(GI A)n GigaScience, 2023, 12, 1-13
gCIENQE

DOI: 10.1093/gigascience/giad073
Research

OXFORD

Integrating deep mutational scanning and
low-throughput mutagenesis data to predict the impact
of amino acid variants

Yunfan Fu © 12, Justin Bedd ~ 2T, Anthony T. Papenfuss = »>**! and Alan F. Rubin = 2%t

1The Walter and Eliza Hall Institute of Medical Research, Bioinformatics Division, 1G Royal Pde, Parkville, Victoria 3052, Australia

2The University of Melbourne, Department of Medical Biology, Parkville, Victoria 3010, Australia

3peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia

*Correspondence address. Alan F. Rubin. 1G Royal Pde Parkville VIC 3052 Australia. E-mail: alan.rubin@wehi.edu.au; Anthony T. Papenfuss. 1G Royal Pde Parkville
VIC 3052 Australia. E-mail: papenfuss@wehi.edu.au

fContributed equally.

Abstract

Background: Evaluating the impact of amino acid variants has been a critical challenge for studying protein function and interpreting
genomic data. High-throughput experimental methods like deep mutational scanning (DMS) can measure the effect of large numbers
of variants in a target protein, but because DMS studies have not been performed on all proteins, researchers also model DMS data
computationally to estimate variant impacts by predictors.

Results: In this study, we extended a linear regression-based predictor to explore whether incorporating data from alanine scanning
(AS), a widely used low-throughput mutagenesis method, would improve prediction results. To evaluate our model, we collected 146
AS datasets, mapping to 54 DMS datasets across 22 distinct proteins.

Conclusions: We show that improved model performance depends on the compatibility of the DMS and AS assays, and the scale of

improvement is closely related to the correlation between DMS and AS results.
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Introduction

Deep mutational scanning (DMS) is a functional genomics method
that can experimentally measure the impact of many thousands
of protein variants by combining high-throughput sequencing
with a functional assay [1]. In a typical DMS, a complementary
DNA library of genetic variants of a target gene is generated,
containing all possible single amino acid substitutions. This vari-
ant library is then expressed in a functional assay system where
the DMS variants can be selected based on their properties. The
change in variant frequency in the pre- and postselection popula-
tions is determined by high-throughput sequencing, which is then
used to calculate a multiplexed functional score that captures the
variant’s impact [2-4]. The versatility of DMS assays makes it pos-
sible to measure variant impact on a wide range of protein prop-
erties, including protein binding affinity [5, 6], protein abundance
[7-9], enzyme activity [10, 11], and cell survival [12-14]. So far, hun-
dreds of DMS studies covering tens of thousands of nucleotides
have been published [15], and experiments targeting over a hun-
dred additional genes are under way according to MaveRegistry
[16].

Computational studies have used DMS data to build predic-
tive models of variant impact. These predictors use supervised
or semi-supervised learning models trained on experimental DMS
data and various protein features to make predictions [17-23]. En-
vision is one such method that used protein structural, physic-
ochemical, and evolutionary features to predict variant effect

scores and was trained on DMS data from 8 proteins using gra-
dient boosting [17]. Another method, DeMaSk, predicted DMS
scores by combining 2 evolutionary features (protein positional
conservation and variant homologous frequency) with a DMS
substitution matrix and was trained on data from 17 proteins
using a linear model [19]. Deep learning algorithms have also
been applied to build protein fitness predictors [18, 20], which
are usually based only on variant sequences. These variant ef-
fect predictors can also be benchmarked using DMS experimen-
tal results and assist in the interpretation of experimental data
[20, 24, 25].

Low-throughput mutagenesis experiments that measure tens
of variants at a time have also been used extensively to study di-
verse protein properties, including substrate binding affinity [26,
27], protein stability [28, 29], and protein-specific activities [30, 31].
Alanine scanning (AS) is a widely used low-throughput mutage-
nesis method [32, 33], and AS data are available for many pro-
teins. In this method, each targeted protein residue is substituted
with alanine, and the impacts of these variants are measured by
a functional assay [34]. AS experiments are typically used to iden-
tify functional hot spots or critical residues in the target protein
[35, 36] and have been used as a source of independent validation
for DMS studies [31, 37-39].

In this study, we explore whether a predictive model can be im-
proved by incorporating low-throughput mutagenesis data (Fig. 1).
We find that AS data can increase prediction accuracy and that
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Figure 1: Workflow for model training and testing. DMS and AS datasets are collected from online resources and are normalized. DMS and AS datasets
targeting the same protein are then matched, filtered, and merged. Two predictors are constructed and tested: the first uses DMS data, AS data, and
other protein features, and the second uses only DMS data and the same other protein features.

the improvement is related to the similarity of the functional as-
says and the correlation of DMS and AS results.

Methods

DMS data collection

DMS data were downloaded from MaveDB [40, 41], which were
then filtered and curated. DMS experiments targeting antibody
and virus proteins were removed because of their potentially
unique functionality. We retrieved the UniProt accession ID of
target proteins by searching the protein names or sequences in
UniProt [42], and proteins lacking available UniProt ID were also
excluded. Datasets that are computationally processed or their
wild-type-like and nonsense-like scores (see Normalization) can-
not be identified were also filtered out (Supplementary Table S1).
All missense variants with only a single amino acid substitution
were curated from the DMS studies for our analysis. A total of 130
DMS experiments from 53 studies [5, 6, 9-14, 24, 31, 37-39, 43-80]
were collected for our analysis.

Collection of AS data and other features

The following process was used to search for candidate AS stud-
ies. Papers were identified by searching on PubMed and Google
Scholar for the “alanine scan” or “alanine scanning” together
with the name of candidate proteins. While searching in Google
Scholar, we included the protein’s UniProt ID rather than molecule
name as the search term to reduce false positives. Appropriate AS
data were collected from the search results. Western blot results
were transformed to values by Image] if it was the only experi-
mental data available in the study. A total 146 AS experiments
were collected from 45 distinct studies [26-28, 30, 31, 81-86, 70,
87-119].

Protein features of Shannon entropy and the logarithm of vari-
ant amino acid frequency were downloaded from the DeMaSk on-
line toolkit [19]. The substitution score matrix feature was calcu-
lated from the mean of training DMS scores for each of the 380
possible amino acid substitutions before each iteration of cross-
validation.

Normalization

DMS and AS datasets were normalized to a common scale using
the following approach adapted from previous studies [17, 120].
Let D denote a protein study measuring scores sP for a single vari-
ant i, s, denote the scores for wild-type, and s2, represent the
score for nonsense-like variants. The normalized scores s are

given by

D D
, S —8S
SID: — wt +1

D D
Sut ~ Shon

Wild-type scores were directly identified from the paper or the
median score of synonymous variants. For DMS data, since not all
DMS studies report the score of nonsense variants, we defined the
nonsense-like scores as the median DMS scores for the 1% mis-
sense variants with the strongest loss of function for each dataset.
For AS data, nonsense-like scores were defined according to the
paper or by using the extreme values (Supplementary Table S1).

AS data filtering and matching

AS data subsets were filtered/matched according to either assay
compatibility or score correlation. For assay compatibility filter-
ing, we first categorized each DMS or AS assay by the protein prop-
erty or function using the following assay types: binding affinity,
enzyme activity, protein abundance, cell survival, pathogen infec-
tion, drug response, ability to perform a novel function, or other
protein-specific activities (e.g., transcription activity for transcrip-
tion factors) (Supplementary Table S1). The DMS/AS assay pairs
were then classified into 3 levels of compatibility based on these
categories (Supplementary Fig. S2). For each DMS dataset, we first
tried to use only AS data with high assay compatibility for further
modeling, removing AS data of medium and low assay compati-
bility. We then also tried to model with AS data of both high and
medium assay compatibility.

For score correlation matching, Spearman’s correlation (p) is
calculated between alanine substitution scores in each pair of AS
and DMS data. To avoid influence from the size of AS datasets, we
estimated the p value with the empirical copula, which is related
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to the standard estimator by a factor of (n—1)/(n + 1) [121, 122]:

n—1
n+1

prio=px

where p, is the regularized correlation coefficient, and n is the
number of alanine substitutions used for correlation calculation.
For each DMS dataset, the AS result with the highest p, was picked
for modeling.

AS data preprocessing

AS data were preprocessed prior to modeling. For variants with-
out available (filtered/matched) AS data, their AS scores were im-
puted with the mean value of all available AS scores across all
studies. Then the AS data were encoded by the wild-type and vari-
ant amino acid type with one-hot encoding. For each variant, the
AS feature is expanded with 2 one-hot vectors. Each of the vectors
has 19 zeros and 1 nonzero value that was the AS score, with the
location of the nonzero value indicating the wild-type or variant
amino acid type.

Training and evaluation of DMS score predictor

To build the predictors, we performed linear regression using
the function sklearn.linear model.LinearRegression from
scikit-learn [123]. Training and validation data were separated
with leave-one-protein-out cross-validation. In this process, data
from 1 protein were withheld for subsequent validation, and the
rest were used for training. This process was iterated over all
proteins in the data. Variants were inversely weighted during
the training process by the number of measurements available,
thus compensating for some regions having greater coverage with
DMS and AS assays. Predictors were trained on protein features,
DMS data, and (optionally) AS data using 4 different filtering or
matching strategies: (i) all DMS/AS data, (ii) compatibility-filtered
DMS/AS data, (iii) correlation-matched DMS/AS data, and (iv) a
control, constructed using DMS data only.

In the evaluation process, let V be protein variants assayed by
both DMS study D and AS study A. Variant scores are predicted
by the previously mentioned predictors either using AS data (§5)
or not (3v). Spearman’s correlation (p) was calculated between the
DMS scores s? and each set of predicted scores. The difference of
p was used to evaluate the performance change (Apy).

it = Spearman’s correlation (84, s?)
pv = Spearman’s correlation ($y, sb)

Apy = pf — py

To evaluate, we iterated over variants from each pair of DMS/AS
studies. Results were dropped for variants V with only 1 protein
residue available during analysis and visualization. Model perfor-
mance was compared using the following statistical tests. Results
in Fig. 5 and Supplementary Fig. S5 were tested with Welch'’s test,
and results in Supplementary Figs. S4 and S6 were tested with
paired t-tests. The P values were jointly corrected using the Holm-
Sidak method. The 95% confidence interval of median values was
calculated by Gaussian-based asymptotic approximation [124].

Prediction with other variant effect predictors

For PROVEAN [125] and SIFT [126], prediction results on tar-
get variants were directly downloaded from the precalculated
database for PROVEAN. For PolyPhen-2 [127] and GEMME [128],

variant scores were computed through their online toolkits, us-
ing the default settings. ESM-1v [129] was set up locally and run
according to its examples and documentations. EVE [130] results
were collected from their precalculated database and a bench-
marking study [131].

Results

Overview of DMS and AS data

To build the predictive model, 130 DMS datasets were collected
from MaveDB [40, 41] (Supplementary Table S1). We searched the
literature and found 146 AS datasets targeting the same proteins
as 54 of the DMS datasets. In total, we obtained both DMS and AS
data for 22 different proteins: 17 human proteins, 3 yeast proteins,
and 2 bacterial proteins. Most DMS experiments were highly com-
plete, with a mean coverage of 95.0% of all possible single amino
acid substitutions assayed in the target region, comprising 373,219
total protein variant measurements. AS data were only available
on a small number of protein residues (Fig. 2), and we were able
to curate 1,480 alanine substitution scores from the 146 studies.
Variant scores from collected DMS and AS studies were linearly
normalized to a common scale (see Methods) to make them com-
parable across datasets (Supplementary Fig. S1).

The correlation of DMS and AS scores is related
to assay compatibility

To evaluate the similarity of AS and DMS scores, we calculated
Spearman'’s correlation (p) between the AS scores and DMS scores
for the same alanine substitutions. Since each protein may have
results from several AS and DMS experiments, we calculated p
between each possible pair. The median p over DMS and AS data
(DMS/AS) pairs was 0.2, indicating that the experimental scores
were poorly correlated overall (Fig. 3).

We then considered if differences between AS and DMS assay
designs might contribute to this low agreement between scores.
To explore this, we developed a decision tree (Supplementary
Fig. S2) to classify whether DMS/AS pairs had low, medium, or
high assay compatibility, which we defined as a similarity mea-
surement of the functional assays performed. For example, the
DMS assay measuring the binding affinity of a cell surface pro-
tein, CXCR4, to its natural ligand [43] has high compatibility with
the AS experiment also measuring this ligand binding but has
low compatibility with the study on CXCR4's ability to facili-
tate virus infection [81]. A full assay compatibility table can be
found in Supplementary Table S1 with the compatibility classi-
fications and justification for each pair. We then compared DMS
and AS score correlation for each compatibility class and found
that score correlations were closely related to assay compatibility.
Data from low-compatibility assays had a median correlation of
0.15, rising to 0.19 for medium-compatibility assays and 0.40 for
high-compatibility assays (Fig. 4). This trend of increased corre-
lation for high-compatibility assay pairs holds across secondary
structures (Supplementary Table S4). This link between assay
compatibility and score correlation indicates that our decision
tree approach was able to capture the similarity between assay
systems.

Compatible AS data improve DMS score
prediction accuracy
To test if incorporating AS data into DMS score models would

improve prediction accuracy, we decided to build a new model
based on DeMasSk [19]. We chose DeMaSk because it showed bet-
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Figure 2: DMS data generally cover more protein residues than AS data. Each bar shows the number of residues assayed by DMS studies on given
target proteins. Color indicates the number of AS studies available for the DMS-tested residues.
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Figure 3: Correlation between DMS and AS data shows substantial variation. We calculated Spearman’s p between alanine substitution scores in each
pair of AS and DMS data. The results for pairs with fewer than 3 alanine substitutions are not shown. The red dashed line shows the median p.

ter performance compared to similar methods and was straight-
forward to modify. The published DeMaSk model predicts DMS
scores using protein positional conservation, variant homologous
frequency, and substitution score matrix, and we incorporated
AS data as an additional feature. Our new predictor was mod-

eled with all 130 DMS we collected, and we applied a leave-
one-protein-out cross-validation approach to training and testing,
avoiding information leakage for variants of the same protein tar-
get [17]. Prediction performance was evaluated using the Spear-
man’s correlation (p) between the experimentally derived DMS
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Figure 4: DMS and AS data pairs with high assay compatibility show a
higher score correlation. Each box shows the Spearman’s p between
DMS and AS data pairs for each level of assay compatibility or overall.
The correlation coefficients were calculated between alanine
substitution scores in each pair of AS and DMS datasets. Results for
pairs with fewer than 3 alanine substitutions were removed. P values
calculated using Welch’s test and corrected using Holm-Sidék, *P < 0.05;
notches show 95% confidence interval around median, and whiskers
show the full value range.

scores and the predicted scores for each pair of DMS and AS stud-
ies. The performance of our DMS/AS model was compared with a
model trained only on DMS data, equivalent to retrained DeMaSk
(Supplementary Fig. S3), by calculating the change of prediction p
(see Methods).

We trained our model with either all or a subset of AS data
we collected (Fig. 5, Supplementary Table S5). We first integrated
all 146 AS data collected for training and evaluation but ob-
served only a modest improvement of prediction p (Fig. 5, left
box, and Supplementary Fig. S4). We then retrained and evalu-
ated our model on filtered AS data with only high-compatibility
assays and observed a median increase in prediction Spearman’s
p of 0.1 compared to the results with no AS data (Fig. 5, mid-
dle box, and Supplementary Fig. S4). However, training with both
high- and medium-compatibility pairs reduced the performance
improvement (Supplementary Fig. S5). These results indicate that
medium- and low-compatibility pairs might provide inconsistent
training data, degrading model performance. We also evaluated
the impact of including high-compatibility AS data in an alter-
native model based on Envison [17, 132] and found similar re-
sults (Supplementary Fig. S6 and Supplementary Information). To
differentiate between high assay compatibility and high DMS/AS
score correlation, we trained the model using the most highly cor-
related AS result for each DMS dataset (see Methods). Although
the upper quartile was high, the median performance change of
this predictor was lower than the high assay compatibility model,
suggesting that matching with the highest score correlation alone
is insufficient (Fig. 5, right box). However, when applying a stricter
threshold, the correlation matched models still show limited im-
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Figure 5: Performance of variant impact prediction is improved using AS
data with high assay compatibility. The change in prediction p achieved
by including the AS data feature for each DMS and AS data pair is
shown as box plots. A higher value represents higher prediction
accuracy achieved for using AS data. Different approaches to
filtering/matching the data are shown on the x-axis: “All AS data” used
all available data; “Compatibility filtered” used only data of high assay
compatibility; “Correlation matched” used only data with the highest
regularized correlation for each DMS dataset. Results for data pairs with
only 1 residue are not shown. P values were calculated using Welch’s
test and jointly corrected using Holm-Sidak (Methods), *P < 0.05.
Notches show the 95% confidence interval around the median, and
whiskers show the full value range.

provement (Supplementary Fig. S7). Additionally, to ensure the
models performance is not biased by pseudo-replication of mul-
tiple datasets, we averaged DMS and AS scores that were part of
the same study and type of assay and saw similar results (Supple-
mentary Fig. S8).

Our compatibility-filtered predictor shows improved predic-
tion accuracy for these regions compared to not only the base-
line model but other widely used predictors as well (Supplemen-
tary Fig. S9). To further explore the higher performance of this
compatibility-filtered predictor, we examined the relationship be-
tween prediction p change and score correlation for each high-
compatibility DMS/AS pair (Fig. 6). For most pairs, prediction per-
formance was improved by using AS data, and the scale of im-
provement was also related to the score correlation. This relation-
ship could also be observed for multiple DMS/AS pairs from an in-
dividual protein, such as CXCR4 and CCR5. We saw the same trend
in the predictor trained with all DMS/AS pairs but noted that the
performance even of highly correlated pairs was worse, likely due
to the influence of low-compatibility training data on the model
(Supplementary Fig. S10).

We also explored the consequences of the sparsity of AS data
on our model in 3 ways: (i) by training only with variants that have
AS data available (Supplementary Fig. S11), (ii) by using a boost-
ing approach that focuses only on residues with AS data (Sup-
plementary Fig. S12 and Supplementary Information), and (iii) by
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using complete alanine substitution information from DMS as
the AS feature (Supplementary Fig. S13 and Supplementary In-
formation). The first approach gave lower absolute prediction per-
formance, presumably because the model was underfitted due
to the small number of variants. The last 2 approaches per-
formed very similarly to the primary model constructed using
high-compatibility DMS/AS data and simple mean score imputa-
tion.

To test the influence of amino acids on our predictor, we
grouped the prediction results by either wild-type or variant
amino acid and calculated the prediction improvement when AS
data were included (Fig. 7). We found that 14 of 19 wild-type amino
acids performed better with the addition of AS data, with cysteine
showing the largest improvement and performing worst in the
model lacking AS data. Eighteen of 20 variant amino acids ben-
efited from the inclusion of AS data, with marginal performance
decrease on lysine and aspartic acid (JAp| < 0.01) (Fig. 7). We also
noticed that variants to alanine are not most improved, but we ob-
served an overall trend showing higher improvement for amino
acids that are physiochemically similar to alanine (Supplemen-
tary Fig. S15).

Discussion

In this study, we integrated AS data into DMS score prediction,
leading to modest improvements in the accuracy of variant score
prediction. We also explored the impact of the diversity of protein
properties measured by DMS and AS. Filtering DMS and AS data
based on our manual classification of assay type compatibility led
to improved prediction performance.

A potential shortcoming of our current approach is that AS
data were available for only a small proportion of the DMS data.

Although most recent DMS studies can analyze variants of the
whole protein, most AS experiments only cover a handful of
residues in the target protein, leaving missing AS scores for the
vast majority of residues. We explored this here and found that al-
ternative methods for addressing the sparsity of AS data did not
improve or degrade performance, but we anticipate further im-
proved prediction accuracy if the low completeness and uneven-
ness of AS data are appropriately handled before modeling.

In this study, we identified the importance of DMS/AS assay
compatibility as a crucial factor for improving prediction accu-
racy. An issue with using this concept is that it further shrinks
already sparse data. It also fails to take advantage of the fact that
even for low-compatible assays, some fundamental information
like protein abundance can still be mutually captured. Instead
of hard filtering, proper implementation of this underlying in-
formation may facilitate variant impact prediction in the future.
Nonetheless, filtering on assay compatibility still leads to perfor-
mance improvement. We also briefly explored whether the con-
sistency of DMS and AS scores can be considered more directly by
matching the best-correlated AS data for each DMS dataset. Con-
sistency is partially driven by assay compatibility but also reflects
other features of the data, such as bias and noise.

The concepts of compatibility and data quality are also relevant
to training any DMS-based predictors. DMS assays have been de-
veloped to measure variant impacts to distinct protein properties,
and a variant can behave similarly to wild-type when measured
by one assay yet show altered protein properties in other assay
results, which are frequently found in regions with specific bio-
chemical functions [25, 133-137]. With more experimental assays
tobe applied, the diverse measurements may impede the progress
of future DMS-based predictors unless this assay effect is prop-
erly addressed, for example, by building assay-specific predictors.
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Measurement error is another source of DMS data heterogene-
ity that potentially affects the model performance. In our current
study, DMS scores of protein variants are weighted equally while
training. Adjustable weighting can be applied in future studies to
adapt the distinct experimental error between individual variants
and datasets, reducing the influence of low-confident data.

In summary, we conclude that the careful inclusion of low-
throughput mutagenesis data improves the prediction of DMS
scores, and the approaches described here can potentially be ap-
plied to other prediction methods.

Availability of Supporting Source Code and
Requirements

Project name: DMS_with_Alanine_scan

Project homepage: https://github.com/PapenfussLab/DMS_with_
Alanine_scan

Operating system: Platform independent

Programming language: Python

Other requirements: Python 3.10 or higher

License: MIT license

RRID: SCR_023949

Data Availability

A copy of the data analysis code and a full set of data files required
to reproduce this work are openly available in the GigaScience
repository, GigaDB, under the record described in [138]. MaveDB
accession numbers, UniProt accession numbers, and other meta-
data describing the matched DMS-AS datasets are listed in Sup-
plementary Table S1 (see supporting information).

Additional Files

Supplementary Table S1. All candidate DMS and alanine scan-
ning data with detailed dataset information.

Supplementary Table S2. Normalized DMS dataset with pro-
tein property features.

Supplementary Table S3. Normalized alanine scanning
dataset.

Supplementary Table S4. DMS/AS correlation on each sec-
ondary structural region.

Supplementary Table S5. Amount of data with AS scores avail-
able.

Supplementary Fig. S1. DMS and AS score distribution. The fig-
ure shows the kernel estimated density of normalized AS scores
and DMS scores for variants with or without available AS data.

Supplementary Fig. S2. Decision tree for classifying DMS and
AS assay compatibility. The similarity of DMS and AS assays is
compared (Methods) and the DMS/AS assay pairs are classified
using 3 levels of compatibility (low, medium, high). The leaf-
node text and color show the classified assay compatibility. The
number indicates the count of assay pairs for each compatibility
level.

Supplementary Fig. S3. Comparison between published and
reimplemented predictors. The plot shows leave-one-protein-out
cross-validation performance on predictors built from the pub-
lished DeMaSk code or our code. The predictors were trained and
evaluated on DMS data either provided by the DeMaSk study or
curated by our own. The “DeMaSk data & code” result is similar
to the published result. For the “Our data & DeMaSk code” re-
sult, we used our own data and published code, which shows a
median performance around 0.35. This is probably because many
more DMS results are included in our data. The similarity of re-
sults achieved using “Our data & code” demonstrates the cor-
rectness of our reimplementation. (Whiskers show the full value
range.)

Supplementary Fig. S4. Performance comparison between pre-
dictors with or without AS data. The Spearman’s p between DMS
scores and predicted scores for each DMS and AS data pair are
shown as box plots. Different approaches to filtering the data are
shown on the x-axis: “All AS data” used all available data; “Com-
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patibility filtered” used only data of high assay compatibility; “Cor-
relation matched” used only data with the highest regularized cor-
relation for each DMS dataset. The figure does not include data
without available AS scores. This means that the different results
are not directly comparable since they are computed for different
subsets of DMS/AS data pairs (for example, “All AS data” contains
all DMS/AS data pairs, but “Compatibility filtered” contains only
data pairs of high assay compatibility). Control results are shown
as green boxes for predictions on the same residues without AS
data as a feature. The underlying p for each data pair in the con-
trol results is the same, but the boxes are shifted due to data fil-
tering. Results for data pairs with only 1 residue are not shown. P
values were calculated using paired t-test and jointly corrected
using Holm-Sidék (Methods), *P < 0.05. Notches show the 95%
confidence interval around the median, and whiskers show the
full value range.

Supplementary Fig. S5. The change in prediction performance
for using data of different assay compatibility levels. The change
of prediction Spearman’s p for each DMS and AS data pair is
shown as box plots. A higher value represents higher predic-
tion accuracy achieved for using AS data. Different data-filtering
methods are shown on the x-axis. Results for data pairs with only
1 residue are not shown. P values were calculated using Welch’s
test and jointly corrected using Holm-Sidak (Methods), *P < 0.05.
Notches show the 95% confidence interval around the median,
and whiskers show the full value range.

Supplementary Fig. S6. Prediction performance is improved
while incorporating high-compatibility AS data into the Envision
model. The Spearman’s p between experiment DMS scores and
predicted scores for each DMS/AS assay pair with high compati-
bility are shown as box plots. The x-axis shows the predictor used,
either Envision or DeMaSk. Control results are shown as green
boxes for predictions on the same residues without AS data as a
feature. Results for data pairs with only 1 residue are not shown.
P values were calculated using paired t-test and jointly corrected
using Holm-Sidak (Methods), *P < 0.05. Notches show the 95%
confidence interval around the median, and whiskers show the
full value range.

Supplementary Fig. S7. Performance improvement on thresh-
olded correlation matching. The change of prediction p for each
DMS and AS data pair is shown as box plots. Different approaches
to filtering/matching the data are shown on the x-axis: “All AS
data,” “Compatibility filtered,” and “Correlation matched” are the
same results as previously discussed; while doing correlation
matching, a further thresholding (0, 0.25, or 0.5) on the regular-
ized DMS/AS correlation values (p,) was applied. Notches show the
95% confidence interval around the median, and whiskers show
the full value range.

Supplementary Fig. S8. Performance improvement on aver-
aged DMS/AS testing data. This figure shows model performance
when we averaged variant scores for DMS or AS data that are
(i) published in the same paper, (ii) targeting the same protein
region, and (iii) measured by the same type of assays (Supple-
mentary Table S1). The change of prediction p for each averaged
DMS and AS data pair is shown. A higher value represents higher
prediction accuracy achieved when using AS data. Different ap-
proaches to filtering/matching the data are shown on the x-axis:
“All AS data” used all available data; “Compatibility filtered” used
only data of high assay compatibility; “Correlation matched” used
only data with the highest regularized correlation for each DMS
dataset. Results for data pairs with only 1 residue are not shown.
Notches show the 95% confidence interval around the median,
and whiskers show the full value range.

Supplementary Fig. S9. Model performance on various variant
effect predictors. The Spearman’s p between DMS scores and pre-
dicted scores from different variant effect predictors for each DMS
and AS pair are shown as box plots. Results are evaluated on dif-
ferent sets of variant data shown on the x-axis: “All AS data” used
all available data; “Compatibility filtered” used only data of high
assay compatibility; “Correlation matched” used only AS data with
the highest regularized correlation for each DMS dataset. The fig-
ure does not include residues without available AS scores. Results
for data pairs with only 1 residue are not shown. Notches show the
95% confidence interval around the median, and whiskers show
the full value range.

Supplementary Fig. S10. Prediction performance change for
using all AS data. Each dot represents a DMS/AS data pair. The ver-
tical axis shows the change of prediction p by using AS data (larger
means higher performance achieved by using AS data). The hori-
zontal axis shows the DMS/AS score correlation for all variants on
the matched residues rather than just alanine substitutions. The
colors and shapes of the dots correspond to the target protein, and
size indicates the number of variants in each data pair. Results for
data pairs with only 1 residue are not shown.

Supplementary Fig. S11. Model performance for training with
AS data-available residues. The predictors were trained only on
variants that have AS data available. Panel A shows the perfor-
mance visualized by prediction Spearman’s p for DMS scores and
predicted scores for each DMS and AS data pair. Different ap-
proaches to filtering the data are shown on the x-axis: “All AS
data” used all available data; “Compatibility filtered” used only
data of high assay compatibility; “Correlation matched” used only
AS data with the highest regularized correlation for each DMS
dataset. Control results are shown as green boxes for predictions
on the same residues without AS data as a feature. Panel B shows
change of prediction p for each DMS and AS data pair. A higher
value indicates higher prediction accuracy achieved when using
AS data. Different approaches to filtering the data are also shown
on the x-axis as described. Notches show the 95% confidence in-
terval around the median, and whiskers show the full value range.

Supplementary Fig. S12. Boosting setup shows similar perfor-
mance as the main result. Each dot represents a filtered DMS/AS
data pair of high assay compatibility. The vertical and horizontal
axes show the prediction Spearman’s p for either modeled with
boosting or the 1-step (main result) setup. The colors and shapes
of the dots correspond to the target protein, and size indicates the
number of variants in each data pair.

Supplementary Fig. S13. Training with DMS scores of alanine
substitutions shows similar performance as the main result. The
vertical and horizontal axes show the prediction Spearman'’s p for
predictors either trained with DMS score of alanine substitutions
(DMS-Ala) or AS data of high assay compatibility (main result),
yet all evaluated on high-compatibility AS data. The colors and
shapes of the dots correspond to the target protein, and size indi-
cates the number of variants in each data pair.

Supplementary Fig. S14. Count of variant entries for each wild-
type or variant amino acid of high assay compatibility data. Neg.,
negatively; Pos., positively.

Supplementary Fig. S15. Relationship between amino acid
similarity and model performance. For each amino acid, its simi-
larity to alanine was computed by their DMS score correlation or
using BLOSUM scores as shown on the x-axis. The performance
improvement (Ap) for each wild-type (left) or variant (right) amino
acid while using AS data was computed as previously mentioned
(Fig. 7), with their Spearman’s correlation against the similarity
measurements shown in the figure. The label for each amino acid
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is colored by the amino acid physicochemical property. Neg., neg-
atively; Pos., positively.

Supplementary Information. Alternative baseline predictor
and approaches to incoporate AS data.
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