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Abstract
Objectives To critically appraise methodology and reproducibility of published studies on CT radiomics of pancreatic ductal 
adenocarcinoma (PDAC).
Methods PRISMA literature search of MEDLINE, PubMed, and Scopus databases was conducted from June to August 
2022 relating to CT radiomics human research articles pertaining to PDAC diagnosis, treatment, and/ or prognosis, utilising 
Image Biomarker Standardisation Initiative-compliant (IBSI) radiomic software. Keyword search included [pancreas OR 
pancreatic] AND [radiomic OR [quantitative AND imaging] OR [texture AND analysis]]. Analysis included cohort size, 
CT protocol used, radiomic feature (RF) extraction, segmentation, and selection, software used, outcome correlation, and 
statistical methodology, with focus on reproducibility.
Results Initial search yielded 1112 articles; however, only 12 articles met all inclusion/exclusion criteria. Cohort sizes ranged 
from 37 to 352 (median = 106, mean = 155.8). CT slice thickness varied among studies (4 using ≤ 1 mm, 5 using > 1 to 3 mm, 
2 using > 3 to 5 mm, 1 not specifying). CT protocol varied (5 using a single portal-venous (pv)-phase, 5 using a pancreas 
protocol, 1 study using a non-contrast protocol). RF extraction and segmentation were heterogeneous (RF extraction: 5 using 
pv-phase, 2 using late arterial, 4 using multi-phase, 1 using non-contrast phase; RF selection: 3 pre-selected, 9 software-
selected). 2D/3D RF segmentation was diverse (2D in 6, 3D in 4, 2D and 3D in 2 studies). Six different radiomics software 
were used. Research questions and cohort characteristics varied, ultimately leading to non-comparable outcome results.
Conclusion The current twelve published IBSI-compliant PDAC radiomic studies show high variability and often incomplete 
methodology resulting in low robustness and reproducibility.
Clinical relevance statement Radiomics research requires IBSI compliance, data harmonisation, and reproducible feature 
extraction methods for non-invasive imaging biomarker discoveries to be valid. This will ensure a successful clinical imple-
mentation and ultimately an improvement of patient outcomes as part of precision and personalised medicine.
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Key Points 
• Current state of radiomics research in pancreatic cancer 

shows low software compliance to the Image Biomarker 
Standardisation Initiative (IBSI).

• IBSI-compliant radiomics studies in pancreatic cancer are 
heterogeneous and not comparable, and the majority of 
study designs showed low reproducibility.

• Improved methodology and standardisation of practice in 
the emerging field of radiomics has the potential of this 
non-invasive imaging biomarker in the management of 
pancreatic cancer.

Keywords Pancreatic carcinoma · Biomarkers · 
Reproducibility of results · Precision medicine · Radiology

Abbreviations
2D  Two dimensions
3D  Three dimensions
CT  Computed tomography
DECT  Dual-energy computed tomography
DFS  Disease-free survival
GLCM  Grey-level co-occurrence matrix
GLRLM  Grey-level run length matrix
GLZLM  Grey-level zone length matrix
GRLNU  Grey-level non-uniformity
IBSI  Image Biomarker Standardisation Initiative
LASSO  Least absolute shrinkage and selection 

operator
NGLDM  Neighbourhood grey-level different matrix
NID  Neighbourhood intensity difference
OS  Overall survival
PDAC  Pancreatic ductal adenocarcinoma
PFS  Progression-free survival
PV  Portal venous
RF  Radiomic feature
RLM  Run length matrix
ROC  Receiver operating curve
ROI  Region of interest
RQS  Radiomics quality score
SBRT  Stereotactic body radiation therapy
SMV  Superior mesenteric vein
TTP  Time to progression

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a malignancy 
with poor prognosis, frequently presenting at an advanced 
stage, with a 5-year survival rate of only 11% [1, 2]. Despite 
advancements in diagnostic and staging technologies such 
as CT and MR, gains in detection and outcomes have been 
minimal over the last decades, highlighting the need for 
more effective and optimised PDAC management.

Radiomics, a novel and promising higher computational 
method, involves extracting so-called radiomic features 
(RFs) from medical images that are not discernible by the 
human eye. The discovery of non-invasive RF-based imag-
ing biomarkers could potentially enable better staging, and 
lead to improved response to treatment and overall survival 
as part of precision/personalised medicine [3–5].

The extraction of RFs from regions of interest (ROIs) in two 
(2D) or three dimensions (3D) is common practice in image 
analysis. RFs can be broadly classified into first, second, and 
higher order features: First-order features include shape/sphe-
ricity, voxel grey intensity, and coarse voxel distribution which 
can be represented in a histogram that demonstrates skew-
ness, kurtosis, uniformity, and entropy. Second-order features 
describe the intensity relationships between neighbouring vox-
els and include characteristics such as grey-level co-occurrence 
matrix (GLCM) and grey-level run length matrix (GLRLM) 
[3, 6]. Lastly, higher order features are extracted through math-
ematical modulation, or filtering techniques, with the goal of 
supressing noise or highlighting details and patterns [7].

Despite this vast scope, compared to other solid organ 
cancers, such as the liver and lungs, PDAC radiomics imple-
mentation into clinical practice has been limited [8–10]. This 
is due to a number of challenges, including difficulties in 
developing a reliable study design. As shown by Yamashita 
et al [11], the reproducibility of radiomic models is highly 
impacted by variations in scanning parameters, such as scan-
ner model used, pixel spacing, and the contrast administra-
tion rate, as well as the manual segmentation of ROIs.

Additionally, there are shortcomings in research method-
ologies, such as data harmonisation and the use of software 
that adheres to the Image Biomarker Standardisation Initia-
tive (IBSI) guidelines, within an already-complex clinical 
environment [7, 12, 13].

This review aims to provide an overview of the current 
state of primary research in PDAC diagnosis, treatment and 
prognosis, with a particular focus on radiomics and applied 
methodology. It highlights areas of strength and weakness 
in the field, with an emphasis on reproducibility and offers 
guidance to radiomic researchers to generate more robust 
results.

Material and methods

Database search (MEDLINE, PubMed, and Scopus)

A literature search of the online databases MEDLINE, Pub-
Med, and Scopus was conducted between June and August 
2022. The search formula contained [pancreas OR pancre-
atic] AND [radiomic OR [quantitative AND imaging] OR 
[texture AND analysis]].
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Titles and abstracts of articles were initially screened by 
two raters (H.S.K (radiology subspecialist with 16 years 
abdominal specialty experience), J.A.M (3rd year medi-
cal graduate student)). Inclusion criteria included primary 
human research articles on CT radiomics in PDAC diag-
nosis, treatment, and/or prognosis published in English 
between 2017 and August 2022, and studies using non 
IBSI-compliant software were excluded. Final selection of 

articles were then analysed by three raters (H.S.K, J.A.M, 
M.T. (biostatistician)) (Table 1).

Data extraction

Articles were evaluated and categorised according to CT 
slice thickness (≤ 1 mm, > 1 to 3 mm, > 3 to 5 mm) so to 
align with prevalent standards and enable comparison of 

Table 1  Inclusion and exclusion 
assessment criteria performed 
after initial MEDLINE, 
PubMed, and Scopus literature 
search (June–August 2022)

Search keywords: [pancreas OR pancreatic] AND [radiomic OR [quantitative AND imaging] OR [texture 
AND analysis]]

Inclusion criteria Exclusion criteria

• Literature from 2017 to Aug 2022
• Written in the English language
• Primary human research
• Relating to PDAC radiomic analysis in the context 

of diagnosis, treatment, and prognosis
• Full text articles (open and non-open access)

• Not relating to PDAC in the context of diagnosis, 
treatment, and prognosis

• Not CT imaging
• Not radiomics
• Analysis using non-IBSI compliant software

Fig. 1  PRISMA flow dia-
gram of MEDLINE, PubMed, 
and Scopus literature search. 
Abbreviations: IBSI, Image 
Biomarker Standardisation Ini-
tiative; PDAC, pancreatic ductal 
adenocarcinoma
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future radiomic investigations. Studies were further sub-
categorised into various RF clinical applications to address 
the following research questions: (1) Are there commonly 
identified RFs across PDAC studies that suggest trends in 
development of a validated imaging biomarker? (2) What is 
the reported cohort size, CT technical factors, and described 
radiomics methodology steps? Are there factors in methods 
that could impede reproducibility?

Our analysis did not to apply the radiomics quality score 
(RQS) by Lambin et al [14] given its complex structure (16 
components, six key domains, score of 0–36 points) and also 
based on a recent extensive systematic review comprising 77 
articles in high ranking medical journals that demonstrated 
an overall basic low RQS adherence rate at 38.7%, with 
many RQS components receiving a score of 0 points [15].

Results

Figure 1 illustrates the PRISMA flow diagram outlining the 
literature search. A total of 1112 articles were found (MED-
LINE n = 584, PubMed n = 144, Scopus n = 384), with dupli-
cates removed resulting in a total of 650 articles. The initial 
screening of titles and abstracts identified 49 articles that met 
the eligibility criteria for full-text assessment. After further 
exclusions, a total of 12 articles were included in this review 
(Table 2).

Full-text analysis revealed a lack of common RFs, highly 
variable methodologies, and a lack of sufficient information 
to ensure reproducibility (Table 3).

Cohort size and CT technique

Patient cohort sizes ranged from 37 to 352 (median = 106, 
mean = 155.8). Three of the 12 selected studies for review 
had a small cohort size ranging from 37 to 54 [16–18].

Four studies showed a CT slice thickness of ≤ 1 mm [16, 17, 
19, 20], five a thickness of > 1–3 mm [18, 21–24], two a thick-
ness of > 3 to 5 mm [25, 26], and one had no slice thickness 
specified [27] (Table 3). Nine of the 12 studies used single-
centre data [16–18, 20–25], 2 studies used data from 2 different 
centres (one each as a training cohort, one each a validation 
cohort) [26, 27], and one study used data from 5 centres [19].

A CT pancreas protocol was utilised in 5 out of 12 
studies [17, 18, 22, 26, 27], while no pancreas protocol 
was applied in 5 out of 12 studies [19–21, 24, 25], and 2 
studies did not provide information on whether patients 
underwent a CT pancreas protocol [16, 23]. CT contrast 
phase used for segmentation varied among studies, with 
five studies using the pv-phase [16, 17, 19, 20, 26], two 
studies using the late arterial phase [18, 24], four studies 
using multiple phases [22, 23, 25, 27], and one study using 
no contrast agent [21].

Radiomic feature extraction and selection

RF selection and analysis methodologies were reproduc-
ible, albeit highly variable. In three studies, RFs were cho-
sen a priori [18, 20, 23], while the remaining nine studies 
extracted features from the respective software libraries. 
Software used was PyRadiomics [19, 20, 26] and LIFEx 
in three [17, 21, 23], IBEX [18, 24] and MATLAB in two 
[22, 27], and AnalysisKit [16] and Artificial Intelligent Kit 
in one study [25].

Statistical analysis, and model development

Analysed outcome variables applied either time-to-event 
endpoints modelled using Cox-regression techniques 
[17–22, 25, 26] or logistic regression models for assessment 
of PDAC grades [23, 24], local response [18, 21], or superior 
mesenteric-portal vein invasion [16].

When selecting RFs as part of their models, two studies 
included RFs as part of their multivariable analysis with 
p-values of < 0.1 for significance [17, 22], while the remain-
ing studies either did not explicitly state any variations, or 
it was assumed that p < 0.05 was considered the threshold. 
Two studies did not disclose details of the specific RFs cho-
sen [22, 24]. Additionally, one of these studies did not dis-
close the CT phase associated with the chosen features [22].

Many studies provided details of correlation analysis to 
reduce the number of features considered in univariable or 
multivariable modelling [16, 17, 20, 25, 27] and to assess for 
collinearity between variables [18, 28] upon multivariable 
modelling. Of the 12 studies, half used least absolute shrink-
age and selection operator (LASSO) techniques [19, 23–27]. 
Step-wise backwards screening methods for statistically sig-
nificant variable selection was used by one study [16], while 
elastic net regularisation was also considered [21]. A few 
studies did not explicitly provide descriptions of the methods 
of the variable selection in the multivariable prediction model 
analysis [17, 18, 20, 22]. Only one study indicated the appli-
cation of a two-way interaction calculation [19].

A combination of receiver operating curve (ROC) or the 
Harrell’s C-concordance index analysis was applied in all 
but two studies [20, 26]. Validation and calibration statistical 
parameters such as Akaike information criteria and calibra-
tion curves and/or Hosmer–Lemeshow tests were utilised 
to evaluate model performance and fit in most studies, with 
three exceptions [18, 20, 26]. Several papers specified the 
consideration of categorical feature variables via dichoto-
misation based on medians [19], Youden index from ROC 
analysis [24], or other criteria [21].

Half of the reviewed studies [16, 19, 23, 25–27] reported 
conducting an assessment of inter-observer reliability on the 
selected RFs for analysis prior to consideration of multivari-
able modelling.
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Two studies detailed the handling of missing data in their 
modelling analysis [19, 20], and commented on the reasons 
why this was undertaken.

Three studies acknowledged that internal validation 
cohorts were not considered due to insufficient sample size 
[16, 18, 23].

R statistical software was used for all selected studies 
except for one which utilised SPSS [24].

Discussion

Radiomics is a computational method of extracting features 
(RF) from medical images that has the potential to develop 
non-invasive imaging biomarkers aiding in improved PDAC 
delineation and treatment. To date, there is limited PDAC 
CT radiomics primary research data available.

Our analysis revealed several challenges associated with 
the use of retrospective data from heterogeneous small- 
to moderately sized cohorts. Furthermore, there was a 
lack agreement of RFs deemed significant. Additionally, 
variations in CT techniques and lack of consistency in RF 

segmentation and selection further hindered reproducibility 
of findings. However, it is noteworthy that GLCM-associ-
ated RFs were observed in 6 of the 12 studies reviewed, 
albeit without any consistent subcategories.

The median cohort size was 106 patients, with 7 out of 
the 12 studies having such small cohort sizes rendering a 
validation process impossible. Training-validation-ratio of 
cohorts is an important factor in ensuring a robust prognostic 
model. Training-validation-ratios of medical studies usually 
range from 67:33 to 80:20 [29]. The study by Khalvati et al 
[26] demonstrated a training:validation ratio of 30:68 which 
would necessitate caution when interpreting results. Further 
statistical considerations include the overfitting of a complex 
radiomic model and the limitation of Bonferroni corrections 
which are not applicable when the sample size is too small 
[18]. Overfitting can be somewhat mitigated by pre-selecting 
validated RFs; however, demonstration of sufficient power 
to develop a prognostic model and proper validated studies 
is scarce as shown in this study.

Another important factor to consider in radiomic stud-
ies is variation in CT image acquisition. CT scanning and 
scanner parameters play a significant role in PDAC staging 

Table 3  Missing detailed methodology steps impeding reproducibility

RF radiomic feature

Methodology step Factor Author (year) [reference]

Data harmonisation CT slice thickness not disclosed Cai et al (2020) [27]
RF selection General selected RFs not disclosed Attiyeh et al (2019) [22]

Chang et al (2020) [24]
Statistical analysis Significant threshold for selected RFs p < 0.1 Attiyeh et al (2019) [22]

Gregucci et al (2022) [18]
Model prediction calculation Specific selected RFs not disclosed Attiyeh et al (2019) [22]

Gregucci et al (2022) [18]
Hang et al (2021) [17]
Salinas-Miranda et al (2020) [20]

Model prediction calculation Multivariable calculation (1- or 2-way) not disclosed Attiyeh et al (2019) [22]
Cai et al (2020) [27]
Chang et al (2020) [24]
Cozzi et al (2019) [21]
Gregucci et al (2022) [18]
Hang et al (2021) [17]
Healy et al (2022) [19]
Khalvati et al (2019) [26]
Salinas-Miranda et al (2020) [20]
Shi et al (2021) [25]
Tikhonova et al (2022) [23]

Model prediction calculation Handling of missing data not disclosed Attiyeh et al (2019) [22]
Cai et al (2020) [27]
Chang et al (2020) [24]
Chen et al (2021) [16]
Cozzi et al (2019) [21]
Gregucci et al (2022) [18]
Hang et al (2021) [17]
Khalvati et al (2019) [26]
Shi et al. (2021) [25]
Tikhonova et al (2022) [23]
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and influence the performance of radiomic models [11]. 
Utilising a standardised CT protocol, particularly one that 
includes a late arterial and portal venous phase as described 
by the NCCN criteria, would render studies more compa-
rable [30–32]. Five of the 12 studies noted the use of a CT 
pancreas protocol while 6 out of the 7 remaining studies did 
not specify the reasoning or acknowledge this limitation. 
Healy et al [19] did not capture CT scanning protocol vari-
ances aiming to develop and validate their radiomics model 
under “real-world circumstances”. This bears the risk of 
RF extraction from varied, heterogeneous datasets that may 
compromise the interpretation of results. As proposed by 
Noda et al [33], utilising a single portal-venous dual-energy 
computed tomography image in lieu of a specific CT pan-
creas protocol may serve as potential solution to standardise 
image acquisition for radiomics while still maintaining the 
CT pancreas protocol as gold standard for PDAC staging.

CT technique can greatly impact image quality, and 
tumour and vessel conspicuity, and ultimately affect radiom-
ics analysis. Studies such as He et al [34] have demonstrated 
that factors such as contrast enhancement, slice thickness, 
and convolution kernel reconstruction impact on perfor-
mance of radiomics models. In order to ensure reproducibil-
ity in radiomics studies, data harmonisation is a crucial step. 
This can include image resampling to maintain a consistent 
slice thickness, voxel size, and pixel grey intensity ranges 
(grey-level discretisation) [35]. However, data harmonisation 
is commonly overlooked, as demonstrated in studies such 
as Healy et al [19], where a large and heterogeneous cohort 
was used with multiple CT scanner types and scanning pro-
tocols over a larger period of time during which CT scanning 
imaging techniques were rapidly evolving. The authors state 
that CT imaging data was harmonised to 1-mm-slice thick-
ness without specifying the original imaging slice thickness 
data. Given that patients in this cohort were recruited from 
as early as 2005, it appears unlikely that the original CT 
slice thickness was ≤ 1 mm, implying that the data was likely 
not harmonised as intended (i.e., reformatting a 5-mm slice 
thickness into 5 × 1-mm slice thicknesses). Other studies, 
such as those by Salinas-Miranda et al [20] and Cai et al 
[27] have used the same patient cohort with similar harmo-
nisation methods, thus failing to report CT slice thickness. 
Furthermore, the study by Khalvati et al [26] used different 
CT slice thicknesses in their training and validation cohorts 
(5 mm and 2 mm respectively) without acknowledging the 
impact on radiomic analysis.

A recent endeavour to streamline radiomics analysis 
and to enhance RF reproducibility is the IBSI [12]. The 
160 + pages framework places a significant emphasis on 
mathematical and technical aspects, while giving less atten-
tion to the clinical implementation. This is likely due to the 
fact that the majority of authors are of non-clinical back-
grounds. As a result, clinicians have to trust and rely on 

IBSI-compliant radiomics software for quality assurance and 
reproducibility purposes. This is also underpinned in a study 
by Fornacon-Wood et al, which found a higher number of 
RFs exhibiting excellent statistical reliability when extracted 
using IBSI-compliant software, as opposed to non-compliant 
software [13]. In our initial eligibility assessment, we identi-
fied 9 of 49 studies that used non-IBSI compliant software, 
and as a result, these studies were excluded from our final 
analysis.

Statistical extrapolations and radiomic models were noted 
to be highly variable. For instance, Hang et al [17] sought to 
correlate RFs of primary PDAC tumours and liver metasta-
ses to overall survival by incorporating four texture features 
into a radiomics score based on a statistical significance 
of p < 0.1, as opposed to the commonly employed thresh-
old of p < 0.05. Furthermore, the authors failed to provide 
information on whether selected RFs were considered for 
or actually included in the multivariable model. Similarly, 
Attiyeh et al [22] developed two models to predict overall 
survival in resectable PDAC patients, incorporating addi-
tional characteristics such as serum CA19-9 and Brennan 
pathology scoring. However, the chosen CT contrast phase 
for RF extraction as well as RF selection was not disclosed 
for either model or univariate analysis. Two studies that 
aimed to use radiomics to assess tumour grading are limited 
by their methodologies and reporting [23, 24]. Chang et al 
[24] did not disclose details regarding the significant RF 
selection while Tikhonova et al [23] used a p-value of < 0.1 
for statistical significance and assessed contrast enhance-
ment changes in a very small volume of interest (<  1mm3).

The study by Chen et al [16] showed the potential util-
ity of RFs in identifying and correlating suspected supe-
rior mesenteric vein and suspected portal vein invasion. 
Their model showed superior performance in comparison 
to two experienced radiologists. Despite the limitations 
(small cohort (n = 54) and moderate inter-reader variability 
(κ = 0.517)), this model exemplifies a robust, IBSI compliant 
methodology that warrants future validation.

Modelling techniques, such as the LASSO algorithm 
(least absolute shrinkage and selection operator), are use-
ful in identifying significant variables and features of data. 
However, our analysis showed that many studies, if not all, 
may be underpowered, resulting in an inability to detect sta-
tistically significant clinically prognostic features. Despite 
acknowledging the limitation of small sample size, many 
studies suggest that validating the identified final model 
using an internal or external validation dataset is sufficient, 
as opposed to reproducing the model with a larger, ade-
quately powered sample size to identify statistically signifi-
cant features. The predictive performance of models is likely 
to benefit from an assessment of interactions between vari-
ables, but only the study by Hang et al with the largest sam-
ple size (n = 352) could feasibly allow for this exploration.
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Study reviewed did not provide a link to the data, statisti-
cal analysis, or programming code used, which might be due 
to patient data confidentiality reasons. While the majority of 
studies were transparent in their methods, several omissions 
were noted which impede reproducibility.

Recruitment of large PDAC cohort, extracting robust 
RFs, and developing an imaging biomarker from a potential 
pool of thousands of RFs with such small sample sizes is 
challenging. The development of effective methodologies 
and early engagement of a multidisciplinary team, includ-
ing more technical, non-clinical craft groups, such as bio-
statisticians and computer scientists, would greatly benefit 
research in this field.

Conclusion

There is a limited number of primary research publications 
of PDAC CT radiomics using IBSI compliant software. 
However, as advancements in methodology and standardi-
sation of practice continue to develop, radiomics has the 
potential to serve as a valuable non-invasive biomarker in 
the management of pancreatic cancer.

Supplementary Information The online version contains supplemen-
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