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Abstract 

Early case detection is critical to preventing onward transmission of COVID-19 by enabling prompt isolation of index 
infections, and identification and quarantining of contacts. Timeliness and completeness of ascertainment depend 
on the surveillance strategy employed. This paper presents modelling used to inform workplace testing strategies 
for the Australian government in early 2021. We use rapid prototype modelling to quickly investigate the effectiveness 
of testing strategies to aid decision making. Models are developed with a focus on providing relevant results to policy 
makers, and these models are continually updated and improved as new questions are posed. Developed to sup-
port the implementation of testing strategies in high risk workplace settings in Australia, our modelling explores 
the effects of test frequency and sensitivity on outbreak detection. We start with an exponential growth model, which 
demonstrates how outbreak detection changes depending on growth rate, test frequency and sensitivity. From 
the exponential model, we learn that low sensitivity tests can produce high probabilities of detection when test-
ing occurs frequently. We then develop a more complex Agent Based Model, which was used to test the robustness 
of the results from the exponential model, and extend it to include intermittent workplace scheduling. These models 
help our fundamental understanding of disease detectability through routine surveillance in workplaces and evalu-
ate the impact of testing strategies and workplace characteristics on the effectiveness of surveillance. This analysis 
highlights the risks of particular work patterns while also identifying key testing strategies to best improve outbreak 
detection in high risk workplaces.
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Introduction
Rapid prototype modelling is a model development 
approach that aims to provide rapid insights while laying 
the foundations for more detailed modelling [1]. Models 
developed should be simple yet still convey the complexi-
ties and subtleties of a problem to decision makers [2]. 
With each iteration, models are updated to reflect new 
scenarios arising from revised information and ques-
tions [1, 3]. Rapid response modelling has been crucial in 
developing policy for COVID-19, allowing key hypoth-
eses and assumptions to be tested in real-time as public 
health policy is implemented [4]. In this work we dem-
onstrate how we used rapid prototyping to develop mod-
els of workplace testing strategies to guide the Australian 
Government response to COVID-19 in 2021.

For countries with COVID-19 management policies 
aimed at zero community prevalence, accurate and timely 
case detection is necessary to suppress outbreak. In 
2020, Australia was one such country, where the official 
COVID-19 policy was “strong suppression” until vaccines 
were widely distributed throughout 2021. Before wide-
spread vaccination, COVID-19 spread was prevented by 
proactive management of borders, active case finding and 
follow up with strict isolation and quarantine require-
ments for cases and contacts, and through liberal access 
to PCR testing in both high risk settings and the general 
community. Arriving international travellers posed the 
greatest risk of imported infection, leading to manda-
tory hotel quarantine arrangements on the 28th of March 
that were maintained through to late 2021 [5]. Testing 
was part of a number of infection prevention and control 
interventions aimed at minimising the risk of community 
outbreaks. However, repeated SARS-CoV-2 incursions 
to the community, despite stringent arrivals procedures, 
prompted the redesign of testing strategies for travellers 
and workers in quarantine settings.

Outbreak detection via testing is influenced by multi-
ple factors including test performance (sensitivity and 
specificity) and test frequency. PCR tests are seen as the 
‘gold standard’ in testing practices, although their per-
formance varies over the course of the infection [6], with 
many individuals remaining PCR-positive after they are 
no longer infectious. Furthermore, the slow turnaround 
time for PCR tests (typically days) can delay outbreak 
detection [6]. While Rapid Antigen Tests (RATs) typically 
have a turnaround time of 15 minutes, they have lower 
sensitivity and specificity than PCR tests [7]. Similar to 
PCR tests, test sensitivity varies depending on the stage 
of infection, and whether infection is symptomatic or 
asymptomatic [7, 8]. Existing work suggests that these 
issues can be overcome by increasing the frequency of 
testing, implying that RATs can still be practically useful 
despite their limitations [9, 10].

In early 2021, Australia was seeking to improve test-
ing strategies in workplaces, with the primary objective 
of detecting new outbreaks quickly. However, the differ-
ences in performance characteristics between different 
tests made it challenging to develop a robust workplace 
testing strategy. In addition to test performance, there 
were also questions about how the emergence of variants 
of concern would affect outbreak detection, prompted 
by the emergence of the Alpha variant, which was both 
more transmissible and more pathogenic than anteced-
ent viruses [11].

In this work, we describe how we used a rapid proto-
typing approach to provide timely advice on the princi-
ples underlying a robust workplace testing policy. That 
is, we estimated the sensitivity of alternative surveillance 
strategies using models of differing granularity. The first 
is the ‘exponential model’, which we developed to give 
timely insight into testing efficacy. The model is defined 
by exponential growth of disease prevalence in the work-
place, and allows us to quickly understand the interac-
tions between test sensitivity, frequency and growth rate 
( Reff ) on outbreak detection. The second model devel-
oped is an agent based model (ABM) which allows us to 
investigate the interaction between scheduled testing fre-
quency and shift work patterns in determining the over-
all sensitivity of the surveillance system. The ABM builds 
on assumptions made by the rapidly developed expo-
nential model to probe and update its results to answer 
new, emerging questions for an updated situation (i.e. 
intermittent work scheduling). These two models were 
developed as tools to provide answers to specific ques-
tions posed by policy makers about designing effective 
testing practices in workplaces. The ABM presented here 
was subsequently updated to suit new questions from 
decision-makers concerning the impact of quarantine on 
outbreak management [12].

Modelling
We present our two models and results in the sequence 
they were developed, starting with the exponential 
model, which we use to explore the effects of growth rate 
( Reff ), test sensitivity and test frequency on the probabil-
ity of detecting outbreaks in workplaces. We then con-
sider the Agent Based Model (ABM), using it to probe 
the results of the exponential model and also to explore 
the impact of more complex work schedules on the prob-
ability of outbreak detection.

When these models were developed, Australia had very 
few cases of COVID-19 and decision-makers were con-
cerned with outbreaks stemming from single positive cases. 
As such, our modelling is framed around how quickly any 
case could be detected in “high-risk” workplaces. In par-
ticular, we calculate the probability an outbreak is detected 
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within a week. This timeframe was chosen in collaboration 
with decision-makers.

For both the exponential model and the ABM, we 
define an outbreak occurring when at least one individual 
is infected. An outbreak is detected when a positive case 
is identified, either through testing or symptom onset.

Exponential model
Our initial model for the probability of detecting a 
COVID-19 outbreak in a workplace assumes exponential 
growth of active cases. In the exponential model, disease 
prevalence on day i + 1 (denoted Pi+1 ) is given by:

where Pi is the disease prevalence on day i, g is the gener-
ation interval and Reff is the effective reproduction num-
ber. We assume a generation interval of 4.7 days, and that 
an outbreak begins on the first day with one active infec-
tion ( P0 = 1)[13]. With these assumptions, we calculate 
the expected number of active cases through time under 
different values of Reff . We assume all infections are due 
to contacts within the workplace, that is there are no 
cases imported into the workplace other than the initially 
seeded infection. Note that this model does not distin-
guish between symptomatic and asymptomatic infection. 
Further details about the exponential model are provided 
in the Supplementary material.

Using our model of prevalence, we then calculate the 
probability of detecting at least one case within a week 
under different testing strategies. We vary testing strate-
gies by considering different test sensitivities and test fre-
quency, i.e. the number of days per week testing occurs. In 
our results we consider scenarios where testing occurs once 
per week, three times per week and daily. We assume that 
on days when testing occurs, the entire workforce is tested. 
This testing framework was chosen to suit workplaces with 
high importation risk, such as quarantine hotels.

The one-week detection probability is defined as the 
probability an infected individual returns a positive test 
within a week of the initial infection. Let Pi be the prev-
alence on testing day i, and s the test sensitivity. In our 
model, we make the simplifying assumption that each 
test is independent and test sensitivity a) does not vary 
between people and b) does not varying across a per-
son’s infectious period. Furthermore, we assume tests 
have 100% specificity. The probability an outbreak is not 
detected on day i (given everyone is tested) is:

(1)Pi+1 = Pi(Reff)
1
g ,

(2)Pr(no detection on day i) = Pr(all infected people test negative)

(3)= (1− s)Pi .

Let T be the set of testing days in a given week, i.e. days 
where everyone is tested. The probability of detection in 
a week is therefore given by:

Exponential model results
The probability of detection within a week increases with 
both test sensitivity and Reff (Fig. 1a). With testing occur-
ring once per week, there is a large difference between 
whether there is low (0.65) or high (0.95) test sensitivity. 
However, the difference in the probability of outbreak 
detection between low and high sensitivity decreases 
with increasing Reff . As Reff increases the outbreak 
spreads faster, meaning more infected people are tested 
within a week, increasing the likelihood that at least one 
is detected.

Increasing test sensitivity and frequency both increase 
the probability of outbreak detection within a week 
(Fig.  1b). Most notably, daily testing results in a high 
probability of detection within a week ( > 95% ), for all 
test sensitivities. This demonstrates that low-sensitivity 
tests, such as RATs, are still useful for outbreak detection 
— their shortcomings can be overcome by more frequent 
testing.

Agent based model
We develop an agent based model (ABM) to represent 
additional complexities of the workplace setting not cap-
tured in the exponential model. The ABM incorporates 
further complexity and allows us to ask more detailed 
questions about workplace testing. We start by setting 
up the ABM using the same set of assumptions as the 
exponential model. In replicating the exponential model 
results using the ABM, we can be confident that the ABM 
generalises the earlier results.

Each agent in our model follows an susceptible–
exposed–infectious–recovered disease progression. 
Agents begin each simulation susceptible, and once 
infected become exposed. An exposed agent is neither 
infectious nor detectable. Exposed agents will transi-
tion to an incubating phase, where they become both 
infectious and detectable by testing. In the incubating 
phase, agents are either symptomatic or asymptomatic. 
There are no differences in transmission or infec-
tion period between symptomatic or asymptomatic 

(4)Pr(detection in a week) = 1− Pr(no detection on all testing days)

(5)= 1−

i∈T

Pr(no detection on dayi)

(6)= 1−
∏

i∈T

(1− s)Pi .
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individuals, but it allows us to track symptom onset. 
Both symptomatic and asymptomatic infections are 
detectable by testing, but symptomatic infection is also 
detected at the moment of symptom onset. When their 
infection ends, agents become recovered, and immune 
to reinfection. Further modelling details, including 

parameter values, can be found in the Supplementary 
material.

For each simulation, outbreaks are seeded by a single 
infection in the workplace. That is, one randomly selected 
agent starts “exposed” for each simulation. As for the 
exponential model, there are no infections imported into 

Fig. 1  Probability of detection within a week using the exponential model as we vary growth rate ( Reff ) and test sensitivity (a), and test sensitivity 
and testing schedule (b). We assume a generation interval of 4.7 days and a workplace size of 50 people for both a and b. For a we assume testing 
occurs only once per week and for b we assume a conservative growth rate of Reff = 1.1
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the workplace other than the initially seeded infection. 
An outbreak is detected at symptom onset of an infected 
person or when a positive test result is returned. As for 
the exponential model, we assume test sensitivity is con-
stant across all people and across infectious periods, and 
that the tests have 100% specificity. We assume that two 
thirds of infectious people are symptomatic. For each 
model simulation, we estimate the probability of detect-
ing at least one case within a week over 5000 simulation 
instances, each of which is subject to stochastic variation. 
We calculate this probability as the proportion of simu-
lation instances resulting in outbreak detection within a 
week.

When considering the ABM under the exponen-
tial model assumptions, we assume there is no latency 
period and no detection via symptom onset. As there is 
no difference in transmission or infection period between 
symptomatic and asymptomatic infections, we can sim-
ulate the ABM with no detection via symptom onset by 
considering all infections to be asymptomatic. This is 
simply for ease of calculation and does not imply in this 
case we only consider asymptomatic testing.

We define test frequency by specifying the number of 
testing days per week. As in the exponential model, on 
days when testing occurs, everyone attending the work-
place is tested.

To extend the exponential model results, we consider 
the effects of intermittent work schedules on outbreak 
detection. We define these work schedules by specifying 
the proportion of the workplace working 1, 3, 5 or 7 days 
a week. Employees are then randomly assigned work days 
in accordance with the number of days they are sched-
uled to work. We assume people are only tested at work, 
but outbreaks may be detected through symptom onset 
at any time, regardless of whether the unwell individual is 
present in the workplace.

Agent based model results
In this section, we present results from the ABM. We 
start by reproducing results from the exponential model 
to see how the ABM aligns with previous results. We 
then update our assumptions to consider the impact of 
intermittent workplace attendance on the probability of 
outbreak detection within a week of the introduction of 
the virus.

Comparing the exponential and agent based models
In line with the process of rapid prototyping, Fig. 2 com-
pares the exponential model behaviour to that of the 
ABM. Under identical sets of assumptions, the ABM 
results closely follow those of the exponential model 
(Fig.  2a), although the ABM produces slightly more 
optimistic estimates of detection probability. However, 

when we change assumptions of the ABM (Fig. 2b), the 
results begin to diverge. Under the new assumptions, the 
results from the ABM produce much higher probabili-
ties of outbreak detection than the exponential model. 
This is explained by the additional mode of detection, 
by symptom onset. The additional assumptions we use 
here cannot be built into the exponential model due to its 
simplicity, so the development of the ABM allows us to 
explore the impact of these infection and testing charac-
teristics on outbreak detection.

Intermittent workplace attendance
A strength of the ABM is that it can be used to explore 
the implications of more complex patterns of workplace 
attendance. We introduce an intermittent work sched-
ule, where some proportion of workers work 1, 3, 5 and 
7 days a week. Analogously to the testing assumptions 
of the exponential model, we assume that when testing 
occurs, everyone in the workplace on that day is tested. 
We consider the following intermittent work schedules 
defined by the proportion of the workforce working 1, 3, 
5 or 7 days a week: 

1	 100% 7 days/week,
2	 100% 5 days/week,
3	 60% 5 days/week, 40% 3 days/week,
4	 60% 5 days/week, 30% 3 days/week, 10% 1 day/week.

As observed in the exponential model, increasing test 
frequency and sensitivity increases the probability of 
detecting an outbreak (Fig. 3). In a similar way, the detec-
tion probability is higher when employees work more 
frequently. Notably, even for a sparse work schedule, 
low test sensitivity can be compensated for with higher 
testing frequency. If we increase test frequency, employ-
ees are more likely to be tested in a given week as they 
are more likely to be at work on a testing day. This com-
pounds the benefits of frequent testing observed in the 
exponential model.

The ABM includes the assumption that outbreaks can 
be detected by symptom onset, which imposes an upper 
bound on the time to detection. As symptom onset can 
occur outside the workplace, outbreaks can be detected 
even when an infected worker is at home. This bound 
increases the seven-day detection probability compared 
to the exponential model.

Discussion
Pandemic policies need to be adaptable in the face of 
emerging epidemic intelligence, including changes in 
circulating pathogen characteristics, host-pathogen 
interactions and diagnostic modalities [14]. By reas-
sessing and updating our prototype models to examine 
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new questions posed, we can aid decision makers by 
supporting evidence–based decisions as new scenar-
ios arise. The development of the exponential model 
and the ABM demonstrates how a rapid prototyping 
approach is useful for informing disease-management 
policy. While simple by design, the exponential model 

was quickly able to show that lower sensitivity tests can 
be useful when combined with high frequency testing, 
and that variants with higher R0 may be more readily 
detected in outbreak settings than less transmissible 
strains.

Fig. 2  Probability of detection within a week as calculated by the exponential and agent based models as we vary growth rate, test sensitivity 
and test frequency. a compares the ABM results to the exponential model under the same assumptions, i.e. no latent infection period, 
no asymptomatic infection and no detection via symptom onset. b shows the ABM results under different assumptions to the exponential model, 
i.e. a latent infection period (1 day), asymptomatic infection and detection via symptom onset
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Answering these early questions naturally led to more 
nuanced questions, and we developed our second model 
in response to this. The ABM explores how the interac-
tion between shift patterns and routine surveillance 
testing frequency determines the effective testing rate 
across the workforce. In our model, a high symptomatic 

proportion ( > 60% ) and perfect compliance with test-
ing requirements mitigated identified risks associated 
with gaps in surveillance due to non-work days. These 
assumptions were valid in context of an unvaccinated 
population, circulation of the Alpha variant and strict 
public health orders mandating testing requirements. 

Fig. 3  Probability of detecting an outbreak within a week under various intermittent working schedules as we vary test sensitivity and frequency 
for a testing three times per week and b testing daily. See text for details of testing schedules
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Assumptions must be updated in light of population 
and pathogen characteristics. For example in the case of 
COVID-19, by late 2022 a much lower symptomatic pro-
portion would be expected given high levels of popula-
tion vaccine coverage in Australia and emergence of the 
less pathogenic Omicron variant.

While Australia’s COVID-19 risk environment is con-
tinually evolving, both our modelling and the rapid pro-
totyping framework can still provide useful insights. 
In contrast to the COVID-19 landscape in early 2021, 
Australia now has widespread COVID-19 transmission, 
meaning there are fewer workplaces where we actively 
seek to detect new outbreaks [15]. However, there remain 
workplaces, for example aged care facilities, where there 
is a high chance of severe outcomes from COVID-19, and 
so we would still seek to detect new outbreaks quickly 
to put in place mitigation measures. Furthermore, our 
models are fairly general, so our results are not specific 
to COVID-19. The exponential model assumes that 
we are aiming to detect something that is increasing in 
prevalence through time, and the only COVID-19 spe-
cific assumption is about the generation interval. Simi-
larly, the ABM is quite general and these models could be 
readily adapted for other pathogens.

To answer questions around testing strategies in 
workplaces, our modelling aimed to model the deci-
sion problem at hand rather than simulate an outbreak 
as realistically as possible. When designing models 
using a rapid prototyping approach, we cannot guar-
antee that the model will be suitable outside the scope 
of the question it is designed to answer. It is not neces-
sary that the models we use are the “best” models of the 
system, but instead that they are suitable for the given 
questions. For example, our models parsimoniously con-
sider populations to be homogeneous when we know 
characteristics such as age play a crucial role in infec-
tion dynamics for COVID-19 [16]. In particular, these 
heterogeneities can impact test sensitivity both across a 
population and across an individual’s infectious period. 
While it is important to consider these complexities, they 
were not crucial to answering questions from decision-
makers. Developing models at each stage of a rapid pro-
totyping approach requires weighing model limitations 
against usefulness for answering questions. However, 
results from models with different structures will always 
differ due to the implicit assumptions embedded in each 
model, e.g. implied generation time distributions [17]. 
Comparing models under the same assumptions allows 
us to assess structural uncertainty. That is, we can ensure 
new results are the result of updated assumptions, rather 
than changed model structure or implementation.

Effective modelling to support decision-making relies on 
communication with, and feedback from, decision-makers. 

While we have discussed iteration of model design, contin-
uously seeking feedback from decision-makers on aspects 
of communication and study design is also crucial to suc-
cessful rapid prototyping. For example, feedback from 
decision makers on model visualisations and results pre-
sented can help improve how modelling is communicated 
in the next iteration. Furthermore, consistent communi-
cation with decision-makers ensures modelling aspects, 
such as target measures and model assumptions, best align 
with the context of the problem considered. Incorporating 
feedback on both modelling and its communication from 
decision-makers helps update modelling in the next itera-
tion to better suit questions posed.

Code sharing and modelling workflows remain chal-
lenging in rapidly evolving situations. During these 
projects, code was developed on internal, shared ver-
sion–controlled repositories. The code has been re-writ-
ten for clarity and made available in a public repository.

Conclusion
Our study shows the utility of taking a rapid prototyping 
approach to model development in epidemiology, start-
ing by developing simple models and then building in 
additional complexity. Rapid prototyping has been used 
effectively for environmental management as part of 
Structured Decision Making approaches [1, 3], but has 
not been used formally in epidemiology. Like ecological 
fields, epidemiology is well-suited for rapid prototyp-
ing due to its range of well-known simple models, e.g. 
SIR type models. In our example of workplace outbreak 
detection, the exponential model results provide a pessi-
mistic estimate for the probability of outbreak detection. 
With updated information, the ABM provides a more 
realistic estimate of the probability of outbreak detection. 
Here, rapid prototyping allows us to provide a quick, 
conservative estimate to policy makers which can then be 
updated as more information becomes available.

The modelling described here forms one component 
of a larger body of work supporting COVID-19 decision 
making in Australia. Our modelling was commissioned 
through the Australian Government Office of Health 
Protection by the Public Health Laboratories Network 
(PHLN). PHLN is an advisory group providing techni-
cal advice to the Australian Government about public 
health microbiology and communicable disease control 
[18]. Prior to this work, modelling was used to investi-
gate the test turnaround time and targeting of testing of 
PCR tests to reduce COVID-19 transmission [19]. This 
then prompted questions about testing strategies incor-
porating RATs in high-risk workplaces that informed 
the work presented in this paper. Our modelling was 
presented to PHLN and the Australian Health Protec-
tion Principal Committee (AHPPC) in February 2021 
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to inform overarching national minimum guidelines for 
workplace testing [20]. Following the rapid prototyping 
framework, our ABM led to subsequent modelling of 
the impact of quarantine on outbreak management [12]. 
This model builds on the work presented here, incorpo-
rating more complex considerations such as variable test 
sensitivity over the course of an individual’s infectious 
period and the impact of timely quarantine on outbreak 
probability. Alongside the quarantine model, further 
related modelling focused on investigating testing strate-
gies for specific settings such as schools [21] and Indig-
enous communities [22].

The COVID-19 pandemic has highlighted the impor-
tance of model-generated evidence in decision making. 
With a short time-frame in which to answer questions, 
and a rapidly changing set of circumstances, flexible 
models which can be updated to new questions have 
an important role. The rapid prototyping process we 
describe is well suited to informing policy in a quickly 
evolving situation. However, there remain practical chal-
lenges such as ensuring team members involved can con-
tribute to reproducible and version controlled coding 
within strict timeframes. While the importance of gain-
ing quick insights for policy is clear, an additional ben-
efit is that rapid prototyping models provide direction for 
development of more complex models. Simple models 
can provide useful insights to inform strategic thinking, 
and more detailed models are able to incorporate impor-
tant real world complexities to refine tactics for surveil-
lance and response.
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