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Abstract

simple subclonal architectures under certain assumptions.

Intra-tumor heterogeneity concerns the existence of genetically different subclones within the same tumor. Single
sample quantification of heterogeneity relies on precise determination of chromosomal copy numbers throughout
the genome, and an assessment of whether identified mutation variant allele fractions match clonal or subclonal
copy numbers. We discuss these issues using data from SNP arrays, whole exome sequencing and pathologist
purity estimates on several breast cancers characterized by ERBB2 amplification. We show that chromosomal copy
numbers can only be estimated from SNP array signals or sequencing depths for subclonal tumor samples with

Background

Genomes can vary between cells within a tumor. Muta-
tions and copy number (CN) alterations which appear
during tumor development result in genomic subclones
emerging. Subclonality of tumors is referred to as intra-
tumor heterogeneity (ITH), a topic which has attracted
much attention over the last few years [1-17]. The sub-
clones within a tumor may display different features and
respond differently to drugs. It has been speculated that
heterogeneity-related endpoints - a tumor’s clonal archi-
tecture, features of the subclones, or whether mutations
are clonal (present equally in all tumor cells) or subclonal -
might serve as biomarkers for drug resistance [5,18,19].

Heterogeneity of cancers has been studied by compar-
ing mutations and CN alterations between spatially sepa-
rated [3,6,7] or sequential [10] samples from the same
tumor, or between primary and secondary tumors [11]
from the same patient.

To meet clinical demand, recent studies have attempted
to assess heterogeneity from single tumor samples based
on whole genome sequencing (WGS) [4,8,9,12,14-16] or
the cheaper whole exome sequencing (WES) [1,2,5,13,17],
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usually in combination with genome-wide data from SNP
arrays. In general, the average CN across all cells in the
tumor sample is estimated at numerous genomic positions
from SNP arrays or sequencing data, and these values
are joined up into genome segments of constant CN
(from now on called segmented CN data). Next, the
variant allele fraction (VAF) of each somatic mutation
identified in the sequencing data is compared to the
local CN estimate, in order to classify the mutation as
clonal or subclonal. Some papers proceed to construct
a phylogenetic tree which visualizes the subclonal evo-
lution of the tumor [8,9,14-17].

We have looked at 52 single samples from newly diag-
nosed HER2-positive breast cancer tumors in the RESPON-
SIFY project [20] using Affymetrix SNP 6.0 arrays, WES
and pathologist purity estimates. Our tumors all show het-
erogeneity, in that most are highly aneuploid throughout
most of the genome in only a fraction of the cells. The
scientific question driving this methodology project was
whether identified mutations are clonal or subclonal. In
particular, we hoped to assess clonality of specific CN al-
terations, such as those of HER?2, by inferring the status of
mutations present at their genomic location. It turns out,
as we will demonstrate, that classification of mutations in
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samples with heterogeneity is not always possible with the
data we had.

The focus of this paper is on the stages of analysis pre-
ceding automatic approaches which take input data and
return an estimated clonality status of each mutation. Our
principal aim is to highlight challenges in CN estimation
infrequently acknowledged in the literature which influ-
ence mutation classification. We also propose solutions
that may aid in the quantification of ITH in tumor sam-
ples that have high levels of CN alteration. Such a method
will help in understanding how ITH is related to progno-
sis, that is, survival of patients diagnosed with breast can-
cers, as well as drug resistance, as it will be applicable to
large datasets with annotated treatment and clinical out-
come information.

We make extensive use of grid plots, which help visualize
the clonal architecture of aneuploid tumor samples and
provide visual feedback on the absence or presence of bias
in segmented CN data. We also describe the key issues and
challenges in CN estimation of subclonal samples, and
show how local subclonal integer CN estimates are vital
for correct classification of mutations.

Our demonstrations are restricted to a handful of the
52 RESPONSIFY HER2-positive breast cancer samples.
Complete analyses of all samples with medical results, in-
cluding potential biomarkers for resistance to trastuzumab-
based therapy, will be published separately.

Our results are divided into three parts (A to C). In
part A we present grid plots and demonstrate key issues
in the estimation of CN of subclonal tumor samples in a
simulated setting, to show that even with no noise or
bias, subclonal chromosomal CNs can only be estimated
in some genome segments, in samples with simple sub-
clonal architectures, and even then relying on subjective
assumptions. In part B, still in a simulated framework
with no noise or bias, we show how the subclonal
chromosomal CNs play a vital role in the classification
of mutations as clonal or subclonal. In part C we briefly
discuss our data. We suggest a probabilistic strategy to
separate subclonality from noise in segmented CN data,
and to assign a clonality status to a mutation. We also
supply a two-dimensional grid rotation method to adjust
for B allele fraction bias, which is common in our
datasets.

We will refer to the number of chromosomal copies at
a genome position in specified cells as their (true) inte-
ger CN. The average integer CN across cells from a
tumor sample at a genome position will be called the
(true) average CN. SNP array signals, which have been
preprocessed, segmented and possibly normalized to-
wards germline array data so that they are supposedly
proportional to average CNs apart from noise devia-
tions, will be called array CNs. By cell fraction we
mean the percentage of sample cells (out of both
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normal and tumor cells of a sample) that make up a
specified subclone.

Results

A: Grid patterns and integer CN estimation in simulated
aneuploid tumors

In this section we present grid plots and demonstrate
key issues in the estimation of CN of subclonal tumor
samples in a simulated setting, to show that even with
no noise or bias, subclonal chromosomal CNs can only
be estimated in some genome segments, in samples with
simple subclonal architectures, and even then relying on
subjective assumptions. This step is important for subse-
quent classification of mutations as clonal or subclonal,
since the mutation VAFs depend on local integer CNs in
the tumor cells.

Clonal tumors and grid plots
A normal, diploid cell has one copy of each parental
chromosome in its nucleus. We say its integer CNs are
(1,1). Aneuploid tumor cells exhibit integer CNs other
than (1,1), including segments with loss of heterozygos-
ity (LOH), such as (0,1) or (0,2), or CN gains, such as
(1,2), (1,3) or (2,2). Each genome segment of constant
CN in an aneuploid tumor cell may be represented by a
point in a grid plot, a figure which displays all the com-
binations of CNs that occur throughout the genome in
that cell, in a minor (smaller) versus major (larger)
homologue CN pattern (extending the idea of TAPS
plots in [21]). Figure 1a is a grid plot of simulated inte-
ger CNs in a cell in which each possible major and
minor combination of 0, 1, 2, 3 and 4 copies occurs
somewhere along the genome.

Tumor samples consist of thousands of tumor cells
plus an unknown fraction of normal diploid cells, which
we call normal contamination. We simulate a sample
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Figure 1 Grid plot of a simulated clonal tumor sample. (a) Grid
plot of the integer CNs of a simulated single aneuploid tumor cell
where all the combinations of major and minor integer CNs from 0
to 4 occur in the genome. (b) Grid plot of the average CNs from
a simulated tumor sample with purity 80% and clonal CNs as in
(a). Note how this grid is a version of (a) shrunken towards the

point (1,1).
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with clonal tumor CNs (identical integer CNs across all
the tumor cells) as in Figure 1a with fraction (purity) p of
tumor cells. Each average CN e of a given homologue and
genome segment will then have the form:

e=(1-p)+pc,c=0,1,2, ..., 4, (1)

where c is the integer CN in the tumor cells (grid plot
in Figure 1b). Compared with Figure la, each point in
Figure 1b is shifted (shrunken) towards the point (1,1),
since each average CN is the average of the integer CNs
(1,1) of the normal cells and the tumor cell integer CNss.

Integer CNs and the purity of a tumor sample can only
be unambiguously estimated from the unbiased, noise
free average CNs via Equation 1 if 1) the sample is
known to be clonal, and 2) there are at least two points
in the grid plot for which the difference is known on an
integer CN scale. For example, it may be known that
two consecutive vertical grid points reflect a difference
of one copy in the minor homologue.

With tumor samples, it is seldom known that a sample
is clonal (1), so we broaden the CN estimation frame-
work to that of (potentially) subclonal tumors.

Subclonal tumors

For tumors with heterogeneity, CN estimation comes
down to estimation of the cell fraction and integer CNs
of each subclone. As we shall see, this is a very difficult
task with the data we consider.

Grid patterns from tumor samples with heterogeneity
are more complicated than those in Figure 1. We simu-
late a sample consisting of 20% germline cells (p =80%
purity), @ =30% cells forming an aneuploid subclone A
with integer CNs as in Figure 2a and 8 =50% cells form-
ing another subclone B with integer CNs as in Figure 2b.
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Simulated average CNs are segment-specific averages of
the subclonal integer CNs across all the sample cells, so
in a given genome segment they take values of the form:

e=(1-p)+ ac, + ey, (2)

where a + f=p and ¢, and ¢, are the integer CNs of
the subclone A and B cells in that segment. The grid
plot for the sample in Figure 2c consists of three small
grids, each of which originates from the CNs in A com-
bined with the CNs in one of the three B segments. The
size, or rather the density, of the small grids is due to
the small fraction of cells in A. The positions of the
small grids follow that of a more sparse grid, determined
by the larger fraction of cells in B. Alternatively, the grid
plot could be seen as many three-point sparse grids (the
green circles being one of them), positioned according
to the denser pattern of subclone A.

For one subclone (say A), the cell fraction (a) can be
estimated from the perfect, noise-free average CNs via
Equation 2 if Condition I: There are at least two points
in the grid plot for which the difference is known (on an
integer CN scale) and known to be due only to a change
of integer CNs in subclone A (so that all other subclones
have constant CNs throughout these two segments).

Given the cell fraction of subclone A, its integer CNs
can be estimated from unbiased, noise-free average CNs
via Equation 2 (or its extensions to more than two sub-
clones) if Condition 2: The integer CNs and cell frac-
tions of all subclones other than A of the sample are
also known.

Condition 2 seems to be a catch 22 in that no sub-
clonal integer CNs can be estimated without knowing
the integer CNs of the other subclones, but there is an
important exception. If the grid pattern suggested by
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Figure 2 Grid plot of a simulated, subclonal tumor sample. (a) Genome integer CNs in the aneuploid subclone A. (b) Genome integer CNs
in the less variable subclone B. (c) Grid plot from sample with 20% normal cell contamination, 30% cells from subclone A and 50% cells from
subclone B. In grid plots each data point represents average CNs of a genome segment. Different colors represent genome segments with
different behaviors in terms of their average CNs across the sample cells. In this grid plot each third of the genome results in a separate grid
pattern (blue for subclone B integer CNs (1,1), black for (0,1) or red for (1,2)) their size determined by the fraction of subclone A cells. The three
grids are positioned in a larger grid for which the size is determined by the larger fraction of subclone B cells (green).
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condition 1 includes the point (1,1), the integer CNs of
all other subclones are normal (1,1) in the genome seg-
ments of the points for which condition 1 is true.
However, condition 1 is seldom truly known for any
points (Figure 3a). Therefore, integer CN estimation in
subclonal tumor samples can only be done from noise-
free average CNs if the sample has certain properties
and under certain assumptions. In Materials and methods
we further demonstrate CN estimation challenges caused
by selected subclonal structures through Figure 3, and
outline properties and assumptions under which subclonal
CNs can be estimated.

Purity versus cell fraction

CN alterations in tumor cells appear diluted in average
CNs because of the germline (normal) cells in the sam-
ple (Figure 1), which are always present. If a sample is
known to be clonal, the purity of the sample can be de-
duced from the density of an observed average CN grid
pattern via Equation 1: the distance between consecutive
grid points is equal to the purity. However, when we
study tumor samples we usually do not know whether
or not that sample is clonal. In this case, as acknowl-
edged by Durinck et al. [2], further, indistinguishable
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dilution occurs when CN alterations are present only in
part, but not all, of the tumor cells (Figure 2). With or
without heterogeneity, the density of a grid pattern in a
grid plot holds information about the cell fraction which
express CN alteration throughout some genome seg-
ment(s) in which other subclones have constant CNis:
the distance between consecutive grid points is equal to
that cell fraction (Equation 2). Average CNs do not carry
sufficient information to deduce sample purity, although
it is sometimes suggested that they do [1,22].

Scaling: where is (1,1)?

Summarizing the preceding discussion, cell fractions and
integer CNs can be quantified from unbiased, noise-free
average CNs for some subclones and for some genome
segments, if the tumor sample has some fortunate prop-
erties and we rely on a set of assumptions. Array CNs
are at best proportional to the average CNs in the sam-
ple hybridized. Even if they were noise and bias free,
array CNis are insufficient for determination of an identi-
fied subclone’s integer CNis, its cell fraction and the scal-
ing factor without further information [1,22,23]. The
colored points in the simulated grid plot of Figure 4 ap-
pear in a regular grid pattern as marked by dotted lines,
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Figure 3 Grid plots of simulated tumor samples with different subclonal architectures. (a) Aneuploid tumor with further subclonality in a
small part of the genome. (b) Tumor with three subclones, all with CN alterations. () Tumor with two subclones of equal size. (d) Tumor with
two subclones of different sizes. Note that each data point in a grid plot represents the average CN across all sample cells. Different colors do not
represent different subclones, but highlight specific parts of the genome which we discuss further in Materials and methods.
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but it is unknown which lattice point corresponds to in-
teger copies (1,1): (g2, £2), (g3, g3) or (g4, g4)? Each of the
colored points must have at least 0 minor integer copies.
Therefore, the grid pattern suggests that g, is at least 1,
or that (1,1) falls no higher than (g, g4). In Materials
and methods we explain how the three proposed (1,1)
scenarios originate from different integer CNs, cell frac-
tions and scaling factors but result in identical array
CNs, or, equivalently, identical total (minor + major)
array CNs and B allele fractions.

Pounds et al. [23] suggest solving this issue by identifi-
cation of genomic regions with normal CNs (RAP, refer-
ence alignment procedure), which may be possible for
some samples but not for all. In the context of hetero-
geneity, VAFs can sometimes provide sufficient informa-
tion, and these are used in the software Absolute [1]
together with database knowledge about chromosome
arm level CN alterations in common cancer types. Carter
et al. [1] and Pounds et al. [23] both stress that manual
care with each sample is vital for correct CN estimation.
We examine circumstances under which knowledge of
overall sample ploidy, matched normal sample array CNs
or VAFs can resolve the scaling issue below.

Ploidy can sometimes help A sample’s overall ploidy is
the sample’s average (minor + major) integer CN across
the genome and across all subclones. In Materials and

methods we explain how an independent overall ploidy
estimate (for example, from a fluorescence-activated cell
sorting (FACS) run) may help us resolve the true position
of (1,1). Often, overall ploidy estimates are not given by
FACS, but with samples having simple subclonal architec-
ture we may compare subclone-specific ploidies estimated
for each potential position of (1,1) (Materials and methods)
to the suggested subclone ploidies from FACS, and deduce
the true position of (1,1). Figure 5 shows FACS ploidy pro-
files and segmented SNP array data grid plots for two
samples. Sample 11 (Figure 5a,b) has several subclones
and integer CNs cannot be located to specific sub-
clones. Sample 29 (Figure 5c,d) has most of its CN al-
teration in one subclone and the FACS and grid plots
combined give clues to the scaling of array CNs.

Paired normal SNP array normalization helps in theory
If array CNs have been normalized towards matched
normal tissue SNP array CNs, segments with minor +
major array CNs equal to 1 (red lines in the example
samples of Figure 6) and allelic balance (black lines in
Figure 6) - that is, segments at the intersection of the
two lines - should theoretically correspond to normal in-
teger CNs (1,1). Several CN packages (SOMATICS [24],
PICNIC [25], SiDCoN [26], GAP [27] and ASCAT [22])
rely on normalized array CNs and assume the solution
with the minimal possible CNs that fit their (grid) pattern.
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subclone has ploidy 3 to 4. (d) The sample 29 grid plot suggests a

ASCAT notes that they go wrong if that assumption is not
correct. A look ahead at our actual data grid plots
(Figure 6) suggests that this method will not work in
general for our samples.

VAFs can sometimes help For
able amount of mutations in

samples with a reason-
. - .
informative’ locations,

VAFs can help deduce the scaling of array CNs if we rely
on a set of chosen assumptions. We outline such a
framework in Materials and methods through Figure 4.

Estimation of cell fraction, integer CNs and average CNs
The cell fraction of subclone A and its integer CNs in
genome segments that coincide with the subclone’s
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Figure 6 Array CNs normalized towards matched normal tissue SNP array CNs for four actual data samples. Theoretically, points in a
cluster around the intersection of allelic balance (black line) and total array CN equal to 1 (red line) should reflect segments with integer CNs
(1,1). In practice, the cluster closest to the intersection may reflect (1,1) (samples 5 and 9) but not always (samples 11 and 45).
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lattice points (type A segments) can be estimated under
the fortunate circumstances described, given the prop-
erly scaled array CNs. Let (g.0mmap Suormar) be the position
of (1,1) and A the distance between two consecutive grid
lines. Then we can derive the cell fraction a = A/g,ma Of
subclone A and its integer CNs c¢1 = (a1 — uormar — N)/A
and ¢, = (@2 — Guormar — A)/A, where @; = (a1, a,) are minor
and major array CNs of unknown scale. The average CNs
can be derived as e; = a1/gyormar a0d €3 = Aol Gormar-

B: Clonal or subclonal mutations

With cell fractions and integer CNs of one or more sub-
clones resolved and with knowledge of the sample purity,
we can assess whether a VAF suggests the corresponding
mutation is clonal (present in all tumor cells) or subclonal
(not present in all tumor cells) if we rely on previously out-
lined and further properties and assumptions (see Materials
and methods).

The simulated sample of Figure 4 provides an example.
Figure 4c gives the integer CNs and cell fraction of the
sample’s main subclone A. The genome segment of the
blue grid point (Figure 4a) has no CN alteration in any
cells. The blue column in Figure 4c shows expected VAF
levels of heterozygous mutations present only in the cells
of the main subclone (thick continuous horizontal line),
present only in all other tumor cells (bottom thick dashed
line) or present in all cells (top thick dashed horizontal
line) of such genome segments. The observed VAF (red
cross) coincides with the latter, so the corresponding mu-
tation is estimated to be clonal. The red genome segment
(Figure 4a) has CNs (1,2) in the main subclone, and nor-
mal CNs in all other cells. The pink column of Figure 4c
shows the expected VAF levels given these CNs (thick
horizontal lines). The top two thick dashed horizontal
lines reflect expected VAF levels of clonal heterozygous
mutations present on all its homologue’s copies. The mu-
tation on this segment is hence estimated to be clonal too.
If it had coincided with one of the lower horizontal lines,
we would have estimated it to be subclonal.

The four colored columns of Figure 4c show different
expected VAF levels of clonal mutations (top one or two
thick, dashed horizontal lines, one or two depending on
whether the minor and major integer CNs are equal or
not), and different expected VAF levels of mutations
present only in the main subclone A (thick, solid hori-
zontal lines), resulting from different local integer CNis.
We also note that other cell fractions of subclone A, to-
gether with other integer CNs (Figure 4b,d), would give
other expected VAF levels. Two important conclusions
follow. First, in order to enable classification of muta-
tions as clonal or subclonal from VAFs with any preci-
sion, correct estimation of subclonal integer CNs and cell
fractions is vital. (The procedure will still rely on simplifying
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assumptions, even for mutations on fortunate segments on
grid plot lattice points of an identifiable subclone, and when
there is no noise or bias in VAFs or segmented CN data.)
Second, one subclone is associated with a whole set of ex-
pected VAF levels, dependent on the subclone’s cell frac-
tion and integer CNs, for example, the thick continuous
horizontal lines in Figure 4b-d. This contrasts with what
has sometimes been suggested [8]. We return to this point
in the Discussion.

C: Data examples

In this section we illustrate what we learned in the previ-
ous sections through selected analyses of single tumor
and matched normal samples from a set of 52 newly di-
agnosed HER2-positive breast cancer tumors. The pa-
tients were all part of a European Union funded project
(RESPONSIFY) investigating biomarkers of resistance to
trastuzumab plus chemotherapy, which is standard treat-
ment for newly diagnosed breast cancers that have
HER?2 amplification. Clinical follow-up data are available
for each patient through a median time of 5 years, in-
cluding relapse status. SNP arrays and WES were run as
described in Materials and methods. Tumor sample pu-
rities (fractions of tumor cells) were estimated by a path-
ologist. The median purity was 87% across tumors. For
details about SNP array preprocessing and detection of
mutations, see Materials and methods.

Bias in BAF can cause skewness in SNP array data

Our observed array CN grid plots display skewness
(Figure 7), so that segments with the same minor CN
appear in clusters on a sloping rather than a horizontal
line, and segments which have the same major CN ap-
pear in clusters on a sloping rather than a vertical line.
This phenomenon is particularly pronounced in those
of our samples that do not have matched normal sam-
ple SNP array data. This is an artifact caused by a sys-
tematic bias in our SNP array BAFs which needs to be
removed in order to make the CN estimates compar-
able to WES VAFs. We do this by grid rotation and de-
scribe the BAF bias (see Materials and methods).
Unless otherwise stated, we refer to array CNs as ro-
tated array CNs.

A typical HER2+ grid plot

Most of our HER2-positive breast cancer sample grid
plots are similar to Figure 8, which suggests that they
have an aneuploid subclone A in a small fraction of cells
(because the regular grid pattern is small). Many of the
grid plots also have some short segments with minor
array CNs below the most prominent grid pattern, as in
Figure 8, which suggests that a larger subclone than the
aneuploid one has some LOH.
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Unless otherwise stated, we refer to array CNs as rotated array CNs and we drop the prime from —a’.

Probabilistic model to separate subclonality from noise and
a simple endpoint quantifying ITH
In Figure 8 we identify a regular grid pattern (type A
segments, blue), possibly caused by CN variation in a
subclone, say A, of cells. We also spot array CNs that do
not follow the grid pattern, in between the regular lattice
points (type B segments, pink). In general we see lattice
points (type A) as the default location of grid plot
points, and it is only if we observe significant evidence
to the contrary that we set the type of a segment to B
according to the following process.

The classification between type A and B segments is
made through the two-dimensional distribution of grid
points {4;} relative to their closest lattice points {¢;}, in

effect overlaying all the lattice points into {X; = a;-¢;}
(Figure 9a). We fit a two-dimensional ¢-distribution [28]
centered at the origin to the {#;}, with maximum ro-
bustness (degrees of freedom =2) in order to capture the
variation of observations in the dense central cluster
(which may truly have CN alteration in subclone A only)
but not that of the many outliers (which may not origin-
ate from CN alteration in subclone A). The estimated
covariance matrix Q is used to calculate a segment
length-weighted squared Mahalanobis distance M? = %]
(Q/w;)"'x; for each segment i, which should follow an ex-
ponential distribution with scale parameter % for seg-
ments within the dense centre cluster. We choose a cutoff
m where the linearity in the exponential gg-plot starts to
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Figure 8 Sample 5 grid plot. The small, regular grid suggests that a low fraction of the sample cells form an aneuploid subclone (A). The

segments with minor array CNs far below the regular grid may be caus

types A (blue, regular grid pattern), B (pink, breaking regular grid pattern), C (green, lower array CNs than the most evident grid pattern) and D
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fail (Figure 9b; commonly conservatively chosen to m =3),
and classify segments as type A if M?<m and type B other-
wise. The segment length weight w; = 1-¢7%/59090  \here
[; is the length of segment i, downweights M? values of
short (<1 Mb) segments, since we think their deviance
from the origin may be due to noise in the array CNs of
such small segments, rather than to a true pattern-
breaking deviance in CNs.

The fraction of the genome covered by type B seg-
ments out of that covered by type A and B segments is a
simple measure of the amount of ITH in a sample. This
endpoint estimates the fraction of the genome in which
the sample has CN alteration in other subclones than
the main subclone A (possibly in addition to CN alter-
ation in A). It has proved useful for prediction of relapse
in the RESPONSIFY samples. Details will be published
separately.

Scaling: resolving location of (1,1) with help of VAFs and
purity

We estimate the scaling of a sample’s array CNs by the
scenario that best fits VAFs estimated from WES data
for mutations in segments classified to be of type A with
respect to the sample’s most evident subclone A. By our
assumptions, these segments have CN variation only in
the subclone A cells. Out of the 52 RESPONSIFY sam-
ples the scaling was resolved in this manner for 48
samples.

In Figure 10 we display a typical example rather than a
perfect one (as, for example, that of Figure 11 below).
Each panel shows the five expected VAF levels (y-axis,
horizontal lines with different colors) for each type A
CN segment (x-axis, ordered by decreasing expected
VAF if present only on non-A cells and by increasing

minor + major array CN) for one potential position of
(1,1) of the sample introduced in Figure 8 under as-
sumptions 3 to 6 in Materials and methods. The ob-
served mutation VAFs of type A segments are shown as
red crosses. Each panel also gives SS, the sum of squared
distances to each VAF’s nearest expected VAF level. The
figure suggests that g3 =1 or gs =1, since in these panels
the observed VAFs are, on average, closer to their ex-
pected levels (they have lower SS than the other panels).
Note that we do not expect all mutations in type A seg-
ments to follow our assumptions and fit one of the ex-
pected levels, but we assume that most mutations do, in
order to resolve the scaling of the array CNs.

To further differentiate between the two suggested
scenarios we transform these panels’ y-levels to show
subclone A integer CN estimates under these scenarios
(Figure 12), also showing the segments by their genome
position. Now, the (dark) green and blue horizontal lines
are the minor and major integer CN estimates of sub-
clone A for segments that have CN alteration only in
subclone A. The red crosses’ y-levels show the mutation
multiplicities (calculated under the assumption that they
sit on A: %VAF ), which equal an integer CN estimate
(green or blue horizontal line) if the mutation VAF
equals the corresponding expected VAF level. The black
line shows the expected y-level of the multiplicity for
mutations on the single copy of all tumor cells not in A,
which is equal across all segments. The light green and
light blue horizontal lines show the expected y-levels of
clonal mutation multiplicities. We see that if g3 =1, sub-
clone A has no single allele integer CN below 3, a rough
calculation (see Materials and methods) suggests the
sample has overall ploidy above 4, and all mutations
seem to sit only on the assumed diploid cells (black
horizontal line), not in subclone A. If g5 =1, subclone A
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Figure 10 Sample 5 VAFs compared to expected VAF levels. As in Figure 4b-d, each panel shows observed VAFs (red crosses) and expected
VAF levels given a potential position of (1,1) in the sample grid plot. Expected VAF levels are all under assumption 6, with mutations on the
minor allele of subclone A expected on green VAF levels, on the major allele of subclone A expected on blue, on the single copy of all tumor
cells not in A expected on black (the purity of this sample was estimated to 84%), clonal mutations on minor allele on light green and clonal
mutations on major allele on light blue horizontal lines (see assumptions 3 to 5 in Materials and methods). Genome segments have been
ordered by decreasing expected VAF if present only on non-A cells and by increasing (minor + major) array CN (x-axis). SS gives the sum of
squared distances from each observed VAF to its closest expected VAF.

Figure 11 Sample 16 VAFs fit expected VAFs along chromosome 17. Sample 16 VAFs (points) and expected VAF levels (horizontal lines;
Figure 10) along chromosome 17 given subclone A CN estimates and its sample cell fraction a. This sample has 1,232 detected mutations, which
is many more than the median 156 of the 52 RESPONSIFY samples. We see an almost perfect fit of the observed VAFs to those expected. For
color coding of VAFs, see text. This figure also shows how the mutation rate differs across the chromosome, a different type of heterogeneity
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studied by Lawrence et al. [29]. The purity of this sample is unknown and is imputed to 90%.
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has single allele integer CNs from 0 and above, the
rough overall ploidy estimate is just over 2 and most
mutations seem to sit on the subclone A cells. The major-
ity of our samples end with a similar choice. The gg=1
scenario sounds more reasonable and therefore we choose
to proceed with that. When in doubt we choose the con-
servative scenario with the smallest integer CNs and smal-
lest size a of subclone A.

See Materials and methods for our suggested estima-
tion of subclonal architecture, cell fractions and integer
CNs.

Clonal or subclonal mutations

Our classification of mutations as clonal or subclonal is
based on the methods outlined for simulated data. To
acknowledge the uncertainty of real VAFs we run a set
of non-inferiority, inferiority and equality tests for each
VAF based on its binomial two-sided 90% confidence
interval (CI) from the sequencing number of variant
versus reference reads. For details, see Materials and
methods.

Clonal or subclonal CN alterations

The vertical continuous line in Figure 11 denotes the
position of the HER2 (ERBB2) gene. Our samples have
been diagnosed as HER2-enriched, and they do have a

high, type D, major array CN at this position. Unfortu-
nately no samples have VAFs that match the major
homologue, so it is not possible to assign the clonality
status or subclonal origin of HER2 enrichment. The
number of detected mutations in the 52 RESPONSIFY
samples varies from 1 to 1,232 (median 156.5), and only
a handful of samples have enough mutations (say >900)
to enable assessment of subclonal origin of CN alter-
ation on a large scale.

Discussion
The aim of this paper is to highlight challenges in CN
estimation that influence mutation classification but are
infrequently acknowledged in the literature as well as
propose solutions that may aid in the quantification of
ITH in tumor samples that have high levels of CN alter-
ation. We have demonstrated how even with no noise or
bias, integer CNs of tumor samples with ITH can only
be estimated from segmented CN data in samples with a
simple clonal architecture, given further information
from, for example, WES VAFs or FACS images, and
under a series of assumptions. Even with such samples,
integer CNs can only be deduced for some subclones
and only across a subset of the genome.

Classification of mutations as clonal or subclonal fur-
ther requires knowledge of the sample purity, which
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cannot be deduced from segmented CN data. The classi-
fication relies on comparing observed VAFs to expected
VAF levels given purity, subclonal cell fractions and local
CNs. Therefore, the assumptions made in the CN esti-
mation procedure will have a large influence on how
mutations are classified, and on how the results can be
interpreted.

We have also suggested a simple ITH endpoint for
tumor samples with a high level of CN alterations based
on segmented CN data alone and which does not re-
quire knowledge of subclonal cell fractions or integer
CNs.

Estimate average CNs from sequencing

We have used SNP arrays to derive segmented CN data
for the RESPONSIFY samples. Alternatively, sequencing
depths could be used [12-17], which has the advantage
that it works well on formalin-fixed paraffin-embedded
tissue, whereas SNP arrays usually require frozen tissue,
which is less practical to validate. The expected (true)
average CN patterns of tumor samples with heterogen-
eity are the same whether average CNs are estimated
from SNP arrays or sequencing data. The challenges pre-
sented hence apply either way: there is ambiguity be-
tween purity and heterogeneity, there are difficulties
deducing subclonal structures and assigning a subclonal
origin to a segment with CN alteration, and the scaling
of array CNs or SNP position sequencing depths relative
to average CNs is unknown. Both sequencing and SNP
array data may suffer from bias which needs attention
before estimation of average CNs, although the types of
bias are different. There may be BAF bias in SNP array
data and GC bias in sequencing depths. Standardizing
tumor sample sequencing depths to matched normal
sample sequencing depths comes with challenges that
are different from those of standardizing tumor sample
array CNs to matched normal sample array CNs. We
generally seek more evidence that the results after different
steps of analysis look plausible than is typically presented
in a literature dominated by model-based inferences. We
find that just as important as detailed model descriptions.
As for CN determination, a study of the two-dimensional
grid plots (applicable equally well to SNP array CNs and
sequencing depths) of average CN estimates can help re-
veal bias and give clues to sample architecture.

Whole genome sequencing versus whole exome
sequencing

WGS identifies many more mutations than WES (which
can only find mutations in gene exons), but is compara-
tively more expensive. More mutations help in assigning
CN alterations to identified subclones, and resolving the
scaling of segmented CN data in relation to average CNs.
Therefore, WGS is generally a benefit for assessment of
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integer CNs, clonality of mutations or phylogenetic trees
(see below) in subclonal tumor samples.

Phylogenetic trees

Given a set of identified subclones in a sample, trees can
be inferred by assigning mutations to subclones and
checking whether mutations close in genomic location
but assigned to different subclones tend to co-appear or
never co-appear on the same fragment. Co-appearance
indicates that one of the subclones is in turn a subclone
of the other, and no co-appearance indicates that the
subclones belong to independent branches of the tree.
Given that WGS identifies more mutations than WES,
WGS is again a benefit. Since the majority of our sam-
ples have too complicated subclonal structures for more
than one or two subclones to be identified in detail, and
relatively few mutations identified by WES, detailed
phylogenetic trees are not generally within reach. The
number of identified mutations in the 52 RESPONSIFY
samples ranges from 1 to 1,232 (median 156.5; samples
were selected so that they had at least one identified
mutation). The WES average coverage of the samples
ranges from 25 to 179, with median 108.

Clustering of cancer cell fractions

It has been suggested [8,9,12-17] that, with WGS, sub-
clones can be identified via groups of mutations present
in similar fractions of cancer cells. On this topic we
would first like to stress that clustering of a sample’s
VAFs is something different from clustering of the sam-
ple’s cancer cell fractions. The former may cluster be-
cause of aneuploidy in the sample, even if the sample
has no heterogeneity: a sample with aneuploidy has sev-
eral expected VAF levels (like the thick continuous hori-
zontal lines in Figure 4c), so each subclone corresponds
to several VAF clusters. Also, different subclones may
have overlapping expected VAF levels.

To the best of our knowledge, Papaemmanuil et al. [9]
do not take local CNs into account when classifying mu-
tations as clonal or subclonal. They assume that the mu-
tations with the highest VAFs are clonal, and classify
mutations as subclonal if their CIs do not overlap with
those of the ‘clonal’ mutations. As seen in Figure 11, ex-
pected clonal VAF levels (light green and light blue hori-
zontal lines) may be very close to expected subclonal
VAF levels (black horizontal lines). Therefore, we do not
generally recommend classification of mutations by
comparing a sample’s VAFs within themselves with no
reference to local integer CNs.

Nik-Zainal et al. [8] estimate the cancer cell fraction
(ccf) of each mutation by what we call the ‘multiplicity’
of the mutation given integer CN estimates in the most
evident identified subclone. For RESPONSIFY sample 5,
this is exactly the y-levels of mutations in Figure 12.
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More precisely, Nik-Zainal et al. [8] estimate ccfs as the
minimum of the multiplicity and 1, and look for clusters
among the mutations with ccf <1. We see no clusters
among the y-levels of mutations below the dotted hori-
zontal line of 1 in Figure 12, but perhaps we have too
few mutations of type A detected from the WES data.
We note that such clusters would only reveal very small
subclones with low integer CNs and daughter subclones
of the most evident identified subclone. We also note
that with this ccf estimator, mutations of such a small
subclone will get different ccf estimates if they sit on
segments with different integer CNs in the most evident
identified subclone, so several clusters may arise from
the same subclone. Nevertheless, this method may help
screening for long subclonal CN alterations to be veri-
fied by phasing of SNPs and mutations on the same se-
quencing reads, which is what Nik-Zainal et al. [8] do.
The PyClone algorithm [14] clusters mutations on the
basis of their VAFs corrected for local CN, termed the
‘cellular prevalence.” To do so, at each mutation the al-
gorithm splits the cells in the sample into the ‘normal
population; the ‘reference population, consisting of all
cancer cells which do not contain the mutation, and the
‘variant population; consisting of all cancer cells with the
mutation. It makes a ‘key assumption’ that all cells
within their three populations have the same genotype.
We have applied the algorithm to the six samples dis-
cussed and made available in this paper. It produces an
estimate of the number of subclones in a sample, and as-
signs mutations to subclones. The results are, in part,
consistent with, but also complementary to, ours, bear-
ing in mind that we do not attempt to estimate the
number of subclones in a sample. For example, sample
16 depicted in Figure 11 has 1,232 somatic mutations,
and PyClone infers 6 clusters, assigning over 900 to one
and over 250 to a second. In data not shown, we inferred
that CN alterations in a main aneuploid subclone only
(segments of type A) comprised 90% of the genome and
held 839 of the mutations (no others could be assigned
to a specific subclone), while we found 8% of the gen-
ome to be segments of type B. This is a fair degree of
consistency between rather different approaches to the
same problem. On the other hand, sample 5 had its 199
mutations put into just 3 clusters by PyClone, but as can
be seen from Figures 8, 10 and 12 it has a considerable
amount of subclonality, and we see evidence of more
than 3 subclones. Most of our samples are like sample 5
in being highly heterogeneous, and it seems likely that
the differences between PyClone’s results and ours stem
from a failure of their ‘key assumption; in that we have
different CNs between different subclones. This point is
highlighted in [16], where it is noted that clonal infer-
ence using CN aberrations and B-allele frequencies need
not be the same as that using somatic aberrations. Our
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approach and that of PyClone are different ways of inte-
grating these two data types, while the integrative ana-
lysis of [16] is perhaps better than both if one has WGS
data. Their method is not available to us as we do not
have such data.

CN estimation and mutation classification in the literature
Durinck et al. [2] identify CN neutral LOH regions within
one tumor subclone and classify mutations as homozy-
gous or heterozygous within the subclone. This aim is
slightly different to ours, but the paper deserves a mention
because it acknowledges that an identified CN pattern re-
flects CN alteration in a subclone rather than in all tumor
cells.

The software Absolute [1] deduces integer CNs in pooled
minor and major array CN histograms. The BAF bias of
the RESPONSIFY array CNs cannot be spotted with one-
dimensional histograms rather than two-dimensional grid
plots, and in Materials and methods we demonstrate how
Absolute therefore does not work with our samples. But
given data without bias, Absolute estimates integer CNs
under the assumptions that (i) only one pattern of equally
interspaced peaks can occur, and (ii) the pattern reflects
the clonal CNs of all tumor cells in the sample. With the
theoretically expected CN patterns of Figures 2 and 3 as
background we suggest this approach may be useful for
samples with most CN alteration taking place in most of
the tumor cells, and only small subclones (accounting for
up to say 10% of the sample cells) expressing further CN
alteration.

To deduce the scaling of the array CNs, Absolute sug-
gests the scenario for which the majority of (all the sam-
ple’s) VAFs fit presence on one copy of one homologue of
the large subclone. We acknowledge that this is different
from our suggested scenario with VAFs (from the genome
segments with CN alteration in the pronounced subclone)
fitting presence on all copies of one homologue.

Nik-Zainal et al. [8] estimates integer CNs and sample
purity with ASCAT [22], and thereby assumes the min-
imal CNs fitting array CNs (ignoring the unknown scal-
ing) as well as assumptions (i) and (ii) above, as Absolute
does. Again we suggest this approach may be useful for
samples with most CN alteration taking place in most of
the tumor cells, and only small subclones (accounting for
up to say 10% of the sample cells) with other CN alter-
ation. Nik-Zainal et al. [8] further refine the precise inte-
ger CN estimates with help of WGS depths at SNP
positions. This may or may not eliminate any BAF bias in
average CN estimates; a reader of the paper cannot de-
duce which. ASCAT fails with most of the RESPONSIFY
samples, which are highly aneuploid and subclonal.

The methods also differ in their interpretation of muta-
tions as clonal or subclonal. In simple terms we call a mu-
tation clonal if its VAF (is larger than or) fits presence on
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all copies of one homologue in subclone A plus on one
copy of one homologue in the rest of the tumor cells
(a fraction of cells determined via the pathologist purity
estimate). Mutations with significantly smaller VAFs we
call subclonal. Absolute calls a mutation clonal if the VAF
gives a high likelihood of its presence on at least one copy
of a homologue of the (large) subclone. Mutations with a
high likelihood of presence in less than one copy are
called subclonal. Nik-Zainal et al. [8] similarly call a muta-
tion clonal if it seems present in at least one copy of one
homologue of the (large) subclone, except in segments
with further subclonality (type B segments) where they re-
quire more. The methods will clearly classify mutations
differently. Our method of calling clonal mutations is con-
servative, and will only find a few such mutations per sam-
ple (sometimes none, in particular since ambiguous
mutations are not classified). The other three methods
[1,8,9] are conservative with calling subclonal mutations
and will only call those that are present in a small frac-
tion of cells. To our knowledge there is no clear answer
to which of these interpretations is more appropriate
biologically.

Conclusions

We have demonstrated that even with no noise or bias,
integer CNs of tumor samples with ITH can only be es-
timated from SNP array data in samples with a simple
clonal architecture, given further information from, for
example, WES VAFs or FACS ploidy profiles, and only
under a series of assumptions. Even with such samples,
integer CNs can only be deduced for some subclones
and only across a subset of the genome.

Estimation of local subclonal CNs has implications for
the classification of mutations as clonal or subclonal.
The classification also requires knowledge of the sample
purity, which cannot be deduced from segmented CN
data. The literature on this topic is divergent in assump-
tions and data analysis methods, with interpretational
differences as a result. The insights demonstrated in this
study impact research in heterogeneity and tumor evolu-
tion, with our emphasis being not only on data analysis
methodology but also on the goals, design and interpret-
ation of such studies.

We would like to stress the importance of illustrative fig-
ures to reveal bias and verify model assumptions in ITH
studies. We think such evidence of performance is just as
important as descriptions of analysis models in papers. As
for CN determination, a study of two-dimensional grid
plots of average CN estimates can help reveal biases and
give clues to sample architecture.

Materials and methods
This section provide further details and demonstrations
of the points made in the main text.
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CN estimation challenges caused by selected subclonal
structures

We aim to outline a set of assumptions under which
subclonal cell fractions and integer CNs can be esti-
mated from average CNs for some tumor samples. Let
us first demonstrate some selected subclonal architec-
tures with help from Figure 3.

The clonal, aneuploid tumor of Figure 1 would have
average CNs as shown in blue in Figure 3a. We simulate
a small subclone emerging from the tumor, so that part
of a segment which originally had integer CNs (1,2) now
splits up into small segments with different amounts of
CN alteration relative to the original, main subclone.
Figure 3a shows the resulting grid plot, in which the af-
fected small segments have been colored red. We note
that small subclones with additional CN variation to that
of a main subclone will cause average CNs between (and
sometimes even on top of) the main subclone lattice
points.

Next, imagine a subclonal tumor with 90% purity,
which has two subclones as in Figure 2 plus y =10% cells
forming another subclone C with integer CNs from 0 to
4, varying independently of the other subclonal integer
CNs. Figure 3b shows simulated average CNs of such a
tumor sample, where segments from each third of the
genome has been colored differently. Presented with
such a grid plot, the underlying subclonal architecture is
not easily detected. Even if we were told the number of
subclones (three), each average CN is a combination of
three subclonal integer CNs, so integer CNs for indi-
vidual subclones could not be estimated from average
CNs alone. We note that the pattern of average CNs
quickly gets out of hand as subclonality increases, and
that average CNs between regular lattice points may
not be caused only by small subclones that deviate
from a main subclone (Figure 3a), but also by small
subclones with integer CNs independent of those in a
main subclone.

Even with only two subclones many samples cannot be
resolved from average CNs. Figure 3c is a grid plot from
a simulated tumor sample with two subclones of the
same size, which have independently sampled integer
CNs from 0 to 4. We note that even though one regular
grid pattern can be identified in the grid plot, it is not
necessarily caused by just one subclone.

A further difficulty is that in reality not all integer CN
combinations will occur, and in particular not in combin-
ation with each integer CN in other subclones. Figure 3d
shows the grid plot of a simulated sample with two sub-
clones. Two separate regions of the plot show equally
spaced grid points (blue and green). The blue points re-
flect segments with different integer CNs in the smaller of
the two subclones, and (1,1) copies in the larger one. The
possible lattice points on which such grid points can fall
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have been circled. The green points reflect segments with
different integer CNs in the smaller subclone and (0,1) in
the larger one.

Properties and assumptions under which subclonal CNs
can be estimated

In this section we describe some sample properties and
assumptions under which conditions 1 and 2 hold so
that cell fractions and integer CNs of subclones can be
estimated. Imagine a tumor sample for which the follow-
ing holds.

Property 1: The grid plot has a regular vertical/hori-
zontal grid made up by at least two points. This indi-
cates that there is CN alteration in a subclone or in all
tumor cells throughout some genome segments where
no other subclones have CN alteration. It may also result
from the combined effect of CN alteration in two or
more subclones. In order to proceed, we must simply as-
sume (Assumption 1 below) that is not the case.

For example, the blue grid points of Figure 3d satisfy
property 1. Under the following assumption, condition 1
holds so we can correctly identify a subclone (say A) in
the tumor sample by its cell fraction.

Assumption 1: The regular spacing between the grid
points of property 1 is caused by consecutive integer
CNs in subclone A.

We now consider

Property 2: The point (1,1) is part of the grid pattern
suggested by property 1, even if there are no actual
points at (1,1).

and

Assumption 2: All grid points that fall on a lattice
point of subclone A (circled in Figure 3d), have normal
integer CNs in all other subclones than A.

This assumption means that no grid points at the lat-
tice points are due to CN variation in other subclones,
like the top red point in Figure 3a, or points of a second
subclone with identical size to A as in Figure 3c.

If in addition to assumptions 1 and 2, we have prop-
erty 2 holding, then condition 2 is satisfied, and we
can estimate integer CNs of subclone A in the genome
segments which fall at lattice points of subclone A. We
will call these segments type A segments with respect
to subclone A.

Further subclones may be identified using the same
strategy. The point (1,1) will be part of the lattice points
for each grid caused by CN alteration in one subclone
when the integer CNs of the other subclones are normal.
Therefore, (1,1) may be regarded as an observed grid
point in search of points fulfilling property 1, even if
there is no observed point there. With real data, the pos-
ition of (1,1) will not be identified until a first subclone
like A is found, so only subsequent subclone identifica-
tions can make use of it.
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Even other subclones may be quantified under add-
itional assumptions, as exemplified next.

Example of further subclonal cell fraction and integer CN
estimation

Imagine a tumor sample with an identified subclone A
according to properties 1 and 2 and assumptions 1 and
2, and with

Property 3: The grid plot has at least one point below
the lattice points of subclone A. (This indicates another
subclone, with a larger cell fraction than A.)

For an example, see the green grid points of Figure 3d.
Under the following assumption (which could be varied
in different ways), condition 1 holds, so we can correctly
identify a subclone (say C) in the tumor sample by its
cell fraction.

Assumption 3: The horizontal distance between (1,1)
and the average minor average CN of points below the
lattice points of subclone A corresponds to a difference
of integer CNs in subclone C of one.

We call segments with grid points falling below the
lattice points of subclone A type C segments. If we fur-
ther assume

Assumption 4: All type C segments have integer CNs
(0,1) in subclone C.

then we could continue to deduce integer CNs in sub-
clone A for those type C segments with grid points on a
new set of lattice points, based on assumptions parallel
to assumption 2 above.

Identical array CNs can originate from different integer
CNs

Given the unbiased, noise-free array CNs of Figure 4, it
is unknown which of the lattice points (g5, £5), (g3, g3) or
(g4, g4) corresponds to (1,1) integer copies. The scenarios
2, 3 and 4 involve different fractions a of cells displaying
the colored grid point CN alterations, different sets of
integer CNs, and different scaling factors between array
CNs and average CNs. The following algebra shows how
two consecutive scenarios (2 and 3) can result in identi-
cal total (that is, minor + major) array CNs (TCNs) and
BAFs, and hence identical array CNis.

For scenario 3, let ¢;3 and ¢,3 denote the integer CNs
in the aneuploid fraction a3 of cells of an arbitrary gen-
ome segment. Scenario 3 implies a3 = (g3 — g)/g3 (Equa-
tion 2) and a scale factor f; =gz relating array CNs to
average CNs. Hence the segment has:

TCN3 = {az(c13 + c23) +2(1 - a3) }g3

azcas + (1 - a3)
0.’3(C13 + 623) + 2(1 - 0.’3) '

BAF#P —

Next consider scenario 2, for which ay = (g - 1)/g2 o =%
and its integer CNs would be ¢;3 + 1 and ¢y3 + 1 for the same
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segment. We note that (g, —g1) = (g3 — £2) = Aag> = A3g3.
Consequently

TCN, = {az(c13 + 23 +2) +2(1 - a2) }g,
= {L3g3 (c1s + a3 +2) +252- %85 “3g3}g2
&> &>
a3g3(613 + Co3 + 2) + 2(g2 - 0{3g3)
= asg;(c13 + c23) + 2¢,

= asgs(c13 + c3) + 2(8’3 - “Sgs)
= {0(3(613 + 023) + 2(1 - ocg)}g3 = TCNj3

a(c +1) + (1 -ay)

BAFupper —
2 az(c13 +c23 +2) +2(1 - a2)

Z—z{az(czg +1)+(1-a)}

a
a—z{dz(cls +e23+2) +2(1 - a2)}

a3
azcp3 +az+ [ — —as
az

a
az(c13 + €3) + 2a3 + 2(5{_3 - 053)
3

I$)
a3Cr3 + — as3cy3 +==
2 _ 3

a
as(ci3 + c23) + 223 as(ci3 + ¢23) + Zg—2
az &3

as
[24

83 ~ 428y
3
az(c13 4 €23) + pREims

&3
_ wept(l-a3)
o a3(013 + C23) + 2(1 - 6{3)

a3cC3 +

— BAFP"

Resolving array CN scaling by approximate ploidy
calculation

Given the position of (1,1) integer copies in a grid plot
of noise-free array CNs, subclonal cell fractions and inte-
ger CNs can be derived for some segments and sub-
clones in fortunate samples under certain assumptions.
Unfortunately, the scaling (the position of (1,1)) of array
CNs is generally unknown. By calculating subclone spe-
cific ploidies for each potential position of (1,1), FACS
plots can sometimes help us resolve the scaling issue
(Figure 5).

This is how we estimate the ploidy of a selected sub-
clone A under properties 1 and 2 and assumptions 1 and
2. Given the potential scale factor g; =1, subclonal integer
CNs of A can be estimated for each segment j on lattice

points of subclone A’s grid plot by éli = (a-gi1)/
(gi_gi—l)’ Coj = (ﬂZ/_gi—l)/(gi_gi—l)’ where a; = (aljaﬂZj)

are minor and major array CNs.

If

Property 4: The fraction of the genome which cannot
be resolved for integer CNs in subclone A is negligible
with respect to the subclone’s average CN.
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then we can estimate the ploidy of subclone A by sum-

ming up these estimated integer CNs to Z {lj (611' + ézj)] ,
J

where /; is the genomic length of segment j, and dividing
the result by Zl,».
J

If at least one of the following holds, approximate
overall ploidy estimates (across all the tumor cells) can
be calculated from the array CNs for each potential pos-
ition of (1,1), and an independent overall ploidy estimate
from, for example, FACS runs may help resolve the array
CN scaling.

Property 5: The fraction of the genome which cannot
be resolved for integer CNs (via subclones) is negligible
with respect to the sample’s average CN.

Assumption 5: The average CN across the part of the
genome which can be assessed for integer CNs (via sub-
clones) is similar to the average CN across the rest of
the genome.

This is how, under either property 5 or assumption 5,
we estimate overall ploidy in a sample with one evident
subclone A. Given the potential scale factor g; =1, the
subclone A cell fraction is a = (g; - g; _1)/g;- Let:

overall ploidy = <§> Z {ﬂ,’ (51; + é2j)} +2 <$>

J

where 7; is the fraction of the genome associated with
segment j and p is a pathologist’s estimate of sample
purity. The relative size of subclone A among the tumor
cells, a/p, is also known as the subclone’s ccf.

In samples with one evident subclone A as well as evi-
dence of a larger subclone, C, we may refine the overall
ploidy estimate with the integer CN estimates men-
tioned earlier.

VAFs can sometimes help deduce the scaling of array CNs
In this section we use the example in Figure 4 to explain
the use of mutation VAFs to deduce the scaling of array
CNs. This procedure again requires a set of subjectively
chosen assumptions and only works under fortunate
circumstances.

A grid plot of simulated, noise- and bias-free array
CNs is shown in Figure 4a. The scale of the array CNs is
unknown. The four colored points suggest the grid pat-
tern drawn for a subclone A, but it is unknown whether
(1,1) integer copies happen at (g, 2), (g3, g3) or (g4, ga)-
The three scenarios areis illustrated in Figure b-d, which
all have one colored column for each of the colored gen-
ome segments in Figure 4a. Equally between the panels,
two of the segments have mutations on them (red
crosses), with VAFs as shown on the y-axes (simulated
without noise or bias).
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Each different scaling suggests different integer CNs
(¢1, ¢3) for the segments (labels on x-axes). For example,
if go =1 (Figure 4b), the blue segment must have integer
CNs (2,2) in subclone A. Given a pair of integer CNs (cy,
¢,), expected VAF levels can be derived under certain
assumptions.

If

Property 6: A mutation sits on a segment that falls on
a lattice point of a subclone A.

and we assume

Assumption 6: Mutations sit on a number of the ¢; + ¢,
local chromosomal copies in subclone A cells only.

in addition to relying on properties and assumptions 1
to 2, then we would expect VAF levels only in {ac/D, ¢ =1,
2, ..., €1 + C3}, where a is the cell fraction of subclone A,
and D is the total (minor + major) average CN at the mu-
tation’s genomic position, D = a(c; + ¢3) +2(1 — ). Under
these circumstances, and if g, =1 (Figure 4b), the muta-
tion on the blue segment in the example would sit on 1, 2,
3 or 4 of the 2 + 2 chromosomal copies. The four corre-
sponding expected VAF levels, simulated with sample
purity 90%, have been drawn as continuous, horizontal
lines. The other scenarios, g3 =1 (Figure 4c) and g4 =1
(Figure 4d), suggest other VAF levels (continuous, hori-
zontal lines).

If the sample purity p is known (for example, from a
pathologist’s examination) and if, instead of assumption
6, we assume

Assumption 7: Mutations sit on one or both of the
chromosomal copies of all tumor cells other than sub-
clone A.

then we would expect VAF levels only in {(p - a)c/D,
¢ =1, 2}. For mutations present in both subclone A cells
and all other tumor cells, assume

Assumption 8: Mutations sit on a number of the ¢; + ¢,
local chromosomal copies in subclone A cells, and on
one or both of the chromosomal copies of all tumor cells
other than subclone A.

We call such mutations clonal, and for these we expect
VAF levels only in {(ac+ (p —a)d)/D, ¢ =1, 2, ..., ¢1 + ¢o,
d =1, 2}. If g, =1 (Figure 4b), assumptions 7 and 8 and
a purity of 90% give the 10 expected VAF levels drawn
as dashed horizontal lines for the blue segment.

Pretending that assumptions 6 to 8 cover all possible
locations of mutations on segments that fall on the grid
plot lattice points fulfilling conditions 1 and 2, scenario
g4 =1 (Figure 4d) can be ruled out - one mutation VAF
in inexplicable as it does not coincide with a horizontal
line. If we make the assumption that

Assumption 9: Mutations are heterozygous and present
on all the copies of its homologue (thick continuous or
dashed lines).

we can also rule out the scenario g, =1 (Figure 4b)
and fix the average CNs of Figure 4c for this sample.
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Some samples have mutations which can help resolve
the array CN scaling, like this. Other samples may have
too few mutations, even in this optimal world with no
noise in VAFs or segmented CN data.

SNP array preprocessing and segmentation
Genome-wide SNP analysis of tumor and matched normal
samples was performed at AROS Applied Biotechnologies
a/s (Aarhus, Denmark) on Affymetrix Genome-Wide Hu-
man SNP Arrays 6.0 (Affymetrix, Santa Clara, CA, USA)
following the manufacturer’s instructions, with the 52
tumor samples and the 29 available matched normal sam-
ples. The arrays were preprocessed with the ASCRMAv2
single-array method in the aroma.affymetrix R package
[30,31], and further adjusted for SNP-specific allelic cross-
talk with CalMaTe [32]. Total (signal A plus signal B)
tumor SNP array signals were normalized (divided by) to-
wards total SNP array signals of matched normal samples
where available, or otherwise position-specific median
total SNP array signals across the normal samples, giving
TCNs for all tumors. BAFs were obtained and processed
using TumorBoost. Allele-specific CN segments were
identified from TCNs and BAFs with the paired or non-
paired PSCBS method [33] for samples with or without a
matched normal sample. After this step we have a minor
and a major array CN for each segment, equal to the me-
dian TCN(1 - BAFpper) and TCN(BAFpper) across the
SNPs in the segment. Two arrays failed this preprocessing.

The segmented array CNs were refined with HAPSEG
[34], which phases the SNP alleles by comparing the
sample-specific SNP data to large databases of normal
sample SNP datasets. We let HAPSEG join up the adja-
cent segments we supplied with similar CNs to a limited
extent (seg.merge.thresh =1 or 10™'° for different sam-
ples). HAPSEG significantly reduced CN bias in seg-
ments with allelic balance, which originally occurred
because segment BAFs were estimated by the median
distance between individual SNP BAF levels and 0.5, which
is >0 even for segments with allelic balance. It also rescales
the segment CNs so that they average to 1 for single ho-
mologues. The resulting homologue-specific segment CNs
are referred to as array CNs throughout this paper.

All data analyses in this study were made with R [35]
unless otherwise stated.

WES variant detection

DNA was extracted using the DNeasy Blood and Tissue
Kit® (Qiagen, Venlo, Netherlands) following the manu-
facturer’s instructions. DNA concentration was mea-
sured using the NanoDrop 1000 instrument (Thermo
Scientific, Waltham, MA, USA). Whole exome sequen-
cing was performed at DNAVision (Gosselies, Belgium).
Genomic libraries from the tumor and matched normal
samples were generated using the SureSelectXT Reagent
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Kit HSQ (Agilent Technologies, Santa Clara, CA, USA)
following the manufacturer’s instructions. Enrichment
was performed using the SureSelectXT Human All Exon
V4 + UTRs kit (Agilent) following the manufacturer’s
instructions.

Exome read alignment, filtering, variant calling and
annotation were performed as follows. Cutadapt 1.1 [36]
was used for quality-based adaptor trimming, sequence
reads were aligned to the GRCh37/hgl9 human refer-
ence genome using bwa-aln 0.7.7-r441 [37] and dupli-
cate reads marked using Picard tools [38]. Aligned reads
for each tumor-normal sample pair were combined into
one alignment file in BAM format, followed by local
indel realignment and base quality recalibration using
the Genome Analysis Tool Kit (GATK) software [39]. The
MuTect 2.7-1-g42d771f [40] program was used to identify
somatic point mutations. Predictions not labeled as (ERE-
JECT" were accepted as confident somatic mutation predic-
tions and considered for subsequent downstream validation
and analysis steps. Variant annotation was performed using
the Oncotator web-based service [41]. VAFs denote the
number of reads with the detected variant as a fraction of all
reads at the corresponding genomic position.

Scaling bias in SNP array B allele fractions
Grid plot skewness (Figure 7) is adjusted for as follows.
We assume that an unknown fraction a of the (germ-
line-contaminated) tumor sample contributes the most
visible, regular CN grid in the plot, and refer to this as
our main subclone A. Note that subclone A may be all
the tumor cells in the sample, in which case a is the
sample purity, or it may be a true subclone of tumor
cells. Within subclone A, each true single homologue
average CN e should, theoretically, follow:

es{(1-a)+ac,c=0,1,2,..}, (3)

where ¢ refers to the integer CNs in subclone A.
We model the observed minor and major array CNs
da = (a,ay) of an arbitrary CN segment as if they

S f12>

have been subject to a plane rotation F = <

f21 f22

of the average CNs e = (e, e;), which are functions of
the integer CNs ¢ = (c1,¢,) in A: a = Fe, that is:

(al) B <f11 f12> <l—a+acl>
ay)  \fu fn l-a+ac )

Qur aim is to estimate the rotation matrix F, as-
sumed to be common to all the CN segments in the
sample, and hence to derive the skewness adjusted
array CNs 4 = F —1a. The matrix F involves a scale
factor dependent on the unknown fraction a. For the

sake of grid rotation we use the maximum « that fits
the array CNs. This is the scaling scenario which
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corresponds to the smallest possible position of (1,1).
(The final scaling step for estimation of a and the inte-
ger CNs {(cy, ¢»)} is based on observed VAFs as de-
scribed below.)

We find M-estimates of @ and the matrix F numeric-
ally [42,43] by minimizing of the sum of the distances
from each CN segment a to its closest skewed lattice
point Fe weighted by the robust Tukey function and the
length of the genome segment corresponding to each a.
An M-estimator [44,45] is a generalization of the max-
imum likelihood (ML-) estimator. It minimizes the

n
summed values of a function p, F = argmianp(ri),
=1
where p is similar to but not necessarily a likelihood
function. We let r; = w;|a;,—Fe;| for each segment i,
where Fe; is the closest lattice point to 4;, and w; is a
weight <1 determined by the length /; of segment i (typ-
ically w; = 1-¢7/590000 ) t5 downweight short segments
(typically <1 Mb), which might have less reliable array
CNs. Tukey’s p function truncates its input in a smooth
fashion, so that observations far away have a limited in-
fluence on our estimate. In this way, we avoid segments
that violate the grid (for example, because they belong to
a different subclone), blurring our estimate of F. Figure 7c
shows a resulting grid plot after grid rotation.
Starting values ap and Fj for the grid rotation are de-
rived in two steps. Step 1 estimates a pre-start matrix

F = (f,“ f,l2> , with F’ =aF so that a pre-rotation
S S

(F ’)_lﬁ gives a non-skewed grid plot with unit incre-
ments between vertical and horizontal lattice points
(Figure 7b):

(al) :lF(l—a—l—rxcl)
a o 1—0.’4’(162

l-a
| e e
=F 1% )
—+to
a
l-a
(e - Ta
() ay ) | 1-a

Rough settings are collected by manually selecting in-
formative clusters in the skewed grid plot (Figure 7a):

d,, = vertical component of the distance between two
‘vertically' consecutive clusters

d, = horizontal component of the distance between two
‘horizontally’ consecutive clusters

slope, = slope of the line through two ‘vertically
consecutive clusters
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slope,. = slope of the line through two ‘horizontally
consecutive clusters

Let (c1j, ¢o;) and (cy; 11, €2 +1) be the (unknown) inte-
ger CNs of subclone A seen as two consecutive, ‘vertical’
clusters in the skewed grid plot, such that ¢y; +1=c¢;; 14
and Coj = C2j +1- Then

’ l—a / l—af
dy = <f11 [7 + Cl/“} +/1 [7 + C2i+1} >
| 1-a /| 1-a /
- <f11 [7 + Cl/} +/12 {7 + CZ/‘]) =fu

and similarly d, = f,,, slope, = £, /f 5, and slope, = f1,/f »-
We estimate the pre-start matrix F’ by:

!

fu=dy
, ) = dy
fg1 :f}l/slopey
S12 = fnslope..
In step 2 we estimate a,, the maximum possible fraction

a such that 0 <« <1. Starting from a selected lattice point
with allelic balance a grid with step size one is imposed on
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the pre-rotated Figure 7b, stretching as close to zero as
possible with all gridlines positive. Let the array CN levels
of the first two horizontal gridlines be a; and a;. Using
Equation 3 we derive a7, . = (a;-a;)/a;;, and similarly for
o). from vertical gridlines. We set start values for the
numerical optimization to ay = (a,,, + a,,,)/2 and
Fo=F'/a.

What is the origin of the grid bias, the skewness? We
further investigate the SNP array components from
which array CNs are computed: TCNs and BAFs. Note
that the BAFs here refer to the upper BAF of each seg-
ment, which is always between 0.5 and 1.

We plot the observed total array CNs a; + a, towards
the rotated, supposedly unbiased a, + a, (Figure 13a) as
well as observed (upper) BAFs a,/(a; + a,) towards the
rotated (upper) BAFs a,/ (a’l + a’z) (Figure 13b). Assum-
ing the rotated CNs are truly proportional to the true
average CNs, the graph suggests the original total CNs
(since proportional to rotated CNs) are indeed also pro-
portional to the true average CNs. The biased total array
CNs and the rotated ones have different scale factors,
but that cannot be the cause or adjustment for skewness.
In Figure 13a single homologue (minor and major) original

a b
O — e Minor CN A major CN N -
) (2]
®© 8 o
o< Qs 7
< £
T - = |
2 g .
O~ Lo ] /
g g 4 7
< < — y=x
o 4 o _| g y =-0.286 + 1.582 x
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< @ 23 - i
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Figure 13 Origin of skewness. (a) Sample 45 before versus after rotation TCNs are exactly proportional, whereas minor or major CNs show a
more complicated difference. (b) Sample 45 BAFs before rotation (upper) carry a 0.5 centered scaling bias compared to after rotation (upper), a
bias which causes grid plot skewness. (c) Imposed BAF bias on simulated array data in (d). (d) Grid plots of true and BAF-induced biased array
CNs in a simulated dataset.
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and rotated CNs are not just proportional to each other,
but seem subject to bias related to single CN magnitude.
Indeed, Figure 13b suggests BAFs carry scaling bias cen-
tered at 0.5. If had plotted the lower BAFs instead (which
are between 0 and 0.5), Figure 13b would have shown
points on the bottom left extension of the dotted line. Ei-
ther way the deviation between BAFs before and after rota-
tion is small for BAFs close to 0.5 and larger further away.
To investigate whether such a BAF bias may cause grid
plot skewness, we simulate a set of array CNs as in Figure 1,
and derive its true BAFs. We then created a biased dataset
with total array CNs as in Figure 1 but with BAFs biased
(Figure 13c) according to the estimated linear model in the
real dataset (Figure 13b). Plotting both the true and the
biased simulated array CNs in Figure 13d reveals that a 0.5
centered scaling bias of BAFs may indeed cause skewness
in grid plots.

The connection between grid plot skewness and bias
in BAFs introduces a relationship between the expected
association in Figure 13, BAF spserveq = k + I x BAF ., and
the rotation matrix F up to a scaling constant C:

1-k 1-k-1
F_C< ko k+l ) )
For the example sample 45 we estimated BAF,pserveq =
-0.286 + 1.582BAF, 14104» SO we should have F propor-

. 1.286 -0.286 . .
tional to <—O.296 1.296 ), and from the grid rotation
we indeed estimated:

0.447 -0.103 1.280 -0.294
F= <—0.101 0.452 > N 0'349( -0.289 1.295 )

Equation 4 imposes the restriction fi; + f51 = fi» + 2o on F
which can sometimes help the numerical optimization.

The BAF bias causes segments with very low minor
CNs to get upper BAFs biased down to 1 in the array pre-
processing steps. Such segments will appear as a horizon-
tal bottom line in original grid plots, and a sloped bottom
line after grid rotation. We believe that these segments
should have had a constant minor array CN, and so we
project the corresponding grid plot points vertically down
to the observed bottom line of constant minor array CNs
when the latter is evident.

Unless otherwise stated, we refer to array CNs as ro-
tated array CNs after projection of bottom sloped line

array CNs, and we drop the prime from a.

Estimation of subclonal architecture, cell fractions and
integer CNs in RESPONSIFY samples

The cell fraction and integer CNs are estimated for
type A segments of cells in the most evident subclone
A. According to our assumptions all other cells are
diploid in these segments.
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CN alteration in type B segments may be due to fur-
ther CN alteration in daughter subclones of A or by CN
alteration in subclones independent of A. For some seg-
ments which have many mutations we can deduce the
subclonal origin via the mutation VAFs as in the follow-
ing example. In Figure 11, VAFs in type A segments
(blue) match the expected VAF levels of subclone A
({ac/D, ¢ =cy, ¢y} with notation as above but now refer-
ring to estimates from real data), which is reassuring for
our analyses. VAFs in type B segments (pink) also match
expected VAF levels of subclone A ({ac/D, ¢ = ¢y, ¢} with
¢1, ¢ being fractional rather than integer CNs). This sug-
gests the true CNs indeed meet the fractional ¢;, ¢, in a
fraction a of the sample cells, which in turn suggests sub-
clone A has daughter subclones with further CN alteration
in these segments.

For 25 of the 48 samples resolved for array scaling we
identified an additional subclone C by the existence of a
lower grid pattern in the grid plot (see Materials and
methods). In these cases we call the lower grid pattern
segments type C segments, estimate the subclone C cell
fraction approximately, assign integer CNs (0,1) to the
subclone C type C segments, and estimate integer CNs
of subclone A in the type C segments via Equation 2.

All our samples lack regular grid patterns in high array
CN segments (red in Figure 8). We call these type D seg-
ments. Their CN alteration may take place in subclone
A (but the grid is not regular because the proportionality
between array CNs and average CNs breaks down with
high SNP array intensities), in subclone C or in any
other subclone. As for type B segments, some segments
which have many mutations can be assigned to a subclone
via the mutation VAFs. In the example of Figure 11, the
VAFs in type D segments (red) match the expected VAF
level of the minor homologue of subclone A ({ac;/D}
where ¢; is a fractional CN. This suggests that any
CN alteration in the minor homologue takes place in
subclone A.

Clonal or subclonal mutations in RESPONSIFY samples
Continued from the ‘Clonal or subclonal mutations’ section
in Results. Segment types are exemplified in Figure 8.

For samples with only one identified subclone A, we
classify each type A mutation as clonal if the CI falls
above (ac; + (p - a))/D -8, with § =0.1 (non-inferiority
test at significance level 5%), a, ¢; and ¢, estimates for
subclone A and D the estimate of the local minor +
major average CN. We classify a mutation as subclo-
nal if its CI falls below (ac; + (p — a))/D (one-sided in-
feriority test at significance level 5%). Some mutations
will be called ambiguous. For subclonal mutations we fur-
ther test whether they sit on subclone A or not, with
equality tests significant if the CI falls within ac;/D + § or
acy/D + 6.
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If, in addition to a most evident subclone A, a sam-
ple has another identified subclone C in a fraction y of
the cells, we assess whether the subclonal type A mu-
tations seem to sit on A only (CI € ac;/D+6§ or Cl €
acy/D £ 8), on C only (CI € y/D + §) or on both A and
C (CI € (ac1+y)/D+ 38 or CI € (acy+y)/D+9). The
extended procedure creates more ambiguous mutations,
since we only allow non-ambiguous classifications.

Mutations of type B or D are classified like A muta-
tions (so that equivalence to a specific subclonal ex-
pected VAF level suggests further daughter subclones
with CN alteration in B segments) unless the sample has
an identified subclone C. In case of the latter, segments
of type B or D may have (I) integer CNs (cy,, ¢o,) in sub-
clone A and (1, 1) in other tumor cells, or, they may
have (II) integer CNs (cy,, ¢3¢) in subclone C and (1, 1)
in other tumor cells, or something else. We classify the
type B and D mutations as outlined for type A mutations
(based on I) in parallel with an analogous procedure
based on II. Only mutations for which both classifica-
tions agree are finally assigned a class different from
ambiguous.

Type C mutations are classified as type B or D ones,
except in samples with an identified subclone C, for
which we set the minor homologue integer CNs in
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subclone C to (0, 1) instead of (1, 1), and adjust the sub-
clone A integer CNs according to Equation 2.

Approximately 35% of the 52 RESPONSIFY samples
have the majority of type B and D VAFs matching ex-
pected VAF levels for CN alteration in subclone A. Most
samples have no or only a handful of mutations in type
C segments.

Grid plots reveal bias

This section illustrates the benefit of two-dimensional
grid plots compared with one-dimensional histograms,
in order to reveal bias in array CNs.

Each point in the original (Figure 14a) and rotated
(Figure 14b) array CN grid plots shows the minor and
major array CN of a genome segment. In the Absolute
software, the minor and major array CNs are pooled and
shown in (one-dimensional) histograms (Figure 14c for
original and Figure 14d for rotated array CNs) with
heights proportional to segment lengths. Hence, each
segment is represented twice in the histograms - once
with the minor array CN and once with the major. Seg-
ments with subclone A two-dimensional CN estimates
(1,1), (2,2), (0, 2) and (1,2) have been colored equally in all
four panels (black, red, blue, green). The cyan segments
have non-integer CNs (between 1 and 2) with respect to
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subclone A. They may have further heterogeneity within
subclone A or originating from a subclone independent of
A. Absolute searches for equally interspaced peak centers
in the histogram with a maximum likelihood algorithm,
and each peak is assigned an integer CN estimate. Seg-
ments that fall significantly far from their closest peak
centers are classified as subclonal, under the assumptions
that (i) only one pattern of equally interspaced peaks can
occur, and (ii) the pattern reflects the clonal CNs of all
tumor cells in the sample. According to the CN coloring
in Figure 14, three colored histogram peaks are expected:
CN =0 (blue), CN =1 (black, green) and CN =2 (red, blue,
green). In the histogram of original array CNs (Figure 14a)
it is hardly possibly to identify the three CN levels, their
centers are not equally interspaced, and non-integer CNs
(cyan) are intermixed with the integer CNs. Since all our
samples have skewness, Absolute did not assign integer
CNs optimally.

Data and implementation

The preprocessed array CN data for the six samples dis-
cussed in this paper are available as Additional files 1, 2,
3, 4, 5 and 6, while the Oncotator annotated Mutect var-
iants for two of these samples are available in Additional
files 7 and 8. A CRAN package to identify grid patterns,
perform our grid rotation algorithm and calculate the
ITH endpoint will be available shortly with full documen-
tation under the name ‘Gridith’. A “Gridith” beta version
is available at https://github.com/fcaramia/GRIDITH.

Additional files

Additional file 1: Sample 5 preprocessed segment array CNs.
Additional file 2: Sample 9 preprocessed segment array CNs.
Additional file 3: Sample 11 preprocessed segment array CNs.
Additional file 4: Sample 16 preprocessed segment array CNs.
Additional file 5: Sample 29 preprocessed segment array CNs.
Additional file 6: Sample 45 preprocessed segment array CNs.

Additional file 7: Sample 5 mutect variants oncotator annotated
mindepth10.

Additional file 8: Sample 16 mutect variants oncotator annotated
mindepth10.
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