), we retrieved the input data for this study
from the MassIVE.quant (31) resource (MSV000079843) and followed
the MSstats workflow for obtaining the abundance matrix. We tested
for differential abundance using linear models with Empirical Bayes
moderated t-statistics implemented in limma (25, 26). Differential
abundance was called if the FDR for a peptide was <0.05. The FDR
was computed by the Benjamini–Hochberg procedure. We compared
sample4 group versus sample2 group. The accession number for this
dataset is PXD015300.

DDA:Cox2014 (32) is the dynamic range benchmark dataset which
generated one sample (n = 4) with UPS1 standards and one sample
(n = 4) with UPS2 standards spiked into Escherichia coli lysates,
resulting in eight LC-MS runs overall. Details of sample preparation
and data generation can be found in the original publication. DDA data
were analyzed by MaxQuant. We used the evidence.txt results. The
evidence table was then processed as follows: we only retained the
feature with the highest intensity, if multiple ions were reported for a
peptide in the evidence table. Contaminants and Reverse Comple-
ment identifications were discarded. Peptide intensities were log2
transformed, imputed, and normalized by Quantile Normalization. For
imputation using the Accelerated Time Failure model in MSstats (24),
we retrieved the input data for this study from the MassIVE.quant (31)
resource (MSV000081831) and followed the MSstats workflow for
obtaining the peptide precursor abundance matrix. We tested for
differential abundance using linear models with Empirical Bayes
moderated t-statistics implemented in limma (25, 26). Differential
abundance was called if the FDR for a peptide was <0.05. The FDR
was computed by the Benjamini–Hochberg procedure. We compared
the UPS2 group versus UPS1 group. The accession number for this
dataset is PXD000279.

DDA:Chiva2014 is a controlled mixture dataset (33) where 30
commercial proteins were prepared in three different subsets of ten
proteins each. Proteins from these subsets were spiked to a E. coli
background in different proportions to prepare five different mixtures
in triplicates. Details of sample preparation and data generation can be
found in the original publication. The peptide precursor abundance
data for MaxQuant (23), Skyline (34), Proteome Discoverer, and Pro-
genesis processing tools were retrieved from MassIVE.quant (31)
resource (MSV000084181). Peptide intensities were log2 transformed,
imputed, and normalized by Quantile Normalization. We tested for
differential abundance using linear models with Empirical Bayes
moderated t-statistics implemented in limma (25, 26). Differential
abundance was called if the FDR for a peptide was <0.05. The FDR
was computed by the Benjamini–Hochberg procedure. We compared
the Condition2 group versus Condition3 group. The accession number
for this dataset is PXD005642.

The Ten HeLa Cell Lysate Replicates–We used the ten HeLa cell
lysate replicates published (35) to evaluate the distribution of p-values
under null distribution. The LC-MS runs were acquired on a timsTOF
Pro mass spectrometer on a 2 h gradient. Details of sample prepa-
ration and data generation can be found in the original publication. We
used the published evidence.txt results, which were accessed through
PRIDE accession PXD014777. The evidence table was then pro-
cessed as follows: we only retained the feature with the highest in-
tensity, if multiple ions were reported for a peptide in the evidence
table. Contaminants and Reverse Complement identifications were
discarded. We computed the p-values for differential abundance using
linear models with Empirical Bayes moderated t-statistics imple-
mented in limma (25, 26).
Imputation Algorithms

We used six state-of-the-art imputation algorithms to benchmark
our method: BPCA (17), RF (16), multivariate imputation using chained
equations (MICE) (19), Sequential imputation (impSeq) (18),
Expectation-Maximization (EM) (15), and KNN (14).

Differential Abundance Testing and ROC Curves

The ROC curves are computed based on −log10p-value from the
differential abundance tests. This value was set to zero for peptides for
which the p-values were not estimable (e.g., because of NA fold-
change - that is, the peptide intensity was censored in at least one
experimental condition - or close to zero variances).

Using HeLa Cell Lysate Replicates to Assess p Value Distribution
Under the Null Model

The ten HeLa cell lysate replicates were randomly assigned to two
groups (n = 5 for each group). We then computed the p values for a
differential abundance of the peptides between these two groups
using the linear model and Empirical Bayes moderation of limma and
assessed the uniformity of the distribution of p values.

The msImpute Model for Flexible Imputation of Label-Free Mass
Spectrometry Datasets With Complex MAR/MNAR Compositions

Estimation of Data Distribution Under MAR Assumption by Low-
Rank Approximation–A high-dimensional matrix Xm×n with m fea-
tures and n observations can be approximated and reconstructed by
a number r ≤ min(m, n) of a linear combination of its features. This is
known as low-rank approximation, as a lower number of features (r)
Mol Cell Proteomics (2023) 22(8) 100558 3
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than the original data (m) are used for the reconstruction of X.
Founded on softImpute-ALS algorithm (36), msImpute fits a low-rank
model to the peptide abundance matrix with missing values and
reconstructs the complete data matrix as the product of two low-
rank matrices.

Let Xm×n denote the filtered, log2 transformed, normalized peptide
intensity data matrix with missing values, where m denotes the
number of peptides and n denotes the number of LC-MS runs. Denote
the indices of non-missing observations by the set Ω. The softImpute-
ALS algorithm combines Nuclear-Norm-regularized matrix approxi-
mation and maximum-margin matrix factorization to find two low-rank
r ≤ min(m, n) matrices Am×r and Bn×r , such that the incomplete matrix
can be reconstructed by the product of the two matrices, i.e., X ≈
ABT . The two matrices A and B are found by minimizing the following
objective function:

minimizeA,B
1
2
‖ PΩ(X −ABT)‖2F + λ

2
(‖ A ‖2F +‖ B ‖2F) (1)

where PΩ is the subset of observed peptide intensities, ‖ ⋅ ‖2F is
the nuclear norm that encourages low-rank solutions, and λ is a
shrinkage operator that controls the rank of the matrices being
estimated. That is, we find two matrices A and B of lower di-
mensions (rank) than the measured peptide intensities, X, such
that their products approximate X over the observed values with a
reasonable accuracy (hence, the difference between X and X̃ =
ABT becomes negligible, for observed entries of X). The solutions
are found by alternating between two Least Squares problems
given in Equations 2 and 3.

The matrix A = UD is initialized by the random matrix Um×r with ortho-
normal columns and = Ir , the identity r × r matrix. Given A, solve for B:

minimizeB ‖ PΩ(X −ABT)‖2F + λ‖ B ‖2F , (2)

This is a multiresponse ridge regression with solution:

B̃
T = (D2 + λI)−1DUTX.

B = VD is reconstructed from Singular Value Decomposition (SVD)
of B̃D = ṼD̃

2
RT , where V = Ṽ and D = D̃. Given B, A is solved by

minimizeA ‖ PΩ(X −ABT)‖2F + λ‖ A ‖2F , (3)

which is also a multiresponse ridge regression with solution:

Ã=XVD(D2 + λI)−1.
A is then updated by the product of two matrices A = UV , where

U = Ũ and V = Ṽ are estimated from SVD of ÃD = ŨD̃
2
RT . These

steps are repeated until the difference between successive estimates
of ABT becomes negligible (i.e., the algorithm is converged). The
parameter λ controls the rank r of A and Bmatrices, hence ensures the
solution to Equation 1 is low-rank. As λ decreases, the rank of solu-
tions tends to increase. Note that the low-rank models assume data
points are Missing At Random (MAR), and observations, that is the
LC-MS runs, are independent. LC-MS runs from a single fractionated
sample are correlated. This induces a dependency between mea-
surements of the corresponding runs, and therefore, violates the as-
sumptions of the low-rank model. Thus, the model is applicable to
data using fractionation, only if the runs or raw files from the frac-
tionated sample are merged.
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Although softImpute has in-built algorithms to estimate the rank, in
practice we have observed that it underestimates the rank in small
data settings, say n = 6 LC-MS runs, as is the case with common
mass spectrometry studies. We estimate the rank r as the Effective
Rank (37) of the data matrix.

The Effective Rank

Consider the singular value decomposition X = UDV where U and
V are matrices of size m ×m and n × n, respectively, and D is a m × n
diagonal matrix containing the singular values:

ξ1 ≥ ξ2 ≥ ⋯ ≥ ξQ ≥ 0,

where Q = min(m, n). Let ξ = (ξ1, ξ2,⋯, ξQ)T and define the sin-
gular value distribution

pk = ξk
‖ ξ ‖1 for k = 1, 2,⋯,Q,

where the superscriptT denotes the transpose and ‖ ⋅ ‖1 is the l1
norm defined as

‖ ξ ‖1 = ∑Q
k=1

|ξk |.

The effective rank of intensity data matrix X is defined as

r̂ = erank(X) = exp{H(p1,p2,⋯,pQ)},
where H(p1,p2,⋯,pQ) is the Shannon entropy given by

H(p1,p2,⋯,pQ)=−∑Q
k=1

pk log pk .
Estimation of Data Distribution Under Group-Specific MNAR
Assumption

Here we assume measurements for a single peptide are missing in
one or more conditions (groups), most likely because of low abun-
dance in the experiment. Group-specific missing values can occur due
to technical reasons, for example, in experimental batches where each
batch of the data is run on separate instruments, days, gradient
lengths, and so on. The measurements can also be missing due to
biological reasons, that is insufficient ion abundance due to down-
regulation of a protein in a disease condition or upon a perturbation.
Under group-specific MNAR assumption, referred to as MNAR inter-
changeably in this work, missing values are replaced by random draws
from a multivariate normal distribution. The multivariate normal dis-
tribution was parameterized by the following (vector) of means μ and
standard deviations σ:

μ= x−− (s× σ̂)

σ= σ̂ × w,

where x denotes sample means, σ̂ denotes sample standard
deviations, s and w denote shift and width parameters, respec-
tively. We set s = 1.8 and w = 0.3. This approach is known as the
down-shift approach (38).
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Estimation of Missing Values by Barycenter Interpolation

We estimate the missing peptide intensity data in label-free
mass spectrometry experiments as the barycenter (weighted
average) of two distributions: the distribution of the data under the
MAR and the MNAR assumptions. The peptide intensity data
distribution under the MAR assumption XMAR is estimated by low-
rank approximation, whereas the distribution under MNAR
assumption XMNAR is estimated by down-shift approach, both
described earlier.

Let XMAR
i and XMNAR

i denote the (univariate) distribution of log-
intensity values for peptide i under MAR and MNAR assumptions,
respectively. The Frechet Mean or Barycenter of two probability dis-
tributions (39) for peptide i is defined as

Bar(αji ,Xj
i )

j∈{MAR,MNAR}
∈minimize

Xi
′ E(Xi

′ ) =

∑
j∈{MAR,MNAR}

αjiD(Xi
′
,Xj

i ) for i=1, 2,⋯,m,

where X
′
i is the distribution of log-intensity values for peptide i

estimated such that its distance D(⋅, ⋅) from XMAR
i and XMNAR

i
distributions is weighted by αMAR

i and αMNAR
i (note weights sum to

1, i.e., αMAR
i + αMNAR

i = 1). Therefore, when D is l2 (squared
Euclidean) distance, X

′
i is a weighted average of distribution of

log-intensity values under MAR and MNAR assumption. The
peptide-specific weights αi here act as shrinkage operators: If the
missing values for a peptide tend to be missing completely in one
or more experimental groups, the XMNAR

i is weighted more (i.e.,
αMNAR
i > αMAR

i ) and the final estimates X
′
i are shrunken towards

imputation by the down-shift approach. However, if the missing
value distribution is even across the samples for a peptide, the
final estimates X

′
i for the peptide are shrunken towards the low-

rank imputed values that is XMAR
i (i.e., αMNAR

i < αMAR
i ). The judg-

ment of randomness of missing values is based on the Entropy of
Mixing (40) metric defined below.

Entropy of Mixing as a Shrinkage Operator

Let xik denote the log-intensity for peptide i in LC-MS run k, where
i = {1, 2,⋯,m} and k = {1, 2,⋯,n}. LetMm×n be a binary matrix with the
same dimensions of X defined as

Mi,k = {1, if xik is not missing
0,otherwise

The evenness or group-specific patterns of missing values are
determined by computing the entropy of the M matrix defined above.
This is equivalent to the following computation:

EBMi = ∑G
g=1

mig log(mig).

where g = 1,2,⋯,G denotes the experimental condition (group) in
the study design (e.g., control and treatment groups), and mig is
the proportion of observed, non-missing values in group g for
peptide i. This metric is computed for each peptide individually.
Since entropy is a measure of randomness, a finite EBM indicates
that missing values are evenly distributed across runs. It,
therefore, signals a MAR type. For a peptide missing in a
group-specific manner, EBM is not finite, indicating a group-
specific MNAR type. The shrinkage is therefore determined as:

αMAR
i = {0.8, if EBMi is finite

0.2,otherwise

αMNAR
i =1−αMAR

i

Currently, the values for α are fixed and are not estimated by an
adaptive procedure.

The final estimates X
′
i for a peptide are, therefore, a barycentric

interpolation between distribution of intensity values under MAR and
MNAR assumptions, according to the evidence (i.e., the EBM metric)
of the type of missingness. Note that we are taking an entropic
approach to estimate the probability that a given peptide i is missing
at random, or not at random. For peptides with sufficient measure-
ments (number of observed values), optimal solutions are always
found in the low-rank model. Peptides for which an optimal solution
cannot be found must be discarded from the input data.
RESULTS

The msImpute Model for Imputation of Missing Values

The msImpute model (Fig. 1) assumes that each missing
peptide intensity occurs with some probability p at random
(MAR), and therefore, with probability 1 − p the occurrence is
not at random (NMAR) in a group-specific manner. The like-
liness of each of the MAR and MNAR assumptions is deter-
mined from the data by an entropy-based metric.
The model reconstructs the distribution of the missing pep-

tide across the LC-MS runs under the MAR and group-specific
MNAR assumptions using Low-Rank approximation and the
conventional down-shift approach, respectively. It then com-
putes the weighted mean, i.e., the barycenter, of the two re-
constructed distributions, where the weight is determined by
the entropic metric. The entropic metric serves as evidence for
the occurrence of each MAR and group-specific MNAR types.

Comparison of Differential Abundance Results in Six
Controlled Mixture and UPS1/2 Spike-in Datasets

We evaluated the number of peptides that were correctly
called differentially abundant (True positives), or were falsely
detected to be different between the experimental groups
(False positives) after imputation in controlled mixtures with
constant background (Fig. 2, A and E), variable background
(Fig. 2B), or in datasets spiked with UPS1/2 standards (Fig. 2,
C, D and F). The number of LC-MS runs in these studies is
variable, with some datasets containing as few as six and
others as many as 25 runs. Figure 2 shows the fraction of
false positive peptides found for each true positive (i.e.,
correct) differential abundance (DA) calls for different impu-
tation algorithms compared to baseline, that is no imputation
at nominal 5% FDR. The area under the curves indicates
the sensitivity and specificity of the DA call under each
imputation scheme. Therefore, the larger the length of a
Mol Cell Proteomics (2023) 22(8) 100558 5



FIG. 1. Schematic illustration of msImpute imputation procedure. The distribution of intensity values for a single peptide under MAR and
group-specific MNAR assumptions are estimated by low-rank approximation (step 1) and down-shift approach (step 2), respectively. An entropic
metric is used to weigh these two distributions in a weighted mean. The final estimated distribution of intensity values is a weighted mean, the
barycenter, of data under MAR and MNAR assumptions (step 3). The barycenter approach takes into account the compositional nature of MAR/
MNAR missing values in proteomics datasets and adopts a MAR- or MNAR-suited imputation method based on the evidence in the data.

MSImpute: Estimation of Missing Peptide Intensities
curve, the better the overall DA outcomes were in the cor-
responding imputation algorithm. A larger area under the
curve suggests that more true positives are found by the
imputation procedure. In addition, the respective imputation
6 Mol Cell Proteomics (2023) 22(8) 100558
algorithm would have a better false discovery or false posi-
tive control rate.
In DDA- and DIA-controlled mixture datasets with constant

and heterogeneous biological backgrounds by Bruderer et al.



FIG. 2. Differential abundance ROC curves comparing eight imputation procedures to the baseline in published spiked-in, controlled
mixture DDA and DIA datasets. The barycenter (red) estimation procedure is compared to baseline (no imputation) and seven state-of-the-art
imputation algorithms in six published label-free datasets with UPS1/2 or exogenous spiked-in proteins. True Positive fraction (x-axis), differ-
entially abundant peptides originated from spiked proteins, and False-Positive fraction (y-axis), peptides not belonging to spiked proteins
determined to be differentially abundant at 5% FDR by linear models and Empirical Bayes moderated t-statistics in limma. The larger the area
under the curve the better. Also shown in panels A-F are each study name, acquisition type, number of LC-MS runs in the study (n) and the rank
(r) of the Low-Rank model fitted by msImpute.
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(22) (Fig. 2A), Huang et al. (27) (Fig. 2B), Choi et al. (30)
(Fig. 2E), and Cox et al. (32) (Fig. 2F), we observed that the
barycenter approach maintained the largest area under the
curve. We found that the ROC curves for imputation by
Accelerated Failure Time model in MSstats (24) (MSstat-
s_AFT), which we could not generate for the DIA:Huang2020
dataset due to software incompatibility problems, and the
baseline were indicative of peptides from spiked proteins that
were censored (not imputed) in one experimental condition
under the test, resulting in unestimable (NA) fold-change and
p-values. Specifically, our approach resulted in the largest true
positives in DIA:Huang2020 (594/763 TP peptides) and in
DDA:Cox2014 (856/1121 TP peptides) (Fig. 2A and
supplemental Fig. S1B). We detected lower false positives
compared to impSeq (392 by ours versus 3607 by impSeq)
MICE (392 by ours versus 1927 False-positive peptides by
MICE) in DDA:Bruderer2015 (supplemental Fig. S1A). In the
UPS1/2 spike-in dataset DIA:Huang2020, the larger area un-
der the curve for the barycenter approach was the result of
largest True positive peptides (594) and lowest False-Negative
peptides (169) compared to all other imputation methods
(Fig. 3A). In addition, in the dynamic benchmark dataset of
Cox et al. (DDA:Cox2014) we found that more than 60% of the
DA calls unique to barycenter were group-specific
(supplemental Fig. S2A), suggesting that the barycenter
approach can detect MNAR peptides that are not detected by
other imputation methods.
In the UPS1 spike-in datasets by Gianetto et al. (29)

(DDA:Giai Gianetto and DDA:Giai Gianetto-Ratio 2.5, see
Fig. 2, C and D), where UPS1 standards were spiked in a yeast
background, the barycenter approach recovered a smaller
number of peptides from spiked proteins compared to
Mol Cell Proteomics (2023) 22(8) 100558 7



FIG. 3. Data-driven estimates of missing-values type composition determine the reliability of differential abundance test results in
barycenter-imputed data. True positive, false-positive, and false-negative peptide hits in the differential abundance results and violin plot of the
mean abundance of peptides exhibiting random (blue) and group-specific (orange) missing types in datasets where the barycenter approach
exhibits an optimal (A) and suboptimal (B) performance, respectively. The mean abundance is determined based on observed measurements
before imputation. The type is determined by the EBM metric. The “unestimable” false-negative peptides indicate that the fold-change could not
be determined (that is NA fold-change) because the values were censored (not imputed) in one experimental group. MV, Missing Value.
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impSeq, but made lower false positive peptide calls (57 FP
peptides by ours versus 109 by impSeq in DDA:Giai Gianetto,
and 178 FP by ours versus 451 by impSeq in DDA:Giai Gia-
netto - Ratio 2.5). We additionally observed that the bary-
center approach resulted in lower False Negatives compared
to impSeq in these datasets (Fig. 3B and supplemental
Fig. S1C). Since in both datasets by Gianetto et al. the
baseline (i.e., no imputation) performs as well as imputation,
we speculated that the majority of missing peptides are
probably of MAR type. We, therefore, sought to validate this
by investigating DA outcomes, that is, the number of TP, FP,
and FN peptides, for different values of the α, which controls
how the MAR (and therefore MNAR) imputed distribution is
weighted in the barycenter (supplemental Fig. S2B). We found
that the smallest FP was achieved for the largest value of
alpha, that is where the MAR distribution was highly weighted,
although this was also associated with a moderate decrease
in TP DA calls and no dramatic performance drops were
observed.
In the spike-in datasets by Choi et al. (30) (DDA:Choi2017),

we found that the proportion of True Positives in barycentric
imputation was comparable to Random Forest and impSeq
(supplemental Fig. S1D), and resulted in lower False Positives
compared to Mice (44 ours versus 132 in Mice). Furthermore,
while 71% of the peptides from the spiked proteins were not
imputed and therefore could not be recovered by MSstats AFT
imputation model, the barycentric approach recovered 66% of
the peptides which are known to change between the
mixtures.
We sought to investigate the potential explanations for sub-

optimal performance of msImpute-barycenter in Gianetto et al.
datasets (DDA:Giai Gianetto and DDA:Giai Gianetto-Ratio 2.5)
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by examining the MAR/MNAR composition in all datasets
using the EBM metric. We determined the type of missing
values for every peptide as random if it had a finite, strictly
positive EBM value, or as group-specific otherwise (see
Experimental Procedures). We then looked at the distribution
of the mean abundance of the observed peptides per missing-
value type. In the DIA UPS1/2 spike-in dataset DIA:-
Huang2020, where barycenter imputation exhibited optimal
performance in the differential abundance analysis, we
observed that the distribution of average abundance of the
peptides exhibiting group-specific and random missing-value
types were clearly distinguishable (Fig. 3A), and the medians
of the distributions were clearly shifted. However, in DDA:Giai
Gianetto-Ratio 2.5, which is a DDA UPS1/2 spike-in bench-
mark dataset and where the barycenter imputation had sub-
optimal performance relative to baseline, we observed that
the median of the distribution of the average abundance of the
observed peptides is very close for the peptides exhibiting
group-specific and random missing-values types (Fig. 3B).
The observation that the barycentric imputation ensures
optimal or near-optimal performance when the distribution of
group-specific and random missing-values types are
discernible was also replicable in other benchmark datasets
(supplemental Fig. S1, E–H, see also supplemental Fig. S3).
These findings overall suggest that imputation by barycenter
computation can have optimal performance as good or better
than the state-of-the-art, general-purpose imputation algo-
rithms in real datasets with various MAR/MNAR compositions.
During these evaluations, we also found that for experi-

ments with less than 20 LC-MS runs, rank-2 models perform
better than erank models, where the rank is estimated by
effective rank, for reconstruction of peptide abundance under
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the MAR assumption. For example, in the DDA UPS1 spike-in
dataset by Gianetto et al. (29), estimation of rank by effective
rank introduces additional variability, measured by the coef-
ficient of variation (CV), in the data at the lower range of the
abundance (Fig. 4). However, rank-2 reconstruction of the
data appropriately reconstructs the variability for low-
abundance peptides with more reasonable coefficient of
variation (here CV is squared to improve visualization). In
general, one would expect that imputation should not over-
smooth the data, resulting in a lower CV than that of original
data after imputation. Also, one would not expect dramatic
increases in CV and the introduction of undesired variability in
the data after imputation. The mean-CV plots in Figure 4 can
serve as informative diagnostic plots, in addition to explor-
atory plots such as Multi-Dimensional Scaling (MDS) and
Principal Component Analysis (PCA) plots, to assess the
impact of imputation on variability in the data.

Barycenter Interpolation Reduces False Positives in
Differential Abundance Analyses

We used the ten HeLa cell lysate replicates by Prianichnikov
et al. (35) to assess false discoveries introduced by imputation
in differential abundance analyses under the Null model (no
biological difference). The ten HeLa cell lysates are technical
replicates and contain no biological differences. Therefore, we
expect a uniform p-value distribution if the replicates are
randomly assigned to two groups and a 2-group differential
abundance test is performed, as none of the peptides would
be DA between the two groups. This analysis was designed to
substitute simulation studies, where the attempt is to generate
a distribution of abundance values under the Null model; that
is - in the absence of biological variability. Protein abundance
is assumed to follow a Normal distribution (20) and is
commonly simulated from this distribution (9, 10, 41) taking
FIG. 4. Comparison between data imputed under the effective rank
same dataset. Each point is a peptide. The red curve is a Loess trend fit
the peptide. The presence of the bands under the erank model indicates
suggesting that the imputation has introduced biases. Rank-2 models p
runs.
into account the intensity-dependent occurrence of missing
values. However, additional variations will be introduced into
protein abundance measurements by the quantification soft-
ware, for example, due to peptide misidentification during
match-between-runs, which would not be necessarily
captured in simulated measurements sampled from Gaussian
models. To address this, we used real technical replicates to
provide a fairer representation of variability in the abundance
measurements under the Null model. Overall, the distribution
of p-values departed from uniformity for all the imputation
algorithms (Fig. 5). However, the departure was less for the
barycenter approach, suggesting that this method results in
smaller false-positive DA calls. For the rest of the imputation
algorithms, a large proportion of false rejections (of the null
hypothesis) was apparent by the spikes in the frequency of
p-values that were <0.05, suggesting that imputation has
introduced false positives in the results. This was a consistent
observation from ROC curves (Fig. 2), where the barycenter
approach was found to maintain the largest area under the
curve in most benchmark datasets that contain real biological
variability.

Barycenter Interpolation is Applicable to Major
Quantification Pipelines and Data Processing Tools

We additionally investigated if the choice of the processing
tool impacts the imputation outcome of the barycenter
approach. We retrieved quantifications of a DDA-controlled
mixture dataset by Chiva et al. (2014) obtained by Max-
Quant, Progenesis, Skyline, and Proteome Discoverer from
the MassIVE.quant resource. We studied the sensitivity and
specificity of the barycenter approach in data quantified by
these processing workflows in the context of differential
abundance analysis in supplemental Fig. S2C. We observed
that the ROC curves are indistinguishable at 1% and 5% FDR
(erank) model, the default model, and a rank-2 model fitted to the
ted on average log intensity and squared coefficient (CV) of variation of
groups of peptides exhibit similar squared CV and mean abundance,
rovide better approximations in experiments with small (<20) LC-MS
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FIG. 5. Distribution of p values under the Null hypothesis in ten DDA-PASEF HeLa replicates. The closer the distribution to uniformity the
better.
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(supplemental Fig. S2C-i). Overall, we observed that the
barycenter approach performs as well in data processed by
Progenesis as MaxQuant quantifications. The apparent dif-
ference between performance in MaxQuant and Progenesis
datasets, and Proteome Discoverer and Skyline datasets can
be explained by difference in the proportion of missing values
reported by the different processing tools; that is if we stratify
the False-Positive, True Positive, and False-Negative DA calls
by imputed and non-imputed peptides, the performance is
comparable in datasets with similar rates of missing values
(supplemental Fig. S2C-ii). These results collectively indicate
that the barycenter approach is not biased toward a pro-
cessing tool.
DISCUSSION

The msImpute software and barycenter imputation algo-
rithm are aware of both the MAR and MNAR nature of missing
values in DDA and DIA data acquisition workflows. MsImpute
uses entropy-based metrics to quantify the likeliness of each
of MAR and MNAR assumptions for a peptide with missing
10 Mol Cell Proteomics (2023) 22(8) 100558
values. Under the MAR assumption, low-rank models are used
to reconstruct peptide abundance measurements. Under the
MNAR assumption, missing values are estimated by the
down-shift approach tailored for the imputation of left-
censored MNAR data. The missing values are finally esti-
mated as a weighted mean of the distribution of peptide
abundance measurements reconstructed under these as-
sumptions. An entropic metric is used to weigh the MAR and
MNAR reconstructions based on the evidence in the data. The
current implementation of msImpute uses EBM to distinguish
MAR and MNAR MV types and uses fixed weights to compute
the barycenter of the two distributions. In our study on the
effect of different choices of the weight assigned to each
distribution, we did not observe dramatic performance
changes. We, therefore, speculate that the barycenter
approach should stay reliable for different choices of the
weight parameter, and the ranking of DA calls should not be
substantially impacted by an incorrect specification of this
parameter. It should be noted that the msImpute package
comes with a reasonable number of diagnostic plots and
metrics, for example, the distribution of EBM values as a
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function of average abundance as presented in violin plots or
those in supplemental Fig. S3. We encourage the user to use
their judgment of the data to determine if values other than the
ones specified in the original formulation should be used.
In six differential abundance tasks carried on published

controlled mixture and UPS1/2 standard proteins spiked into
constant and heterogeneous backgrounds, the barycenter
algorithm outperformed or had comparable performance to
the state-of-the-art, general-purpose imputation algorithms.
Additionally, in a HeLa cell lysate dataset with ten replicates
where no biological variability was present between the LC-
MS runs, the barycenter approach resulted in a smallest
false differential abundance (false positive) calls among other
algorithms. This can be explained by the underestimation of
variance by general-purpose imputation algorithms, which
tend to replace missing values with values that are correlated
with the observed values, resulting in smaller variance be-
tween the measurements, larger test statistics, and corre-
spondingly more rejections of the Null hypothesis when it is
true. In contrast, the barycenter approach proposed here is
specifically designed for the imputation of MS data, and we
demonstrated that it reduces oversmoothing of the variance
estimates when compared to the general-purpose algorithms.
This in turn results in fewer incorrect rejections of the Null
hypothesis and a more uniform p-value distribution.
In datasets with few LC-MS runs, we observed that the

MAR model of the barycenter approach can introduce unde-
sired variability in peptide abundance measurements. We
speculate that the suboptimal reconstruction of variation in
peptide abundance measurements by erank approach in the
MAR model is due to insufficient sample size (i.e., too few LC-
MS runs). We, therefore, recommend rank-2 models for small-
scale experiments with less than 20 LC-MS runs. For larger
scale experiments, the default rank estimation by the erank
approach should appropriately approximate the distribution of
missing peptide abundance measurements under MAR
assumption. For experiments involving offline fractionation,
we recommend merging the runs obtained from a single
sample to ensure that the assumptions of the low-rank model
are not violated. Note that although 2-group designs were
considered in the DA benchmark analyses covered here, the
method is applicable to complex experimental designs (e.g.,
time-series, multiple conditions, combination of groups and
time course, etc.) if the experimental groups of interest can be
discretized. For example, a time-series dataset with three time
points on control and treated samples can be formulated as
control_T1, treated_T1, control_T2, treated_T2, and so on.
Although imputation makes common data analysis tasks

such as clustering, classification, differential abundance, and
pathway enrichment analysis practical by means of enhancing
data completeness, it can obscure the amount of available
information, particularly if imputed values are considered as
equally certain as the observed values in downstream pro-
cessing. In the benchmark analyses presented here, we
observed that empirical FDR exceeds the nominal 5% FDR in
DA analysis, suggesting that better statistical models or pro-
cedures are required to model DA of imputed peptides. A
possible explanation is that the uncertainty of imputed mea-
surements is never accounted for when using the standard
limma linear model. The DA models and procedures described
by Ahlmann-Eltze & Anders (20) and Zhu et al. (42) may
improve empirical FDR, however, these methods are not
applicable to imputed data. Therefore, procedures are
required to accompany imputed values with statistical confi-
dence estimates. These confidence estimates can be used to
fit weighted least square estimates instead of the ordinary
least square estimates using existing frameworks in limma to
improve differential abundance results. The design of such
statistical confidence estimate procedures is a future direction
of our work.
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T. (2016) Calibration plot for proteomics: a graphical tool to visually check
the assumptions underlying FDR control in quantitative experiments.
Proteomics 16, 29–32

30. Choi, M., Eren-Dogu, Z. F., Colangelo, C., Cottrell, J., Hoopmann, M. R.,
Kapp, E. A., et al. (2017) Abrf proteome informatics research group
(iPRG) 2015 study: detection of differentially abundant proteins in
label-free quantitative LC–MS/MS experiments. J. Proteome Res. 16,
945–957

31. Choi, M., Carver, J., Chiva, C., Tzouros, M., Huang, T., Tsai, T. H., et al.
(2020) MassIVE.quant: a community resource of quantitative
mass spectrometry–based proteomics datasets. Nat. Methods 17, 981–
984

32. Cox, J., Hein, M. Y., Luber, C. A., Paron, I., Nagaraj, N., and Mann, M. (2014)
Accurate proteome-wide label-free quantification by delayed normaliza-
tion and maximal peptide ratio extraction, termed maxlfq. Mol. Cell.
Proteomics 13, 2513–2526
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