
research papers

820 https://doi.org/10.1107/S2059798323005855 Acta Cryst. (2023). D79, 820–829

Received 26 January 2023

Accepted 3 July 2023

Edited by D. G. Waterman, STFC Rutherford

Appleton Laboratory, United Kingdom

Keywords: RGFlib; robust statistics; serial

crystallography; robust peak-finding;

robust bad pixel mask making.

A Python package based on robust statistical
analysis for serial crystallography data processing

Marjan Hadian-Jazia,b* and Alireza Sadric

aThe Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Victoria 3052, Australia, bDepartment of

Medical Biology, The University of Melbourne, Parkville, Melbourne, Victoria 3052, Australia, and cSchool of Physics

and Astronomy, Monash University, Clayton, Victoria 3800, Australia. *Correspondence e-mail:

hadian-jazi.m@wehi.edu.au

The term robustness in statistics refers to methods that are generally insensitive

to deviations from model assumptions. In other words, robust methods are able

to preserve their accuracy even when the data do not perfectly fit the statistical

models. Robust statistical analyses are particularly effective when analysing

mixtures of probability distributions. Therefore, these methods enable the

discretization of X-ray serial crystallography data into two probability

distributions: a group comprising true data points (for example the background

intensities) and another group comprising outliers (for example Bragg peaks

or bad pixels on an X-ray detector). These characteristics of robust statistical

analysis are beneficial for the ever-increasing volume of serial crystallography

(SX) data sets produced at synchrotron and X-ray free-electron laser (XFEL)

sources. The key advantage of the use of robust statistics for some applications

in SX data analysis is that it requires minimal parameter tuning because of its

insensitivity to the input parameters. In this paper, a software package called

Robust Gaussian Fitting library (RGFlib) is introduced that is based on the

concept of robust statistics. Two methods are presented based on the concept of

robust statistics and RGFlib for two SX data-analysis tasks: (i) a robust peak-

finding algorithm and (ii) an automated robust method to detect bad pixels on

X-ray pixel detectors.

1. Introduction

In X-ray crystallography, statistics are used, among other

things, to describe data structures such as Bragg peaks in a

data set. Two popular examples of statistics that are used very

often are the standard deviation and the data average. These

statistics are called non-robust statistics. Non-robust statistics

are useful when the data set contains only a single data

structure and does not contain outliers. In such a case,

maximum-likelihood estimation can be used for data proces-

sing and to fit a model to data (Meer, 2004). In such appli-

cations and in order to use non-robust statistics, outlier-

rejection methods must be used, since non-robust statistics are

sensitive to outliers. However, if the data are contaminated

with outliers, non-robust statistics cannot be used directly on

the entire data set to provide a model for data. In such cases,

another type of statistics called robust statistics can be used

(Rousseeuw & Leroy, 1987).

In the statistics literature, a set of data points from noisy

measurements is called a data set. The problem of estimating

a model for a data set (with noisy data points) is called

geometric model fitting. Depending on the dimension of the

data points, the geometric model can be a constant (a) for 1D

data, a line (a + bx) for 2D data, a plane (a + bx + cy) for 3D

data and so on. In these cases a, b, c, . . . are called model

parameters and the target estimation model is called the

ISSN 2059-7983

Published under a CC BY 4.0 licence

https://creativecommons.org/licences/by/4.0/legalcode
http://crossmark.crossref.org/dialog/?doi=10.1107/S2059798323005855&domain=pdf&date_stamp=2023-08-16


structural model or data structure. Robust statistics have

proven to perform reliably in the presence of outliers (Huber,

2011). One of their main applications is to detect multiple

structures in data. Robust statistics can also perform well

when the noise densities are modelled with skewed densities

such as the Poisson probability density function. The median is

a popular example of a robust statistic, even though it is a

biased estimator with low efficiency.

In this paper, we introduce a software library package based

on modern robust statistical and clustering methods named

Robust Gaussian Fitting library (RGFlib). The functions

implemented in the library can help in the efficient analysis of

different data types including X-ray diffraction patterns.

RGFlib can also be used by existing data-analysis software

suites, as implemented in the popular Python and C

programming languages. Furthermore, we will discuss how

robust statistical methods can help to improve the data quality

in the analysis of X-ray serial crystallography (SX) diffraction

patterns. The aim of this paper is to demonstrate the use of

robust statistics in serial crystallography and to describe the

source code of the RGFlib Python package and how to use its

functions for data analysis.

2. Methods

In order to clarify the difference between robust and non-

robust statistics, an example of the application of robust

statistics for data analysis is provided as follows. Assume a

one-dimensional (1D) data set with a single structure (a

cluster of data values) with Gaussian noise and outliers as

shown in Fig. 1(a), where the outliers are shown in red. In this

case the data points are noisy measurements from the true

value 0 (the model parameter is a = 0). To generate this data

set, we sampled from a Gaussian probability density function

shown as a blue curve in Fig. 1(b) and added outliers. The

histogram of true data points is also shown with blue bars and

that of true outliers with red bars in Fig. 1(b). Here, the aim

is to fit a model, in this case a single parameter (the mean of

the Gaussian distribution), to data, find the scale (standard

deviation) of the noise and label the outliers. Total least

squares (TLS) is a popular non-robust method used for

analysing data with rare outliers. It is widely used in this type

of analysis. The mean-shift algorithm, on the other hand, is a

similar but robust method for this type of outlier-contaminated

data analysis (Fukunaga & Hostetler, 1975). The cost function

of TLS is defined as the sum of the squared algebraic distance

of every data point to the model (Meer, 2004). The single

model parameter can be calculated by minimizing the cost

function. Robust methods and their cost functions will be

introduced later. In this example, the cost functions for non-

robust and robust methods are shown as green and red curves,

respectively, in the parameter space in Fig. 1(b). The model

parameters calculated using non-robust and robust methods

are shown in Fig. 1(b) as green and red vertical lines,

respectively. This figure shows how outliers shift the model

and make the estimated model inaccurate when using the non-

robust method. Therefore, a robust statistic that can perform

reliably and accurately in the presence of outliers is required

to find the model parameters.

3. Robust Gaussian Fitting library (RGFlib)

Many challenges in the crystallographic data-analysis pipeline

can be traced back to outlier detection. An example of outlier

detection is finding Bragg peaks in X-ray crystallographic

diffraction patterns. We have developed a software library to

research papers

Acta Cryst. (2023). D79, 820–829 Hadian-Jazi and Sadri � RGFlib 821

Figure 1
An example of fitting a geometric model to a data set. (a) The true data points (blue markers) are samples from a Gaussian distribution and their density
is shown in blue in (b). The red markers are outliers and are samples from a uniform distribution in the range [1.5, 6.5]. The blue horizontal line on the
left shows the true model (line). The green line shows the result of using non-robust statistics and the red line shows the result of using robust statistics.
(b) The blue bars are the density of true data points and the red points are the density of outliers. The red curve shows the cost function used for the
robust method and the green curve shows the cost function for the non-robust method. As can be seen, the cost function of the robust method has its
optimum value where the density is close to maximum.



perform outlier detection, called the Robust Gaussian Fitting

library (RGFlib; Sadri & Hadian-Jazi, 2020). The following

section provides an overview of the RGFlib software,

including its functions and input parameters. The default

values of the input parameters are based on the statistical and

crystallographic literature, and will be explained for each

function. RGFlib is a software package developed in the C and

Python programming languages that includes robust statistical

functions which will be explained in this paper. The library is

useful in many stages of the crystallographic data-analysis

pipeline such as Bragg peak detection, bad pixel detection,

data calibration, data reduction, indexing and merging. Here,

we provide two examples where RGFlib was used for outlier

detection in serial crystallography: Bragg peak detection and

bad pixel detection in X-ray diffraction patterns. In Bragg

peak and bad pixel detection, proper modelling of the back-

ground intensities leads to accurate results.

RGFlib is designed to provide robust statistical functions

for separating out outliers in a data set using geometric

models. Using these functions requires very few assumptions

about the data, which will be explained later in this section.

This is one of the main advantages of robust statistical

methods. In this section, we will introduce the functions that

are implemented in RGFlib, their input and output and the

assumptions that are needed for the implemented algorithms

to perform efficiently.

3.1. Robust model fitting

An example of robust geometric model fitting is to fit a line

to a set of 2D data points as shown in Fig. 2(a). The noise is

modelled with a Gaussian probability density function in the

presence of outliers that are uniformly independent and

identically distributed.

The functions implemented in RGFlib include two main

robust methods. The first is an optimization method called fast

least kth-order statistics (FLkOS; Bab-Hadiashar & Hosein-

nezhad, 2008) that optimizes data-structure estimation; an

example of this is shown by the red line in Fig. 2(a). The

second method is a noise-scale estimator called the modified

selective statistical estimator (MSSE; Bab-Hadiashar & Suter,

1999) that calculates the standard deviation of the model.

The model fitted by the optimization method (FLkOS) and

the scale calculated by the robust estimator (MSSE) are used

to define a threshold to separate outliers from true data points.

The fitted model is shown in the example by the red line and

the threshold is shown by the purple line in Fig. 2(b).

3.1.1. Minimum number of true data points for FLkOS.

FLkOS is an optimization method that minimizes L1 (the

worst fitting error) of true data points (Bab-Hadiashar &

Hoseinnezhad, 2008). The major challenge of L1 minimiza-

tion is that the size of the true data set is initially unknown.

FLkOS can solve this problem if the user provides a rough

estimate of the size of the target data structure. This estimate

should be as large as possible, but must be smaller than the

size of the target structure with certainty.

Assuming that a model is non-robustly fitted to a sample of

true data points, sorting the data points by their fitting errors

will position some of the true data points that are far from the

model around the rough estimate of the structure size. This

allows another sample to be choosen from the data set that is

comprised of such data points. A model fitted to these data

points non-robustly will naturally minimize their fitting error.

This is repeated iteratively in FLkOS, which means that the

final model will have the minimal fitting error for data points

that are positioned around the structure size after sorting, and

hence L1 minimization is achieved.

research papers

822 Hadian-Jazi and Sadri � RGFlib Acta Cryst. (2023). D79, 820–829

Figure 2
An example of geometric line fitting in 2D space. (a) The blue line indicates the true model that the data are sampled from, the green line shows the
model fitted to the data set which is shifted away by outliers (red circles) from the true model and the red line shows the fitted model using RGFlib (with
the fitLine function), which is closer to the true model (blue line) than the non-robust model (green line). (b) Histogram of data-point distances from the
model; the orange curve shows the Gaussian model, the red line shows the average of the Gaussian density and the purple line shows the estimated
threshold of true data points calculated by RGFlib. The blue bars are the density of the true data points and the red bars are the density of the outliers.
The outliers can be seen on the right-hand side of the threshold.



In other words, given a set of m-dimensional data points

X = {x(j)}, j = 1, . . . , N, where xðjÞ 2 Rm, and using a model

with parameter �, the goal is to segment out the outliers. As in

Newton’s method (Huber, 2011), FLkOS minimizes the L2

norm cost function of a small subset of data, i.e. the para-

meters are optimized to minimize the fitting errors of a subset,

rather than the whole data set. Among all possible subsets of

X denoted by e here (e 2 X), some have lower fitting errors.

Assuming a subset e, the parameters of the model �e are

calculated using the linear regression method by fitting the

model to data points in e. The linear regression method

minimizes
P

e r2
j;�e

, where r2
j;�e

is the squared algebraic distance

of the jth data point in e from the model with parameters �e.

Assuming �e, the squared fitting errors, r2
i for the ith pixel, are

calculated for all data points in X. The pixels in X are sorted

according to their errors in ascending order.

The optimization algorithm chooses a new subset iteratively

using a sorting step until it finds a subset that represents the

target data structure. Data points are sorted according to their

distance from the model of the previous iteration. Therefore,

unlike Newton’s method, FLkOS is not sensitive to outliers as

it uses guided sampling for each iteration. FLkOS is an opti-

mization strategy that finds data points minimizing the cost

function iteratively. This method takes the minimum number

of true data points as input and finds the best fit regardless of

the initialization.

To fit the model, it assumes that a percentile of data belong

to the target data structure, while the aim of the method is to

find out whether or not more data points are true data points.

In other words, when sorted according to their distance to the

estimate of the model, up to the kth farthest data point is

assumed to belong to the model (for example the line in Fig. 2).

The parameter k is the initial estimate of the number of true

data points, which in RGFlib is called the ‘likely ratio’, and its

default value is set to 0.5%. To obtain an interpretation of this

parameter, for example in the Bragg peak-detection applica-

tion, where the goal is to robustly estimate the average of

background pixel intensities and separate them from Bragg

peak pixels (outliers), this assumption means that within any

reasonably large window in the diffraction-pattern image at

least half of the pixels belong to the background.

3.1.2. Gaussian cutoff threshold for MSSE. Assuming that

our definition of the signal-to-noise ratio (SNR) can effec-

tively represent the statistical separability of a Poisson density

from outliers, the MSSE method can be used to calculate the

variance of unknown true data and separate outliers. The

following steps are used to segment out the outliers in a data

set using the MSSE method. (i) The fitting errors (r2
i ) for all

data points are calculated. This is performed by taking the

squared difference between the actual value of the data point

and the predicted value from the model. (ii) The fitting errors

are sorted in ascending order (fitting errors are denoted r2
Ii

after sorting). (iii) After sorting, the MSSE method identifies

all data points ordered after the k̂kth data point as outliers if

r2
I

k̂k
>�2ð

P
r2

I
1;...;k̂k
=k̂k� �Þ. Specifically, MSSE detects a data

point as a true data point if its distance to the estimate from

the model is no more than an input value (denoted �) times

the standard deviation of the Gaussian. This value is a global

parameter in the algorithm, which is set between 2 and 4 in the

statistics literature (Huber, 2011). This is based on the fact that

more than 95% and 99% of a Gaussian density is within two

and four times its scale (standard deviation), respectively. The

points closest to the model are found by sorting them

according to their distance to the estimation. This procedure

is known as fitting a �2 density to the squared errors (Bab-

Hadiashar & Suter, 1999).

A traditional way of describing data points as outliers is by

defining an SNR for each one of them along with an input

threshold for the SNRs of true data points. There are many

possible definitions, but we use that of statistical separability

for SNR (Hadian-Jazi et al., 2013). Therefore, given a data point

with scalar value xp, a fitted Gaussian mean �B and a standard

deviation �B, the SNR is defined as SNR = (�B � xp)/�B.

3.2. Functions for robust geometric model fitting

RGFlib uses the above definitions and methods to fit a

model to true data points of a data set, which enables outlier

detection. The library supports scalar value fitting and

geometric model fitting (line and plane). In the case of value

fitting it also supports modelling by a unimodal skewed density

function. This is desirable for applications where the Gaussian

is suspected to be modified by an exponential probability

density function as a result of the presence of a Poisson

process and system noise. In the following sections the func-

tions of RGFlib are discussed.

3.2.1. MSSE. As discussed earlier, the MSSE function is for

the robust segmentation of true data points. The input of this

function is a vector of fitting errors for all data points and a

cutoff threshold for Gaussian density. For example, in Bragg

peak detection (Hadian-Jazi et al., 2021) the data points are

the intensity values of pixels and the goal is to model the

background intensities by fitting a plane. A fitting error, the

distance of each pixel value from the plane (model), is

calculated for each pixel. The pixels that are outliers to the

plane will be singled out as Bragg peaks and the rest form a

Gaussian distribution: the background intensities.

An example is provided to show how the software library

can be used to segment out the outliers. Firstly, a noisy data set

is generated. In this case, we assume that the variable

dataset_1D includes the fitting errors of the data set,

generated as follows:

The numbers 70 and 30 are chosen arbitrarily in this

example. The MSSE function from RGFlib can calculate the

scale (standard deviation) of the noise in the data set:

research papers

Acta Cryst. (2023). D79, 820–829 Hadian-Jazi and Sadri � RGFlib 823



The first input of this function is the vector of the data set

(which also includes outliers). The second input, MSSE_

LAMBDA, is the threshold for fitting errors of true data points,

as explained in Section 3.1.2, and is set to 3 by default (Sadri &

Hadian-Jazi, 2020). k is the minimum number of true data

points for a data structure, which is set to 12 by default

(Hoseinnezhad et al., 2010). A minimum for the absolute of

the fitting errors is also available as an input, minimum-

Residual, which is set to zero by default. If an input mask or

a set of weights for each data point is available, one can use the

function MSSEWeighted.

Fig. 3 demonstrates an example of the use of the MSSE

function implemented in the RGFlib software package that

can be used for segmenting outliers. In this figure the outliers

detected by MSSE are shown in red using the above Python

code.

3.2.2. fitValue. This function uses the FLkOS optimization

method (Bab-Hadiashar & Hoseinnezhad, 2008) to fit a value

to an input vector of data points. For example, this function

can be used to fit a Poisson density to a region of an X-ray

diffraction pattern to model the background intensity. The

robust optimization method can be used to find the mean of

the Poisson density without the impact of outliers. In the

following an example of the usage of this function is provided.

Here, the same data set from the MSSE example above is used

(with 70% true data points and 30% outliers). The fitValue

function from RGFlib can find the mean and standard

deviation of data without the impact of outliers. An example

of the application of fitValue is shown in Fig. 1. This figure was

generated using the demo in the test module of RGFlib which

uses the fitValue function as shown in the following code:

The input parameters for this function include likely-

Ratio and certainRatio. likelyRatio is explained in

Section 3.1.1 and by default is set to 0.5. certainRatio,

which is set to 0.3 by default, gives that portion of the data set

which is highly likely to be true data points. The sampling

mechanism in RGFlib is initially affected by certainRatio.

The fitValue function includes a feature (an input option

which can be True or False) called fit2Skewed. If this is

set to True, certainRatio will be reduced gradually until

the number of optimization iterations reaches a predefined

value (optIters). This enables the function to deal with

skewed probability density functions (Sadri et al., 2018).

modelValueInit enables initialization of the model

parameters, which is disregarded by default. The output of

fitValue is the robust mean and standard deviation of the

target structure, modelled by a Gaussian density. A demo is

provided in the test module of RGFlib to show the application

of this optimization method (Sadri & Hadian-Jazi, 2020).

Figs. 1, 2, 4 and 5 were generated using this demo and can be

regenerated by running the Python code available in the test

module on the RGFlib GitHub page (Sadri & Hadian-Jazi,

2020). Using downsampling, it is possible to speed up the

method. In this case, downSampledSize can be used to

define the size of the subset.

In order to increase the accuracy of the estimates,

medianOfFits can be used. This method repeats the above

process and calculates the median of the set of solution

parameters as the result.

3.2.3. fitLine. Given a 2D data set in Cartesian coordinates,

this function fits a line robustly to the 2D data points. The

function works similarly to fitValue but in 2D. The output

includes three values: the slope and intercept of the line and

the noise scale of the true data points. An example of the

application of this function is shown in Fig. 2. The demo in the

test module of RGFlib was used to generate this figure. The

following code provides an example usage of the fitLine

function from RGFlib in Python language:

3.2.4. fitPlane. Given a 3D data set in Cartesian coordi-

nates, this function fits a plane robustly to the data points. This

function works similarly to fitLine.

The output is composed of four parameters: three to define

the plane (ax + by + c) and one to estimate the scale (standard

deviation) of the true data-point noise. An example of the

application of this function is shown in Fig. 4. Fig. 4(a) shows a

simulation of part of an X-ray diffraction pattern image and

Fig. 4(b) shows modelling the background of the image using

fitPlane. This figure was generated using the demo in the test

module of RGFlib.

The Python code for the example is as follows:

3.2.5. fitBackground. This function takes an image as input

and uses fitPlane to estimate the background intensity mean

and standard deviation for each pixel in the image. The output

research papers

824 Hadian-Jazi and Sadri � RGFlib Acta Cryst. (2023). D79, 820–829

Figure 3
An example of the use of the MSSE function implemented in the RGFlib
software package. The true data points are shown in green and the
outliers are shown in red. In this example � = 3.



can then easily be used to calculate the SNR for each pixel. An

example is shown in Fig. 5. This figure was generated using the

demo in the test module of RGFlib which uses the fitBack-

ground function as shown in the code below. In this figure, the

input image shows Bragg peaks close to the water ring. The

image in this figure has been enlarged to show the peaks

clearly; therefore, the ice ring is not visible. A horizontal plane

cannot model the background properly, for example the mean

or the median of the data. The SNR can be calculated more

accurately if the plane is free to tilt according to the spatial

gradient in the diffraction pattern. The fitBackground function

from RGFlib can estimate the background of the image as a

tilted plane.

The above code shows an example of the usage of the

function. The input of the function is an image. A mask for the

image can be incorporated if required. To perform plane

fitting to the background intensities, a window size can be set

via winX and winY, which are by default set to the input

image size. numModelParams can be set to 1 or 4. When it is

set to 4, which is the default in the program, a tiltable plane

(model) with three parameters will be estimated for the data.

When it is set to 1 the data will be modelled with a horizontal

plane. In machine learning, a sliding window is a window that

slides across the data and performs a mathematical operation

such as convolution. The distance that the window moves in

each step is called the stride (Holbrook & Cook, 2022). Using

sliding windows produces multiple maps for the background

intensity values and noise scales. The average of these values

provides an accurate estimate of the background model

parameters. Therefore to increase the accuracy, numStrides

can be used to set the number of strides of the window over

research papers

Acta Cryst. (2023). D79, 820–829 Hadian-Jazi and Sadri � RGFlib 825

Figure 5
(a) A diffraction pattern with three Bragg peaks close to the water ring (the background intensity has a nonzero gradient). (b) The background intensity
modelled by tilted planes using the RGFlib fitBackground function. (c) The diffraction pattern from which the background has been removed and every
pixel has been normalized by the scale (standard deviation) of the noise. Bragg peaks are detectable after robust segmentation of the background.

Figure 4
An example of plane fitting in 3D space. (a) Part of an X-ray diffraction pattern where a Bragg peak with high SNR is visible. (b) The pixel values are
shown as data points in three dimensions. The red plane is the robust model fitted to true data points (blue markers) and those above the threshold
(purple plane) are considered as outliers (red markers).



the image. minimumResidual is the same as explained for

the input of the MSSE function. The output of the function is

two images with the same size as the input image. One is the

model value at each pixel and the other is the scale of the noise

for each pixel.

The optimizations mentioned above are implemented in the

C programming language along with wrappers in Python to

achieve a high processing speed. Moreover, most functions in

RGFlib come in two forms: they can run in serial or parallel

using the Python built-in multiprocessing package1. This can

speed up the processes when used with cluster computers.

4. Applications of robust statistics in serial
crystallography data analysis

In a serial crystallography experiment the samples are deliv-

ered via fixed-target holders (Frank et al., 2014), a liquid jet

(Berntsen et al., 2019) or a tape such as Kapton or Mylar

(Roessler et al., 2013). The X-ray beam interacts with both the

crystals and the jet and a diffraction pattern will be recorded

on the detector (Chapman et al., 2011). An example of a

detector is the AGIPD-1M at the SPB/SFX beamline of the

European XFEL (EuXFEL; Allahgholi et al., 2015; Mancuso

et al., 2019). In a single SX experiment, hundreds of millions of

diffraction-pattern images are produced; however, many of

them do not include Bragg peaks and these patterns are called

‘non-hits’. Patterns that contain Bragg peaks are called ‘hits’

(Schlichting, 2015) and can be used to solve the structure of

the crystal. The volume of data generated in an experiment

can be significantly reduced if only the informative patterns

(hits) are saved for further analysis. Therefore, it is very

important to accurately separate hit and non-hit frames, a

process called ‘hit-finding’. Hit-finding is achieved using a

Bragg peak-detection method (called ‘peak-finding’ in the

literature; Schlichting, 2015) and counting the number of

detected peaks in each diffraction pattern. The RGFlib utility

software package described here is a standalone Python

package that can be used for data analysis. The following

sections provide a brief overview of two use cases for the

package in the field of SX. These use cases were previously

published in Hadian-Jazi et al. (2021) and Sadri et al. (2022).

In the following section, we will discuss how we used robust

statistics and RGFlib to improve the accuracy and speed of

data reduction through effective hit-finding. We developed

a peak-finding method called Robust Peak Finder (RPF;

Hadian-Jazi et al., 2017) based on the robust statistics imple-

mented in RGFlib. We then evaluated the performance of

RPF for data reduction in several experiments (Hadian-Jazi et

al., 2021).

We also applied RGFlib and modern robust statistical

methods to another SX data-analysis step. We developed a

method for making bad pixel masks called Robust Mask

Maker (RMM) that detects bad pixels in X-ray detectors

(Sadri et al., 2022). Since hit-finding algorithms label a frame

as a hit when the number of detected Bragg peaks therein is

greater than a threshold, both peak-finding and making bad

pixel masks are important steps in order to accurately identify

hit frames. This makes the peak-finding algorithm a very

important step in data reduction and also for the rest of the SX

data-analysis pipeline. Identifying defective pixels in diffrac-

tion frames is a critical task, since peak-finding methods will

detect the high intensity values of bad pixels in a pattern as

Bragg peaks. Labelling bad pixels as peaks will lead to the

storage of uninformative diffraction patterns as hits.

4.1. Robust statistics for peak-finding

An important goal in the serial crystallography data-

analysis pipeline is to improve peak-finding and extract

informative patterns so that we can avoid the storage of non-

informative patterns through the hit-finding process. This will

help to reduce the amount of data that is generated during

each experiment in a facility such as EuXFEL. Detecting

Bragg peaks accurately is also critical in order to perform

further analysis such as indexing. There has been research to

improve the accuracy and speed of peak-finding methods such

as CASS (Foucar et al., 2012), Cheetah (Barty et al., 2014),

OnDA (Mariani et al., 2016) and RPF (Hadian-Jazi et al.,

2017). There has also been research in robust background

modelling of diffraction patterns such as in the DIALS soft-

ware package (Parkhurst et al., 2016) and also in the RPF

algorithm (Hadian-Jazi et al., 2021).

We used RPF as an online monitoring method for data

reduction (Hadian-Jazi et al., 2021). One of the main advan-

tages of RPF over existing methods such as PF8 (Barty et al.,

2014) is that the process of RPF can be parallelized. This is

because modelling of the background is performed locally

within a window around each candidate Bragg peak. PF8

(Barty et al., 2014), for example, uses radial information for

peak-finding and therefore requires geometry correction and

access to information from all detector panels before the start

of the process.

In the following, we provide a brief overview of how RPF

uses robust statistics for the detection of Bragg peaks. RPF

performs the detection of peaks from background in three

main steps: (i) finding candidate peak pixels, (ii) modelling the

background intensities robustly and estimating the SNR of the

candidate pixel, and (iii) labelling candidate pixels and their

neighbouring pixels as peaks if their calculated SNR is above a

predefined threshold such as 6, which is the default value in

RPF.

In the first step of RPF, a pixel is considered to be a

candidate if its intensity value is a local maximum and is above

a threshold, which is initially the median of the data within a

local region. This threshold is updated as the background

around the candidate Bragg peak is modelled more accurately.

One hyper-parameter here is the size of the local window

around a Bragg peak to model the background. The default

size is 32 � 32 pixels for the AGIPD-1M detector. The fitted

model is a plane and the SNR of the candidate pixel is

calculated with respect to the data within this window.

research papers

826 Hadian-Jazi and Sadri � RGFlib Acta Cryst. (2023). D79, 820–829

1 This package is most efficient for Linux-based OS where forking processes
are supported.



In the last step of the algorithm, if the SNR of the candidate

pixel is above a predefined threshold then all surrounding

pixels above the background intensity will be labelled as part

of the Bragg peak. The output of the algorithm is a peak list

that includes the statistics of the detected Bragg peaks in each

diffraction pattern.

Fig. 6 provides an example of a diffraction pattern from

the AGIPD-1M detector at the SPB/SFX beamline at the

EuXFEL. Fig. 6(a) shows the Bragg peaks detected by both

the RPF and PF8 methods. Fig. 6(b) shows an example of

Bragg peaks that were detected with RPF and missed by PF8.

Fig. 6(c) shows the estimated local background intensities

using a tilted four-parameter plane, which was calculated using

robust methods (RPF). Figs. 6(d) and 6(e) show the estimated

SNR for each pixel surrounding the same Bragg peak using

a robust and a non-robust method, respectively. These two

figures show that the estimated SNR for the Bragg peak is 6.3

using the robust method and 5.8 using the non-robust method,

which is below the SNR threshold of 6 (Hadian-Jazi et al.,

2021).

The main implementation of the RPF code is in C to achieve

high speed. It inherits two functions from RGFlib: (i) MSSE to

calculate the noise scale and (ii) the robust fitting of a tilted

plane to pixel intensities in a given window of a diffraction

pattern, as explained for fitPlane.

We tested the performance of RPF on many data sets, both

real and simulated, and compared different crystallographic

statistics such as CC*, SNR and Rsplit, obtained using the

CrystFEL package (White et al., 2012), of the output with

those obtained using established methods, especially using

PF8 from the Cheetah package (Barty et al., 2014). The results

are presented in Hadian-Jazi et al. (2021). These results

suggest that conventional methods might miss weaker Bragg

peaks. If the sensitivity of non-robust methods is increased in

order to detect weaker Bragg peaks, noise will also be

detected as Bragg peaks. The results in Hadian-Jazi et al.

(2021) show that RPF can achieve effective data reduction and

can also provide accurate and reliable detection of Bragg

peaks.

4.2. Robust statistics for bad pixel mask making

In this section, we will provide a brief overview of how

robust statistics are used in another application in SX data

analysis. In an SX experiment most of the diffraction patterns

are non-hit and they do not include crystal structure infor-

mation. However, in many cases the X-ray pixel detectors

have bad pixels that generate false intensities that appear as

Bragg peaks to the peak-finding algorithms. The unin-

formative pattern will then be assumed to be a hit by the hit-

finding algorithm and will be stored for the next step of

analysis (Sadri et al., 2022). Bad pixels can also have negative

effects on the performance of indexing methods and prevent

them from finding crystals in hits. Some bad pixels of X-ray

detectors can produce large intensity values. Some pixels may

be permanently dead due to damage to the circuitry, and

sometimes there are run-time artefacts such as shadows (Sadri

et al., 2022). It can happen that an entire panel randomly

generates only noise that appears as meaningful signal. Such

pixels show abnormal behaviour compared with healthy ones.

In order to make a bad pixel mask for the X-ray detector,

the data sets that are often collected for calibration and

data-correction purposes are used. In such data sets, it is a

reasonable assumption that all healthy pixels produce almost

research papers

Acta Cryst. (2023). D79, 820–829 Hadian-Jazi and Sadri � RGFlib 827

Figure 6
Analysis of a representative diffraction image from the EuXFEL data set. (a) A diffraction pattern chosen from the EuXFEL data set with peaks
identified using RPF (yellow markers) and PF8 (red markers). (b) A Bragg peak and its local background that is detected with RPF and missed by PF8.
(c) The estimated local background intensities with a tilted four-parameter plane using the RPF method. (d) Estimated SNR for a single Bragg peak
isolated from the image in (a), as indicated by the arrow, using a robust method (RPF ). (e) An estimated SNR for the same Bragg peak isolated in (d) but
using the non-robust method (PF8). This figure has previously been published in Hadian-Jazi et al. (2021).



the same intensity values, i.e. these values can be modelled

according to a geometric model with a Gaussian noise. Such

data sets are collected when the detector is left in the dark or

when a sample is used for imaging that generates a near-flat

bright field, such as thin copper plates (Sadri et al., 2022). An

example of such a data set is shown in Fig. 7(a).

On such data sets, we used robust statistics to detect those

pixels that behave abnormally. RGFlib can be used to model

normally behaving pixels and calculate a statistical separ-

ability (SNR) for all pixels. Those pixels with an SNR above a

predefined threshold (such as 6 in SX data analysis) are

labelled bad pixels (abnormal). After the bad pixel mask has

been made, the labelling can be used to exclude bad pixels

from analysis, which will improve the performance of the

peak-finding algorithm in the next step. This leads to a

reduction of the stored data in the hit-finding step and also

improves accuracy in the analysis. We implemented a pipeline

that incorporates RGFlib to make bad pixel masks auto-

matically called Robust Mask Maker (RMM; Sadri et al., 2022).

The first step of RMM (Sadri et al., 2022) is to extract

statistical features for every pixel. These features describe the

intensity values that pixels have under the dark field or the

near-flat bright field. We called these features pixel abnorm-

ality maps. There are many different statistics for each pixel

that have data features which can help in segmenting pixels

into true data points and outliers. Features are obtained using

non-robust statistics, allowing this to be biased by abnormal

values that the pixel shows under the dark field or the near-flat

bright field. An example of these features that can be used to

make abnormality maps is the temporal average, which is

supposed to be almost the same for all pixels. An example is

shown in Fig. 7(b), which is used to produce a bad pixel mask

for the AGIPD-1M X-ray detector.

In order to segment pixels into true data points and outliers,

those that have similar features (true data points) can be

modelled using a Gaussian distribution. As such, all generated

features can be modelled robustly using functions from

RGFLib. This enables the calculation of the SNR for each

pixel with different statistical features to produce an

abnormality map. Based on the abnormality map, those pixels

with an SNR higher than a threshold are considered as outliers

and are masked as bad pixels (Sadri et al., 2022).

The output file of RMM contains an eight-bit value for

every pixel. A value of 0 indicates a good pixel. Values above 0

indicate a specific problem for each pixel. RMM is imple-

mented in Python and is publicly available for the generation

of bad pixel masks (Sadri, 2021). One of the key benefits of

RMM is that each module of the detector can be analysed in

parallel, making the algorithm scalable on cluster computers.

We have evaluated the performance of RMM for different

data sets collected using AGIPD-1M, CSPAD-2.6M and

PILATUS 6M detectors and showed that RMM improves data

reduction and also the quality of SX data analysis (Sadri et al.,

2022). Figs. 7(c) and 7(d) show the implementation of RMM

for detecting bad pixels of a module of the AGIPD-1M X-ray

detector.

5. Summary

In this paper, we provide an overview of some robust statis-

tical methods and how we used these methods in two stages

of crystallographic data analysis: peak-finding and bad pixel

detection. We introduce a software library called RGFlib in

which these robust statistical methods are implemented. The

software library is adaptable to the outlier-detection tasks in

SX data analysis and can be used by relevant data-analysis

software suits.

We discussed how robust statistical methods and RGFlib

can be used in the task of Bragg peak-finding for robust

modelling of the background of diffraction patterns and in

order to segment pixel intensities into background (true data

points) and Bragg peaks (outliers). The modelling of the

background needs to be accurate in the presence of Bragg

peaks that are outliers compared with the background model.

A performance evaluation and the benefits of using robust

methods for peak-finding have been reported in our previous

publication (Hadian-Jazi et al., 2021).

Bad pixel detection is a vital task in the SX data-analysis

pipeline, since bad pixels can have intensities similar to Bragg

peaks and therefore peak-finding methods detect bad pixels as

Bragg peaks. In data sets where there are no Bragg peaks, such

research papers

828 Hadian-Jazi and Sadri � RGFlib Acta Cryst. (2023). D79, 820–829

Figure 7
(a) The temporal average values of a module of an AGIPD-1M X-ray
pixelated detector read in the absence of illumination. (b) The robust
model values at the location of each pixel estimated to declare normal
behaviour (estimated over pixels within 64 � 64 pixel windows). (c) The
detected bad pixels are marked with red circles over the image from (a).
(d) Detected bad pixels are shown in yellow. This figure has previously
been published in Sadri et al. (2022).



as data sets collected when the detector is under a dark or a

near-flat bright field, all pixels should behave similarly. RMM

uses robust statistical methods to compare the statistical

features of pixels with each other to detect pixels that are

behaving abnormally. The RMM method has been evaluated

with multiple data sets collected using different detectors and

has shown high performance in the detection of bad pixels,

leading to effective data reduction.

In summary, robust statistical methods are accurate and

reliable and they can improve the SX data-analysis pipeline

(Hadian-Jazi et al., 2017, 2021; Sadri et al., 2022).

References

Allahgholi, A., Becker, J., Bianco, L., Delfs, A., Dinapoli, R.,
Goettlicher, P., Graafsma, H., Greiffenberg, D., Hirsemann, H.,
Jack, S., Klanner, R., Klyuev, A., Krueger, H., Lange, S., Marras, A.,
Mezza, D., Mozzanica, A., Rah, S., Xia, Q., Schmitt, B., Schwandt,
J., Sheviakov, I., Shi, X., Smoljanin, S., Trunk, U., Zhang, J. &
Zimmer, M. (2015). J. Instrum. 10, C01023.

Bab-Hadiashar, A. & Hoseinnezhad, R. (2008). Digital Image
Computing: Techniques and Applications. DICTA 2008, pp. 1–8.
Piscataway: IEEE.

Bab-Hadiashar, A. & Suter, D. (1999). Robotica, 17, 649–660.
Barty, A., Kirian, R. A., Maia, F. R. N. C., Hantke, M., Yoon, C. H.,

White, T. A. & Chapman, H. (2014). J. Appl. Cryst. 47, 1118–1131.
Berntsen, P., Hadian Jazi, M., Kusel, M., Martin, A., Ericsson, T., Call,

M., Trenker, R., Roque, F., Darmanin, C. & Abbey, B. (2019). Rev.
Sci. Instrum. 90, 085110.

Chapman, H. N., Fromme, P., Barty, A., White, T. A., Kirian, R. A.,
Aquila, A., Hunter, M. S., Schulz, J., DePonte, D. P., Weierstall, U.,
Doak, R. B., Maia, F. R. N. C., Martin, A. V., Schlichting, I., Lomb,
L., Coppola, N., Shoeman, R. L., Epp, S. W., Hartmann, R., Rolles,
D., Rudenko, A., Foucar, L., Kimmel, N., Weidenspointner, G.,
Holl, P., Liang, M., Barthelmess, M., Caleman, C., Boutet, S.,
Bogan, M. J., Krzywinski, J., Bostedt, C., Bajt, S., Gumprecht, L.,
Rudek, B., Erk, B., Schmidt, C., Hömke, A., Reich, C., Pietschner,
D., Strüder, L., Hauser, G., Gorke, H., Ullrich, J., Herrmann, S.,
Schaller, G., Schopper, F., Soltau, H., Kühnel, K., Messerschmidt,
M., Bozek, J. D., Hau-Riege, S. P., Frank, M., Hampton, C. Y.,
Sierra, R. G., Starodub, D., Williams, G. J., Hajdu, J., Timneanu, N.,
Seibert, M. M., Andreasson, J., Rocker, A., Jönsson, O., Svenda, M.,
Stern, S., Nass, K., Andritschke, R., Schröter, C., Krasniqi, F., Bott,
M., Schmidt, K. E., Wang, X., Grotjohann, I., Holton, J. M.,
Barends, T. R. M., Neutze, R., Marchesini, S., Fromme, R., Schorb,
S., Rupp, D., Adolph, M., Gorkhover, T., Andersson, I., Hirsemann,
H., Potdevin, G., Graafsma, H., Nilsson, B. & Spence, J. C. H.
(2011). Nature, 470, 73–77.

Foucar, L., Barty, A., Coppola, N., Hartmann, R., Holl, P., Hoppe, U.,
Kassemeyer, S., Kimmel, N., Küpper, J., Scholz, M., Techert, S.,
White, T. A., Strüder, L. & Ullrich, J. (2012). Comput. Phys.
Commun. 183, 2207–2213.

Frank, M., Carlson, D. B., Hunter, M. S., Williams, G. J.,
Messerschmidt, M., Zatsepin, N. A., Barty, A., Benner, W. H.,

Chu, K., Graf, A. T., Hau-Riege, S. P., Kirian, R. A., Padeste, C.,
Pardini, T., Pedrini, B., Segelke, B., Seibert, M. M., Spence, J. C. H.,
Tsai, C.-J., Lane, S. M., Li, X.-D., Schertler, G., Boutet, S., Coleman,
M. & Evans, J. E. (2014). IUCrJ, 1, 95–100.

Fukunaga, K. & Hostetler, L. D. (1975). IEEE Trans. Inf. Theory, 21,
32–40.

Hadian-Jazi, M., Bab-Hadiashar, A. & Hoseinnezhad, R. (2013). Sci.
World J. 2013, 878417.

Hadian-Jazi, M., Messerschmidt, M., Darmanin, C., Giewekemeyer,
K., Mancuso, A. P. & Abbey, B. (2017). J. Appl. Cryst. 50, 1705–
1715.

Hadian-Jazi, M., Sadri, A., Barty, A., Yefanov, O., Galchenkova, M.,
Oberthuer, D., Komadina, D., Brehm, W., Kirkwood, H., Mills, G.,
de Wijn, R., Letrun, R., Kloos, M., Vakili, M., Gelisio, L.,
Darmanin, C., Mancuso, A. P., Chapman, H. N. & Abbey, B.
(2021). J. Appl. Cryst. 54, 1360–1378.

Holbrook, R. & Cook, A. (2022). The Sliding Window. https://
www.kaggle.com/code/ryanholbrook/the-sliding-window.

Hoseinnezhad, R., Bab-Hadiashar, A. & Suter, D. (2010). J. Math.
Imaging Vis. 37, 66–84.

Huber, P. J. (2011). International Encyclopedia of Statistical Science,
edited by M. Lovric, pp. 1248–1251. Berlin, Heidelberg: Springer.

Mancuso, A. P., Aquila, A., Batchelor, L., Bean, R. J., Bielecki, J.,
Borchers, G., Doerner, K., Giewekemeyer, K., Graceffa, R., Kelsey,
O. D., Kim, Y., Kirkwood, H. J., Legrand, A., Letrun, R., Manning,
B., Lopez Morillo, L., Messerschmidt, M., Mills, G., Raabe, S.,
Reimers, N., Round, A., Sato, T., Schulz, J., Signe Takem, C.,
Sikorski, M., Stern, S., Thute, P., Vagovič, P., Weinhausen, B. &
Tschentscher, T. (2019). J. Synchrotron Rad. 26, 660–676.

Mariani, V., Morgan, A., Yoon, C. H., Lane, T. J., White, T. A.,
O’Grady, C., Kuhn, M., Aplin, S., Koglin, J., Barty, A. & Chapman,
H. N. (2016). J. Appl. Cryst. 49, 1073–1080.

Meer, P. (2004). Emerging Topics in Computer Vision, edited by G.
Medioni & S. B. Kang, pp. 109–190. Hoboken: Prentice Hall.

Parkhurst, J. M., Winter, G., Waterman, D. G., Fuentes-Montero, L.,
Gildea, R. J., Murshudov, G. N. & Evans, G. (2016). J. Appl. Cryst.
49, 1912–1921.

Roessler, C. G., Kuczewski, A., Stearns, R., Ellson, R., Olechno, J.,
Orville, A. M., Allaire, M., Soares, A. S. & Héroux, A. (2013). J.
Synchrotron Rad. 20, 805–808.

Rousseeuw, P. J. & Leroy, A. M. (1987). Robust Regression and
Outlier Detection. New York: John Wiley & Sons.

Sadri, A. (2021). Bad Pixel Mask Maker. https://stash.desy.de/projects/
RFEL/repos/agipd_maskmaker/browse.

Sadri, A. & Hadian-Jazi, M. (2020). Robust Gaussian Fitting Library.
https://github.com/ARSadri/RobustGaussianFittingLibrary.

Sadri, A., Hadian-Jazi, M., Yefanov, O., Galchenkova, M., Kirkwood,
H., Mills, G., Sikorski, M., Letrun, R., de Wijn, R., Vakili, M.,
Oberthuer, D., Komadina, D., Brehm, W., Mancuso, A. P., Carnis, J.,
Gelisio, L. & Chapman, H. N. (2022). J. Appl. Cryst. 55, 1549–1561.

Sadri, A., Tennakoon, R., Hosseinnezhad, R. & Bab-Hadiashar, A.
(2018). Comput. Vis. Image Underst. 174, 82–94.

Schlichting, I. (2015). IUCrJ, 2, 246–255.
White, T. A., Kirian, R. A., Martin, A. V., Aquila, A., Nass, K., Barty,

A. & Chapman, H. N. (2012). J. Appl. Cryst. 45, 335–341.

research papers

Acta Cryst. (2023). D79, 820–829 Hadian-Jazi and Sadri � RGFlib 829

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=qi5001&bbid=BB27

