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Abstract 

Bac kgr ound: Evaluating the impact of amino acid variants has been a critical challenge for studying protein function and interpreting 
genomic data. High-throughput experimental methods like deep mutational scanning (DMS) can measure the effect of large numbers 
of variants in a target protein, but because DMS studies have not been performed on all pr oteins, r esear c hers also model DMS data 
computationally to estimate variant impacts by predictors. 

Results: In this study, we extended a linear r egr ession-based pr edictor to explor e whether incorporating data fr om alanine scanning 
(AS), a widely used low-throughput mutagenesis method, would improve prediction results. To evaluate our model, we collected 146 
AS datasets, mapping to 54 DMS datasets across 22 distinct proteins. 

Conclusions: We show that impr ov ed model performance depends on the compatibility of the DMS and AS assays, and the scale of 
impr ov ement is closely related to the correlation between DMS and AS results. 

Ke yw ords: deep mutational scanning, alanine scanning, machine learning, predictor 
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Introduction 

Deep mutational scanning (DMS) is a functional genomics method 

that can experimentall y measur e the impact of many thousands 
of pr otein v ariants by combining high-thr oughput sequencing 
with a functional assay [ 1 ]. In a typical DMS, a complementary 
DNA library of genetic variants of a target gene is generated,
containing all possible single amino acid substitutions . T his vari- 
ant library is then expressed in a functional assay system where 
the DMS variants can be selected based on their properties . T he 
change in variant frequency in the pre- and postselection popula- 
tions is determined by high-throughput sequencing, which is then 

used to calculate a multiplexed functional score that captures the 
variant’s impact [ 2–4 ]. The versatility of DMS assays makes it pos- 
sible to measure variant impact on a wide range of protein prop- 
erties, including protein binding affinity [ 5 , 6 ], protein abundance 
[ 7–9 ], enzyme activity [ 10 , 11 ], and cell survival [ 12–14 ]. So far, hun-
dreds of DMS studies covering tens of thousands of nucleotides 
have been published [ 15 ], and experiments targeting over a hun- 
dred additional genes are under way according to MaveRegistry 
[ 16 ]. 

Computational studies have used DMS data to build predic- 
tive models of variant impact. These predictors use supervised 

or semi-supervised learning models trained on experimental DMS 
data and various protein features to make predictions [ 17–23 ]. En- 
vision is one such method that used protein structural, physic- 
oc hemical, and e volutionary featur es to pr edict v ariant effect 
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cores and was trained on DMS data from 8 proteins using gra-
ient boosting [ 17 ]. Another method, DeMaSk, predicted DMS
cores by combining 2 evolutionary features (protein positional 
onserv ation and v ariant homologous fr equency) with a DMS
ubstitution matrix and was trained on data from 17 proteins
sing a linear model [ 19 ]. Deep learning algorithms have also
een applied to build protein fitness predictors [ 18 , 20 ], which
r e usuall y based onl y on v ariant sequences . T hese variant ef-
ect predictors can also be benchmarked using DMS experimen- 
al results and assist in the interpretation of experimental data
 20 , 24 , 25 ]. 

Low-thr oughput m uta genesis experiments that measure tens 
f variants at a time have also been used extensively to study di-
 erse pr otein pr operties, including substr ate binding affinity [ 26 ,
7 ], protein stability [ 28 , 29 ], and protein-specific activities [ 30 , 31 ].
lanine scanning (AS) is a widely used low-thr oughput m uta ge-
esis method [ 32 , 33 ], and AS data are available for many pro-
eins. In this method, each targeted protein residue is substituted
ith alanine, and the impacts of these variants are measured by
 functional assay [ 34 ]. AS experiments ar e typicall y used to iden-
ify functional hot spots or critical residues in the target protein
 35 , 36 ] and have been used as a source of independent validation
or DMS studies [ 31 , 37–39 ]. 

In this study, we explore whether a predictive model can be im-
r ov ed by incor por ating low-thr oughput m uta genesis data (Fig. 1 ).
e find that AS data can increase prediction accuracy and that
 Open Access article distributed under the terms of the Cr eati v e Commons 
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F igure 1: Workflo w for model tr aining and testing. DMS and AS datasets ar e collected fr om online r esources and ar e normalized. DMS and AS datasets 
targeting the same protein are then matched, filtered, and merged. Two predictors are constructed and tested: the first uses DMS data, AS data, and 
other protein features, and the second uses only DMS data and the same other protein features. 
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he impr ov ement is r elated to the similarity of the functional as-
ays and the correlation of DMS and AS results. 

ethods 

MS data collection 

MS data were downloaded from MaveDB [ 40 , 41 ], which were
hen filtered and curated. DMS experiments targeting antibody
nd virus proteins were removed because of their potentially
nique functionality. We r etrie v ed the UniProt accession ID of
ar get pr oteins b y sear c hing the pr otein names or sequences in
niProt [ 42 ], and proteins lacking available UniProt ID were also
xcluded. Datasets that are computationally processed or their
ild-type-like and nonsense-like scores (see Normalization) can-
ot be identified were also filtered out (Supplementary Table S1).
ll missense variants with only a single amino acid substitution
er e cur ated fr om the DMS studies for our anal ysis. A total of 130
MS experiments from 53 studies [ 5 , 6 , 9–14 , 24 , 31 , 37–39 , 43–80 ]
ere collected for our analysis. 

ollection of AS data and other features 

he following process was used to search for candidate AS stud-
es. P a pers wer e identified by searching on PubMed and Google
cholar for the “alanine scan” or “alanine scanning” together
ith the name of candidate proteins. While searching in Google
cholar, we included the protein’s UniProt ID rather than molecule
ame as the search term to reduce false positives. Appropriate AS
ata were collected from the search results. Western blot results
er e tr ansformed to v alues by Ima geJ if it was the only experi-
ental data available in the study. A total 146 AS experiments
er e collected fr om 45 distinct studies [ 26–28 , 30 , 31 , 81–86 , 70 ,
7–119 ]. 

Pr otein featur es of Shannon entr opy and the logarithm of v ari-
nt amino acid frequency were downloaded from the DeMaSk on-
ine toolkit [ 19 ]. The substitution score matrix feature was calcu-
ated from the mean of training DMS scores for each of the 380
ossible amino acid substitutions before each iteration of cross-
alidation. 
ormalization 

MS and AS datasets were normalized to a common scale using
he following a ppr oac h ada pted fr om pr e vious studies [ 17 , 120 ].
et D denote a protein study measuring scores s D i for a single vari-
nt i , s D wt denote the scores for wild-type, and s D non r epr esent the
core for nonsense-like variants . T he normalized scores s 

′ D 
i are

iven by 

s 
′ D 
i : = 

s D i − s D wt 

s D wt − s D non 
+ 1 

Wild-type scor es wer e dir ectl y identified fr om the pa per or the
edian score of synonymous variants. For DMS data, since not all
MS studies report the score of nonsense variants, we defined the
onsense-like scores as the median DMS scores for the 1% mis-
ense variants with the strongest loss of function for each dataset.
or AS data, nonsense-like scores were defined according to the
aper or by using the extreme values (Supplementary Table S1). 

S data filtering and matching 

S data subsets were filtered/matched according to either assay
ompatibility or scor e corr elation. For assay compatibility filter-
ng, we first categorized each DMS or AS assay by the protein prop-
rty or function using the following assay types: binding affinity,
nzyme activity, protein abundance, cell survival, pathogen infec-
ion, drug response, ability to perform a novel function, or other
rotein-specific activities (e.g., transcription activity for transcrip-
ion factors) (Supplementary Table S1). T he DMS/AS assa y pairs
ere then classified into 3 levels of compatibility based on these

ategories (Supplementary Fig. S2). For each DMS dataset, we first
ried to use only AS data with high assay compatibility for further

odeling, removing AS data of medium and low assay compati-
ility. We then also tried to model with AS data of both high and
edium assay compatibility. 
For score correlation matching, Spearman’s correlation ( ρ) is

alculated between alanine substitution scores in each pair of AS
nd DMS data. To avoid influence from the size of AS datasets, we
stimated the ρ value with the empirical copula, which is related
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to the standard estimator by a factor of ( n – 1)/( n + 1) [ 121 , 122 ]: 

ρr : = ρ × n − 1 
n + 1 

where ρr is the regularized correlation coefficient, and n is the 
number of alanine substitutions used for correlation calculation. 
For each DMS dataset, the AS result with the highest ρr was picked 

for modeling. 

AS data preprocessing 

AS data were preprocessed prior to modeling. For variants with- 
out available (filtered/matched) AS data, their AS scores were im- 
puted with the mean value of all available AS scores across all 
studies . T hen the AS data were encoded by the wild-type and vari- 
ant amino acid type with one-hot encoding. For each variant, the 
AS feature is expanded with 2 one-hot v ectors. Eac h of the vectors 
has 19 zeros and 1 nonzer o v alue that was the AS score, with the 
location of the nonzero value indicating the wild-type or variant 
amino acid type. 

Training and evaluation of DMS score predictor 
To build the predictors, we performed linear r egr ession using 
the function sklearn.linear_model.LinearRegression from 

scikit-learn [ 123 ]. Training and validation data were separated 

with leav e-one-pr otein-out cr oss-v alidation. In this pr ocess, data 
fr om 1 pr otein wer e withheld for subsequent validation, and the 
r est wer e used for tr aining. This pr ocess was iter ated ov er all 
proteins in the data. Variants were inversely weighted during 
the training process by the number of measurements a vailable ,
thus compensating for some regions having greater coverage with 

DMS and AS assa ys . Pr edictors wer e tr ained on pr otein featur es,
DMS data, and (optionally) AS data using 4 different filtering or 
matc hing str ategies: (i) all DMS/AS data, (ii) compatibility-filter ed 

DMS/AS data, (iii) corr elation-matc hed DMS/AS data, and (iv) a 
control, constructed using DMS data only. 

In the e v aluation pr ocess, let V be pr otein v ariants assayed by 
both DMS study D and AS study A . Variant scores are predicted 

by the pr e viousl y mentioned predictors either using AS data ( ̂ s A V ) 
or not ( ̂ s V ). Spearman’s correlation ( ρ) was calculated between the 
DMS scores s D V and each set of predicted scores . T he difference of 
ρ was used to e v aluate the performance change ( �ρV ). 

ρA 
V = Spearman 

′ s correlation 

(
ˆ s A V , s 

D 
V 

)

ρV = Spearman 

′ s correlation 

(
ˆ s V , s D V 

)

�ρV = ρA 
V − ρV 

To e v aluate, we iter ated ov er v ariants fr om eac h pair of DMS/AS 
studies. Results wer e dr opped for v ariants V with onl y 1 pr otein 

r esidue av ailable during anal ysis and visualization. Model perfor- 
mance was compared using the following statistical tests. Results 
in Fig. 5 and Supplementary Fig. S5 were tested with W elch’ s test,
and results in Supplementary Figs. S4 and S6 were tested with 

paired t -tests . T he P v alues wer e jointl y corr ected using the Holm–
Šidák method. The 95% confidence interval of median values was 
calculated by Gaussian-based asymptotic a ppr oximation [ 124 ]. 

Prediction with other variant effect predictors 

For PROVEAN [ 125 ] and SIFT [ 126 ], prediction results on tar- 
get v ariants wer e dir ectl y downloaded fr om the pr ecalculated 

database for PROVEAN. For PolyPhen-2 [ 127 ] and GEMME [ 128 ],
 ariant scor es wer e computed thr ough their online toolkits, us-
ng the default settings. ESM-1v [ 129 ] was set up locally and run
ccording to its examples and documentations. EVE [ 130 ] results
er e collected fr om their pr ecalculated database and a benc h-
arking study [ 131 ]. 

esults 

verview of DMS and AS data 

o build the pr edictiv e model, 130 DMS datasets were collected
r om Mav eDB [ 40 , 41 ] (Supplementary Table S1). We searc hed the
iter atur e and found 146 AS datasets targeting the same proteins
s 54 of the DMS datasets. In total, we obtained both DMS and AS
ata for 22 different proteins: 17 human proteins, 3 yeast proteins,
nd 2 bacterial proteins. Most DMS experiments wer e highl y com-
lete, with a mean cov er a ge of 95.0% of all possible single amino
cid substitutions assayed in the target region, comprising 373,219 
otal pr otein v ariant measur ements. AS data wer e onl y av ailable
n a small number of pr otein r esidues (Fig. 2 ), and w e w ere able
o curate 1,480 alanine substitution scores from the 146 studies.
ariant scor es fr om collected DMS and AS studies wer e linearl y
ormalized to a common scale (see Methods) to make them com-
ar able acr oss datasets (Supplementary Fig. S1). 

 he correla tion of DMS and AS scores is rela ted 

o assay compatibility 

o e v aluate the similarity of AS and DMS scores, we calculated
pearman’s correlation ( ρ) between the AS scores and DMS scores
or the same alanine substitutions. Since eac h pr otein ma y ha ve
 esults fr om se v er al AS and DMS experiments, we calculated ρ

etween each possible pair. The median ρ over DMS and AS data
DMS/AS) pairs was 0.2, indicating that the experimental scores 
er e poorl y corr elated ov er all (Fig. 3 ). 
We then considered if differences between AS and DMS assay

esigns might contribute to this low a gr eement between scor es.
o explore this, we developed a decision tree (Supplementary 
ig. S2) to classify whether DMS/AS pairs had low, medium, or
igh assay compatibility, which we defined as a similarity mea- 
urement of the functional assays performed. For example, the 
MS assay measuring the binding affinity of a cell surface pro-

ein, CXCR4, to its natural ligand [ 43 ] has high compatibility with
he AS experiment also measuring this ligand binding but has
ow compatibility with the study on CXCR4’s ability to facili-
ate virus infection [ 81 ]. A full assay compatibility table can be
ound in Supplementary Table S1 with the compatibility classi- 
cations and justification for each pair. We then compared DMS
nd AS scor e corr elation for eac h compatibility class and found
hat scor e corr elations wer e closel y r elated to assay compatibility.
ata from low-compatibility assays had a median correlation of 
.15, rising to 0.19 for medium-compatibility assays and 0.40 for
igh-compatibility assays (Fig. 4 ). This trend of increased corre-

ation for high-compatibility assay pairs holds across secondary 
tructures (Supplementary Table S4). This link between assay 
ompatibility and score correlation indicates that our decision 

r ee a ppr oac h was able to ca ptur e the similarity between assay
ystems. 

ompatible AS data improve DMS score 

rediction accuracy 

o test if incor por ating AS data into DMS score models would
mpr ov e pr ediction accur ac y, w e decided to build a new model
ased on DeMaSk [ 19 ]. We chose DeMaSk because it sho w ed bet-
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Figure 2: DMS data gener all y cov er mor e pr otein r esidues than AS data. Eac h bar shows the number of r esidues assay ed b y DMS studies on given 
tar get pr oteins . Color indicates the number of AS studies a v ailable for the DMS-tested r esidues. 

Figure 3: Correlation between DMS and AS data shows substantial variation. We calculated Spearman’s ρ between alanine substitution scores in each 
pair of AS and DMS data. The results for pairs with fewer than 3 alanine substitutions are not shown. The red dashed line shows the median ρ. 
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er performance compared to similar methods and was straight-
orw ar d to modify. The published DeMaSk model predicts DMS
cor es using pr otein positional conserv ation, v ariant homologous
requency, and substitution score matrix, and we incorporated
S data as an additional feature. Our new predictor was mod-
led with all 130 DMS we collected, and we applied a leave-
ne-pr otein-out cr oss-v alidation a ppr oac h to tr aining and testing,
voiding information leakage for variants of the same protein tar-
et [ 17 ]. Prediction performance was evaluated using the Spear-
an’s correlation ( ρ) between the experimentally derived DMS
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Figure 4: DMS and AS data pairs with high assay compatibility show a 
higher score correlation. Each box shows the Spearman’s ρ between 
DMS and AS data pairs for each level of assay compatibility or ov er all. 
The correlation coefficients were calculated between alanine 
substitution scores in each pair of AS and DMS datasets. Results for 
pairs with fewer than 3 alanine substitutions were removed. P values 
calculated using W elch’ s test and corrected using Holm–Šidák, ∗P < 0.05; 
notches show 95% confidence interval around median, and whiskers 
show the full value range. 

 

F igure 5: P erformance of v ariant impact pr ediction is impr ov ed using AS 
data with high assay compatibility. The change in prediction ρ achieved 
by including the AS data feature for each DMS and AS data pair is 
shown as box plots. A higher value represents higher prediction 
accur acy ac hie v ed for using AS data. Differ ent a ppr oac hes to 
filtering/matching the data are shown on the x-axis: “All AS data” used 
all available data; “Compatibility filtered” used only data of high assay 
compatibility; “Correlation matched” used only data with the highest 
r egularized corr elation for eac h DMS dataset. Results for data pairs with 
only 1 residue are not shown. P values were calculated using W elch’ s 
test and jointly corrected using Holm–Šidák (Methods), ∗P < 0.05. 
Notches show the 95% confidence interval around the median, and 
whiskers show the full value range. 
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scores and the predicted scores for each pair of DMS and AS stud- 
ies . T he performance of our DMS/AS model was compared with a 
model tr ained onl y on DMS data, equiv alent to r etr ained DeMaSk 
(Supplementary Fig. S3), by calculating the change of prediction ρ

(see Methods). 
We trained our model with either all or a subset of AS data 

we collected (Fig. 5 , Supplementary Table S5). We first integrated 

all 146 AS data collected for training and e v aluation but ob- 
serv ed onl y a modest impr ov ement of pr ediction ρ (Fig. 5 , left 
box, and Supplementary Fig. S4). We then r etr ained and e v alu- 
ated our model on filtered AS data with only high-compatibility 
assays and observed a median increase in prediction Spearman’s 
ρ of 0.1 compared to the results with no AS data (Fig. 5 , mid- 
dle box, and Supplementary Fig. S4). Ho w e v er, tr aining with both 

high- and medium-compatibility pairs reduced the performance 
impr ov ement (Supplementary Fig. S5). These results indicate that 
medium- and low-compatibility pairs might provide inconsistent 
tr aining data, degr ading model performance. We also e v aluated 

the impact of including high-compatibility AS data in an alter- 
native model based on Envison [ 17 , 132 ] and found similar re- 
sults (Supplementary Fig. S6 and Supplementary Information). To 
differentiate between high assay compatibility and high DMS/AS 
scor e corr elation, we tr ained the model using the most highly cor- 
r elated AS r esult for eac h DMS dataset (see Methods). Although 

the upper quartile was high, the median performance change of 
this predictor w as lo w er than the high assay compatibility model,
suggesting that matching with the highest score correlation alone 
is insufficient (Fig. 5 , right box). Ho w e v er, when a ppl ying a stricter 
thr eshold, the corr elation matc hed models still show limited im- 
r ov ement (Supplementary Fig. S7). Additionall y, to ensur e the
odels performance is not biased by pseudo-replication of mul- 

iple datasets, we av er a ged DMS and AS scores that were part of
he same study and type of assay and saw similar results (Supple-

entary Fig. S8). 
Our compatibility-filter ed pr edictor shows impr ov ed pr edic-

ion accuracy for these regions compared to not only the base-
ine model but other widely used predictors as well (Supplemen-
ary Fig. S9). To further explore the higher performance of this
ompatibility-filter ed pr edictor, we examined the r elationship be-
ween prediction ρ change and score correlation for each high- 
ompatibility DMS/AS pair (Fig. 6 ). For most pairs, prediction per-
ormance was impr ov ed by using AS data, and the scale of im-
r ov ement was also related to the scor e corr elation. This r elation-
hip could also be observed for multiple DMS/AS pairs from an in-
ividual pr otein, suc h as CXCR4 and CCR5. We saw the same tr end

n the predictor trained with all DMS/AS pairs but noted that the
erformance e v en of highl y corr elated pairs w as w orse, likely due
o the influence of low-compatibility training data on the model
Supplementary Fig. S10). 

We also explored the consequences of the sparsity of AS data
n our model in 3 ways: (i) by training only with variants that have
S data available (Supplementary Fig. S11), (ii) by using a boost-

ng a ppr oac h that focuses onl y on r esidues with AS data (Sup-
lementary Fig. S12 and Supplementary Information), and (iii) by 
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Figure 6: Prediction performance change is related to DMS and AS score correlation. Each dot represents a filtered DMS/AS data pair of high assay 
compatibility. The vertical axis shows the change of prediction ρ by using AS data (larger means higher performance achieved by using AS data). The 
horizontal axis shows the DMS/AS score correlation for all variants on the matched residues rather than just alanine substitutions . T he colors and 
shapes of the dots correspond to the target protein, and size indicates the number of variants in each data pair. Results for data pairs with only 1 
r esidue ar e not shown. 
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sing complete alanine substitution information from DMS as
he AS feature (Supplementary Fig. S13 and Supplementary In-
ormation). The first a ppr oac h gav e lo w er absolute prediction per-
ormance, pr esumabl y because the model was underfitted due
o the small number of variants . T he last 2 a ppr oac hes per-
ormed very similarly to the primary model constructed using
igh-compatibility DMS/AS data and simple mean score imputa-
ion. 

To test the influence of amino acids on our predictor, we
r ouped the pr ediction r esults by either wild-type or variant
mino acid and calculated the prediction improvement when AS
ata were included (Fig. 7 ). We found that 14 of 19 wild-type amino
cids performed better with the addition of AS data, with cysteine
howing the largest improvement and performing worst in the
odel lacking AS data. Eighteen of 20 variant amino acids ben-

fited from the inclusion of AS data, with marginal performance
ecrease on lysine and aspartic acid ( | �ρ| < 0.01) (Fig. 7 ). We also
oticed that variants to alanine are not most impr ov ed, but we ob-
erved an overall trend showing higher improvement for amino
cids that are physiochemically similar to alanine (Supplemen-
ary Fig. S15). 

iscussion 

n this study, we integrated AS data into DMS score prediction,
eading to modest impr ov ements in the accuracy of variant score
r ediction. We also explor ed the impact of the div ersity of pr otein
r operties measur ed by DMS and AS. Filtering DMS and AS data
ased on our manual classification of assay type compatibility led
o impr ov ed pr ediction performance. 

A potential shortcoming of our current approach is that AS
ata were available for only a small proportion of the DMS data.
lthough most recent DMS studies can analyze variants of the
hole protein, most AS experiments only cover a handful of

esidues in the target protein, leaving missing AS scores for the
ast majority of residues. We explored this here and found that al-
ernative methods for addressing the sparsity of AS data did not
mpr ov e or degr ade performance, but we anticipate further im-
r ov ed pr ediction accur ac y if the lo w completeness and une v en-
ess of AS data are appropriately handled before modeling. 

In this study, we identified the importance of DMS/AS assay
ompatibility as a crucial factor for improving prediction accu-
acy. An issue with using this concept is that it further shrinks
lready sparse data. It also fails to take adv anta ge of the fact that
 v en for low-compatible assa ys , some fundamental information
ike protein abundance can still be m utuall y ca ptur ed. Instead
f hard filtering, proper implementation of this underlying in-
ormation may facilitate variant impact prediction in the future.
onetheless , filtering on assa y compatibility still leads to perfor-
ance impr ov ement. We also briefly explor ed whether the con-

istency of DMS and AS scores can be considered more directly by
atc hing the best-corr elated AS data for eac h DMS dataset. Con-

istency is partially driven by assay compatibility but also reflects
ther features of the data, such as bias and noise. 

The concepts of compatibility and data quality are also relevant
o tr aining an y DMS-based pr edictors . DMS assa ys ha ve been de-
eloped to measure variant impacts to distinct protein properties,
nd a variant can behave similarly to wild-type when measured
y one assay yet show altered protein properties in other assay
 esults, whic h ar e fr equentl y found in r egions with specific bio-
hemical functions [ 25 , 133–137 ]. With more experimental assays
o be applied, the diverse measurements may impede the pr ogr ess
f future DMS-based predictors unless this assay effect is prop-
rl y addr essed, for example , by building assa y-specific predictors .
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Figure 7: Model performance is gener all y impr ov ed for each wild-type and variant amino acid. Prediction Spearman’s ρ when using (y-axis) or not 
using (x-axis) AS data on each wild-type (A) or variant (B) amino acid is shown in the scatterplots . T he results are colored according to the property of 
each amino acid type. Alanine (A) result is not applicable in the first figure since alanine scanning data are always missing when the wild-type is 
alanine itself. Absolute count for each amino acid can be found in Supplementary Fig. S14. Neg., negativ el y; P os ., positiv el y. 
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Measur ement err or is another source of DMS data heterogene- 
ity that potentially affects the model performance. In our current 
study, DMS scores of protein variants are weighted equally while 
training. Adjustable weighting can be applied in future studies to 
adapt the distinct experimental error between individual variants 
and datasets, reducing the influence of low-confident data. 

In summary, we conclude that the careful inclusion of low- 
thr oughput m uta genesis data impr ov es the pr ediction of DMS 
scor es, and the a ppr oac hes described her e can potentiall y be a p- 
plied to other prediction methods. 

Availability of Supporting Source Code and 

Requirements 

Project name: DMS_with_Alanine_scan 

Pr oject homepa ge: https://github.com/Pa penfussLab/DMS _ with _ 
Alanine _ scan 

Oper a ting system: Platform independent 
Pr ogramming langua ge: Python 

Other requirements: Python 3.10 or higher 
License: MIT license 
RRID: SCR_023949 

Da ta Av ailability 

A copy of the data analysis code and a full set of data files r equir ed 

to r epr oduce this work ar e openl y av ailable in the GigaScience 
r epository, GigaDB, under the r ecord described in [ 138 ]. Mav eDB 

accession numbers, UniProt accession numbers, and other meta- 
data describing the matched DMS-AS datasets are listed in Sup- 
plementary Table S1 (see supporting information). 

Additional Files 

Supplementary Table S1. All candidate DMS and alanine scan- 
ning data with detailed dataset information. 
Supplementary Table S2. Normalized DMS dataset with pro- 
ein property features. 

Supplementary Table S3. Normalized alanine scanning 
ataset. 

Supplementary Table S4. DMS/AS corr elation on eac h sec-
ndary structural region. 

Supplementary Table S5. Amount of data with AS scores avail-
ble. 

Supplementary Fig. S1. DMS and AS score distribution. The fig-
re shows the kernel estimated density of normalized AS scores
nd DMS scores for variants with or without available AS data. 

Supplementary Fig. S2. Decision tree for classifying DMS and 

S assa y compatibility. T he similarity of DMS and AS assays is
ompared (Methods) and the DMS/AS assay pairs are classified 

sing 3 le v els of compatibility (low, medium, high). The leaf-
ode text and color show the classified assay compatibility. The
umber indicates the count of assay pairs for each compatibility

e v el. 
Supplementary Fig. S3. Comparison between published and 

 eimplemented pr edictors . T he plot shows lea v e-one-pr otein-out
r oss-v alidation performance on predictors built from the pub-
ished DeMaSk code or our code . T he pr edictors wer e tr ained and
 v aluated on DMS data either provided by the DeMaSk study or
urated by our own. The “DeMaSk data & code” result is similar
o the published result. For the “Our data & DeMaSk code” re-
ult, we used our own data and published code, which shows a
edian performance around 0.35. This is probably because many 
or e DMS r esults ar e included in our data. The similarity of re-

ults ac hie v ed using “Our data & code” demonstr ates the cor-
ectness of our reimplementation. (Whiskers show the full value 
ange.) 

Supplementary Fig. S4. Performance comparison between pre- 
ictors with or without AS data. The Spearman’s ρ between DMS
cor es and pr edicted scor es for eac h DMS and AS data pair are
hown as box plots. Different approaches to filtering the data are
hown on the x-axis: “All AS data” used all available data; “Com-

https://github.com/PapenfussLab/DMS_with_Alanine_scan
https://scicrunch.org/resolver/https://scicrunch.org/resolver/RRID:
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atibility filtered” used only data of high assay compatibility; “Cor-
 elation matc hed” used onl y data with the highest r egularized cor-
 elation for eac h DMS dataset. The figur e does not include data
ithout av ailable AS scor es. This means that the different results
r e not dir ectl y compar able since they ar e computed for differ ent
ubsets of DMS/AS data pairs (for example, “All AS data” contains
ll DMS/AS data pairs, but “Compatibility filtered” contains only
ata pairs of high assay compatibility). Control results are shown
s green boxes for predictions on the same residues without AS
ata as a feature . T he underlying ρ for each data pair in the con-
r ol r esults is the same, but the boxes are shifted due to data fil-
ering. Results for data pairs with only 1 residue are not shown. P
 alues wer e calculated using paired t -test and jointly corrected
sing Holm–Šidák (Methods), ∗P < 0.05. Notches show the 95%
onfidence interval around the median, and whiskers show the
ull value range. 

Supplementary Fig. S5. The change in prediction performance
or using data of different assay compatibility le v els . T he change
f prediction Spearman’s ρ for each DMS and AS data pair is
hown as box plots. A higher value represents higher predic-
ion accuracy achieved for using AS data. Different data-filtering

ethods are shown on the x-axis. Results for data pairs with only
 residue are not shown. P values were calculated using W elch’ s
est and jointly corrected using Holm–Šidák (Methods), ∗P < 0.05.
otches show the 95% confidence interval around the median,
nd whiskers show the full value range. 

Supplementary Fig. S6. Prediction performance is improved
hile incor por ating high-compatibility AS data into the Envision
odel. The Spearman’s ρ between experiment DMS scores and

r edicted scor es for eac h DMS/AS assay pair with high compati-
ility are shown as box plots . T he x-axis shows the predictor used,
ither Envision or DeMaSk. Control results are shown as green
oxes for predictions on the same residues without AS data as a
eature. Results for data pairs with only 1 residue are not shown.
 v alues wer e calculated using pair ed t -test and jointl y corr ected
sing Holm–Šidák (Methods), ∗P < 0.05. Notches show the 95%
onfidence interval around the median, and whiskers show the
ull value range. 

Supplementary Fig. S7. Performance impr ov ement on thr esh-
lded correlation matching. The change of prediction ρ for each
MS and AS data pair is shown as box plots. Differ ent a ppr oac hes

o filtering/matching the data are shown on the x-axis: “All AS
ata, ” “Compatibility filtered, ” and “Correlation matched” are the
ame results as previously discussed; while doing correlation
atching, a further thresholding (0, 0.25, or 0.5) on the regular-

zed DMS/AS correlation values ( ρr ) was applied. Notches show the
5% confidence interval around the median, and whiskers show
he full value range. 

Supplementary Fig. S8. Performance impr ov ement on aver-
ged DMS/AS testing data. This figure shows model performance
hen we av er a ged v ariant scor es for DMS or AS data that are

i) published in the same pa per, (ii) tar geting the same protein
 egion, and (iii) measur ed by the same type of assays (Supple-
entary Table S1). The c hange of pr ediction ρ for eac h av er a ged
MS and AS data pair is shown. A higher v alue r epr esents higher
r ediction accur acy ac hie v ed when using AS data. Differ ent a p-
r oac hes to filtering/matching the data are shown on the x-axis:
All AS data” used all available data; “Compatibility filtered” used
nly data of high assay compatibility; “Correlation matched” used
nly data with the highest r egularized corr elation for eac h DMS
ataset. Results for data pairs with only 1 residue are not shown.
otches show the 95% confidence interval around the median,
nd whiskers show the full value range. 
Supplementary Fig. S9. Model performance on various variant
ffect predictors . T he Spearman’s ρ between DMS scores and pre-
icted scor es fr om differ ent v ariant effect pr edictors for eac h DMS
nd AS pair are shown as box plots. Results are evaluated on dif-
erent sets of variant data shown on the x-axis: “All AS data” used
ll available data; “Compatibility filtered” used only data of high
ssay compatibility; “Correlation matched” used only AS data with
he highest regularized correlation for each DMS dataset. The fig-
re does not include residues without available AS scores. Results

or data pairs with only 1 residue are not shown. Notches show the
5% confidence interval around the median, and whiskers show
he full value range. 

Supplementary Fig. S10. Prediction performance change for
sing all AS data. Each dot r epr esents a DMS/AS data pair. The v er-
ical axis shows the change of prediction ρ by using AS data (larger

eans higher performance ac hie v ed by using AS data). The hori-
ontal axis shows the DMS/AS score correlation for all variants on
he matc hed r esidues r ather than just alanine substitutions . T he
olors and shapes of the dots correspond to the target protein, and
ize indicates the number of variants in each data pair. Results for
ata pairs with only 1 residue are not shown. 

Supplementary Fig. S11. Model performance for training with
S data-av ailable r esidues. The pr edictors wer e tr ained onl y on
ariants that have AS data a vailable . Panel A shows the perfor-
ance visualized by prediction Spearman’s ρ for DMS scores and

r edicted scor es for eac h DMS and AS data pair. Differ ent a p-
r oac hes to filtering the data are shown on the x-axis: “All AS
ata” used all available data; “Compatibility filtered” used only
ata of high assay compatibility; “Correlation matched” used only
S data with the highest regularized correlation for each DMS
ataset. Contr ol r esults ar e shown as gr een boxes for pr edictions
n the same residues without AS data as a featur e. P anel B shows
 hange of pr ediction ρ for eac h DMS and AS data pair. A higher
alue indicates higher prediction accuracy achieved when using
S data. Differ ent a ppr oac hes to filtering the data ar e also shown
n the x-axis as described. Notches show the 95% confidence in-
erv al ar ound the median, and whiskers show the full v alue r ange.

Supplementary Fig. S12. Boosting setup shows similar perfor-
ance as the main r esult. Eac h dot r epr esents a filter ed DMS/AS

ata pair of high assay compatibility. The vertical and horizontal
xes show the prediction Spearman’s ρ for either modeled with
oosting or the 1-step (main result) setup. The colors and shapes
f the dots correspond to the target protein, and size indicates the
umber of variants in each data pair. 

Supplementary Fig. S13. Tr aining with DMS scor es of alanine
ubstitutions shows similar performance as the main result. The
ertical and horizontal axes show the prediction Spearman’s ρ for
r edictors either tr ained with DMS scor e of alanine substitutions

DMS-Ala) or AS data of high assay compatibility (main result),
et all e v aluated on high-compatibility AS data. The colors and
hapes of the dots correspond to the target protein, and size indi-
ates the number of variants in each data pair. 

Supplementary Fig. S14. Count of variant entries for each wild-
ype or variant amino acid of high assay compatibility data. Neg.,
egativ el y; P os ., positiv el y. 

Supplementary Fig. S15. Relationship between amino acid
imilarity and model performance. For each amino acid, its simi-
arity to alanine was computed by their DMS scor e corr elation or
sing BLOSUM scores as shown on the x-axis . T he performance

mpr ov ement ( �ρ) for each wild-type (left) or variant (right) amino
cid while using AS data was computed as pr e viousl y mentioned
Fig. 7 ), with their Spearman’s correlation against the similarity

easurements shown in the figure . T he label for each amino acid
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is colored by the amino acid physicochemical property. Neg., neg- 
ativ el y; P os ., positiv el y. 

Supplementary Information . Alternative baseline predictor 
and a ppr oac hes to incopor ate AS data. 
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