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Abstract 

Sample multiplexing is often used to reduce cost and limit batch effects in single-cell RNA sequencing ( scRNA-seq ) experiments. A commonly 
used multiplexing technique involves tagging cells prior to pooling with a hashtag oligo ( HTO ) that can be sequenced along with the cells’ 
RNA to determine their sample of origin. Se v eral tools ha v e been de v eloped to demultiple x HTO sequencing data and assign cells to samples. 
In this study, we critically assess the performance of seven HTO demultiplexing tools: hashedDrops, HTODemux, GMM-Demux, demuxmix, 
deMULTIple x, BFF ( bimodal fle xible fitting ) and HashSolo. T he comparison uses data sets where each sample has also been demultiple x ed using 
genetic variants from the RNA, enabling comparison of HTO demultiplexing techniques against complementary data from the genetic ‘ground 
truth’. We find that all methods perform similarly where HTO labelling is of high quality, but methods that assume a bimodal count distribution 
perform poorly on lower quality data. We also suggest heuristic approaches for assessing the quality of HTO counts in an scRNA-seq experiment. 
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mprovements in droplet-based single-cell RNA sequencing
 scRNA-seq ) technologies have prompted growing interest in
xploring variation in gene expression at cellular resolution.

hile costs continue to decrease, it remains expensive to sep-
rately capture and sequence individual samples. Batch effects
lso confound meaningful differences in gene expression be-
ween samples, and robust detection of multiplets ( droplets
ontaining two or more cells ) solely from the transcriptome
emains an issue ( 1 ) . One solution to address these problems is
o design multiplexed experiments, where samples are pooled
rior to droplet capture and sequencing. The cost per sample is
educed by a factor of the number of samples sequenced, while
ajor sample preparation batch effects within the pool are

liminated. Importantly, droplets containing cells from two or
ore samples can be identified. In addition, the number of

ross-sample doublets can be used to estimate the expected
umber of within-sample doublets and thereby inform the ap-
lication of other doublet detection algorithms such as scds ( 2 )
nd scDblFinder ( 3 ) . 

Despite these advantages, it is important to carefully con-
ider the most appropriate multiplexing protocol for the sam-
le type ( s ) ( 4 ) , and whether additional information is required
o associate the cells with their sample of origin. For geneti-
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cally distinct samples, demultiplexing can be performed based
on genetic variants identified from the transcriptome using a
variety of tools such as vireo and demuxlet ( 5 ,6 ) . However,
genetic demultiplexing is not possible where samples from the
same individual are sequenced together ( e.g. before and af-
ter treatment or different tissues from the same individual ) ,
or in model organisms, where there is typically little genetic
variation between individuals. Additionally, although genetic
demultiplexing is able to distinguish cells from genetically dis-
tinct individuals, it cannot provide absolute identification of
the individual sample within the pool without further infor-
mation about the samples, such as single-nucleotide polymor-
phism ( SNP ) genotyping. 

Cell hashing is an alternative multiplexing technique. Prior
to pooling, a barcoded label called a hashtag oligo ( HTO ) is
added, one to each sample. The HTOs attach to either anti-
bodies or lipids on the surface of the cells and the HTOs are
captured and sequenced in parallel to the RNA. The antibod-
ies bind to ubiquitous cell surface proteins ( 7 ) , while the lipids
incorporate into the plasma cell membrane ( 8 ) . 

Sequencing of the HTOs produces an HTO count matrix,
an N HTOs × N droplets matrix consisting of the read counts for
each HTO in each droplet. In an ideal scenario, each droplet
contains only one cell and each cell contains only counts for
, 2023. Accepted: September 18, 2023 
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the HTO corresponding to its sample of origin. In this ideal
case, the demultiplexing algorithm involves simply identifying
the non-empty entries in each column of the HTO count ma-
trix. In practice, the data are noisy; droplets may contain mul-
tiple cells, HTO-conjugated antibodies / lipid molecules may
not bind well to the cells or may dissociate and bind to cells
from another sample in the pooling stage, or unbound HTOs
may be present in droplets ( 7 ,8 ) . Therefore, some sophistica-
tion is required for demultiplexing algorithms to distinguish
the counts from the ‘true’ HTO against a background of ‘false’
counts. 

In this study, we present a comparison of seven HTO de-
multiplexing methods: hashedDrops, HTODemux, deMUL-
TIplex, GMM-Demux, demuxmix, BFF ( bimodal flexible
fitting ) and HashSolo. We discuss the details of each in the
‘Materials and Methods’ section. In all cases, the fundamen-
tal goal of each method is the same: to examine the counts
of each HTO in a droplet and determine the sample of ori-
gin of each cell. Conceptually, this is achieved by separat-
ing the signal from the oligo bound to the cell in the sample
preparation stage ( ‘positive’ HTOs ) from ambient counts that
arise due to contamination ( ‘negative’ HTOs ) . Droplets with
no positive HTOs are classified as ‘negative’ or ‘unknown’.
Droplets with more than one positive HTO are classified as
doublets / multiplets. Those with only one positive HTO are
classified as singlets. Here, we use three data sets to assess the
performance of each demultiplexing method by comparing the
assignments from HTO demultiplexing to assignments from
genetic demultiplexing on the same data. Recent work has
shown that performance of HTOs varies between technolo-
gies and tissue types ( 4 ,9 ) , and the data sets herein use both
antibody-derived and lipid-based HTOs and incorporate liq-
uid and solid tissue types. First, we suggest some visualizations
for assessing the quality of HTO tagging. Next, we compare
each method’s performance on data whose labelling quality
ranges from good to poor. We find that all methods perform
similarly when the labelling is of high quality. However, with
lower quality labelling, methods that make simplistic, explicit
assumptions about the data perform worse than those that
take a more flexible approach. 

Materials and methods 

Single-cell data generation 

The bronchoalveolar lavage ( BAL ) data set is derived from
CITE-seq experiments of 24 samples of paediatric BAL. Sam-
ples were collected, cryopreserved and thawed as previously
described ( 10 ) . Live, single cells were sorted using a BD
FACS Aria fusion and resuspended in 25 μl of cell stain-
ing buffer ( BioLegend ) . Human TruStain FcX FC blocking
reagent ( BioLegend ) was added according to manufacturer’s
instructions for 10 min on ice. Each tube was made up to
100 μl with cell staining buffer and TotalSeq hashtag reagents
( BioLegend ) were added to each sample for 20 min on ice.
Cells were washed with 3 ml cell staining buffer and cen-
trifuged at 400 × g for 5 min at 4 

◦C. Supernatant was dis-
carded and each sample resuspended at 62 500 cells / 100 μl
following which 100 μl of each sample was pooled into one
tube. Pooled cells were centrifuged at 400 × g for 5 min at 4 

◦C,
supernatant discarded and resuspended in 25 μl cell staining
buffer and 25 μl of TotalSeq-A Human Universal Cocktail
v1.0 ( BioLegend ) for 30 min on ice. This cocktail contains
154 immune-related surface proteins. Cells were washed in 3 

ml cell staining buffer and centrifuged at 400 × g for 5 min at 
4 

◦C. Following two more washes, cells were resuspended in 

phosphate-buffered saline + 0.04% bovine serum albumin for 
Chromium captures. Single-cell captures, library preparation 

and sequencing were performed as we have described previ- 
ously ( 11 ) . 

Data for the ovarian tumour data set were taken from ( 12 ) ,
and were provided as a matrix of HTO counts along with the 
genetic assignments from vireo. 

For the cell line data set, three human lung cancer cell 
lines, H1792, H3122 and H358, were labelled with a differ- 
ent 3 

′ lipid-modified oligo ( LMO ) as in ( 8 ) . Cell lines were 
pooled in a 1:1:1 ratio and the pool was used for three sep- 
arate captures with the 10x Chromium system using the 10x 

Genomics NextGEM 3 

′ Single-Cell Gene Expression Solution 

( 10x Genomics ) . After single-cell capture, scRNA libraries 
were generated according to the manufacturer’s recommen- 
dations and LMO library preparation was performed as de- 
scribed previously ( 8 ) . LMO count matrices were generated 

from fastq files using CITE-seq-count v1.4.3. 

Genetic demultiplexing 

For both data sets, genetic donors were assigned to the sam- 
ples by first performing SNP genotyping using cellSNP-lite 
( v1.2.0 for the BAL data; v1.2.1 for the cell line data ) ( 13 ) .
We used a list of common variants from the 1000 Genomes 
Project ( 14 ) and filtered SNPs with < 20 unique molecular 
identifiers or < 10% minor alleles, as recommended in the 
cellSNP-lite manual. We then used vireoSNP 0.5.6 ( 5 ) for de- 
multiplexing using the output of cellSNP-lite as the cell data 
and no additional donor information. More details are pro- 
vided in ( 11 ) . 

Calculating the F -score 

For each possible HTO assignment, we calculate the true pos- 
itive rate TP, which is the fraction of cells with that HTO as- 
signment that have the corresponding vireo assignment; the 
false positive rate FP, which is the fraction of cells with that 
HTO assignment and a different genetic assignment; and the 
false negative rate FN, which is the fraction of cells with the 
corresponding genetic assignment but a different HTO assign- 
ment. Our key metric is the F -score, which is defined as 

F = 

TP 

TP + 1 / 2( FP + FN ) 
. 

F is the harmonic mean of the precision and recall, and can 

vary between 0 and 1, with a higher F -score implying better 
performance. 

Overview of demultiplexing methods in this 

comparison 

hashedDrops 
hashedDrops, part of the DropletUtils package ( 15 ) , is a sim- 
ple threshold-based classifier. First, the HTO count matrix is 
corrected for the ambient counts of each HTO in the data 
( either before or after filtering out empty droplets ) . It then 

ranks the HTO counts in each droplet. Assignments are deter- 
mined solely by the log-fold change ( LFC ) between the high- 
est and second highest counts in a droplet, relative to the me- 
dian counts for that HTO. First, doublets are called where the 
LFC of the second highest HTO is greater than a user-defined 
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umber of median absolute deviations ( MADs ) above the me-
ian and also greater than another user-defined threshold. If
 droplet is not assigned as a doublet, singlet assignments are
etermined by checking that the LFC of the HTO with the
ighest count in each droplet is greater than a user-defined
hreshold and is also not less than a user-defined number of

ADs below the median. While less sophisticated than other
emultiplexing methods, hashedDrops has the advantage of
aking very few assumptions about the data, and is easily

onfigurable by the user . However , as the results are very sen-
itive to the choice of the hard thresholds, their values should
e carefully considered. We explore the effect of varying the
inglet threshold parameter in Supplementary Figure S3. 

TODemux 

TODemux ( 7 ) , included in the Seurat package, uses a
lustering-based approach. The HTO counts are normalized
sing the centred log ratio ( CLR ) transformation. Then, an un-
upervised k -medoids clustering is performed, with k = N HTOs 

 1. For each HTO, cells are identified as positive or nega-
ive in a two-step procedure. First, the cluster with the low-
st expression count for each HTO is defined as the ‘nega-
ive’ cluster, and a negative binomial distribution is fitted to
he counts in that cluster. For the droplets outside that clus-
er, droplets with HTO counts above a user-defined quantile
 0.99 by default ) are assigned as positive for the HTO. After
erforming this procedure on all HTOs, droplets that have
een assigned positive for more than one HTO are classified
s multiplets, droplets with no positive assignments are classi-
ed as negative and the droplets assigned positive for only one
TO are classified as singlets. We explore the effect of varying

he quantile threshold in Supplementary Figure S4. 

MM-Demux 

ike HTODemux, GMM-Demux ( 16 ) uses the CLR-
ransformed HTO counts. In well-behaved data, the distri-
ution of the CLR-transformed counts of each HTO is bi-
odal, with the lower peak corresponding to the ‘negative’
ackground and the higher peak corresponding to the true
positive’ counts. GMM-Demux fits a two-component Gaus-
ian mixture model to the distribution of each HTO, and
ses Bayesian estimation to assign each droplet to the higher
r lower peaked distribution for each HTO. Droplets with
nly one positive HTO assignment are classified as singlets
nd droplets with no positive assignments are classified as neg-
tive, while droplets with multiple positive assignments are
lassified as multiplets, with the identity of the most probable
TOs in each multiplet included in the output. Every positive

ssignment is given a confidence score between 0 and 1, and a
ser-defined confidence threshold ( 0.8 by default ) can be ad-
usted to be more or less strict with the output classifications.

e explore the effect of varying the confidence threshold set
n Supplementary Figure S5. 

emuxmix 

emuxmix ( 17 ) is similar to GMM-Demux but uses a negative
inomial mixture model on the untransformed HTO counts,
ather than a mixed Gaussian on the CLR-transformed
ounts. For each HTO, all cells are clustered into positive
nd negative clusters using k -means clustering. Cells with very
igh counts are marked as outliers, and the non-outliers are
tted to a two-component negative binomial distribution us-
ng an expectation–maximization algorithm. demuxmix can
also leverage the RNA counts to improve performance, using
the number of detected genes in the RNA library as a covariate
in the mixture model. Using this additional RNA information
with the BAL data set showed no significant improvement on
either data set in this paper, so the results presented are based
on the HTO counts only. 

deMULTIplex 

deMULTIplex ( 8 ) uses an iterative approach. First, a kernel
density estimator is used to smooth the log-normalized HTO
counts. For each HTO, an initial threshold for positive clas-
sification is defined as the highest maximum ( assuming a bi-
modal normalized count distribution ) , while the initial thresh-
old for negative classification is the mode. Then, the algorithm
sweeps through the quantile range between these two thresh-
olds to find the value that classifies the largest proportion of
the data as singlets. Each droplet is then compared against
each HTO-specific threshold, being classified as negative, sin-
glet or multiplet based on the number of HTOs for which it
passes. All negatively classified droplets are removed from the
count matrix, and the process is repeated until successive it-
erations identify no additional negative droplets. While the
thresholds for singlets and doublets can be adjusted manually,
the default option searches for the value that maximizes the
fraction of singlet assignments, and our results use this auto-
matic threshold-determining mode. 

BFF 

BFF ( 18 ) also assumes a bimodal count distribution. It op-
erates in two modes, BFF raw 

and BFF cluster . The first mode,
BFF raw 

, smooths the count distribution using a kernel density
estimator, much like deMULTIplex. The threshold between
positive and negative classifications in this case is the local
minimum between the two peaks. The second mode, BFF cluster ,
is similar, but includes an additional layer of normalization,
called bimodal quantile normalization, before finalizing clas-
sifications. The level of smoothing on the counts can be se-
lected by the user; however, our results are based on the de-
fault, which searches for an optimal value. 

HashSolo 

HashSolo ( 19 ) is a Bayesian method that models the over-
all count distribution across all cells as a mixture of two
log-normal distributions corresponding to signal and noise.
For each cell, it looks at the two highest counts and com-
putes the likelihood of both belonging to the noise distribution
( negative ) , one belonging to the signal and one belonging to
the noise ( singlet ) , or both belonging to the signal ( doublet ) .
It then returns the assignment with the highest Bayesian evi-
dence. The prior is the fraction of singlets, doublets and nega-
tive cells within the sample. Based on the vireo results, we use
a prior of 75% singlets, 20% doublets and 5% negatives. We
also run HashSolo with a negative fraction prior between 1%
and 10% and a doublet fraction prior between 10% and 30%.
This has a negligible effect on the posterior assignments, with
the average F -score varying by < 1% in all batches. 

Results 

Evaluation data sets 

We perform our comparison of hashtag demultiplexing meth-
ods on six tagging experiments across three data sets, each
using different tagging technologies. The first data set, the
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BAL data set, contains 24 genetically distinct samples of BAL
fluid tagged with TotalSeq-A antibody-derived tags ( ADTs )
( 7 ) . These samples were processed in three batches of eight
pooled samples, each with two captures per batch. Batch 1
contains 24 091 droplets, batch 2 contains 48 841 droplets
and batch 3 contains 62 306 droplets. 

The second data set, the ovarian tumour ( OT ) data set, con-
tains eight genetically distinct samples of high-grade serous
ovarian tumours, tagged with TotalSeq-B ADTs. These sam-
ples were processed in two batches of four samples each; batch
1 contains 12 510 droplets and batch 2 contains 9547 droplets
( 12 ) . 

The third data set, the cell line ( CL ) data set, contains sam-
ples from three human lung cancer cell lines, which are tagged
with MULTI-seq LMOs ( 8 ) . The cell line data set contains
45 977 droplets. 

For each data set, vireo ( 5 ) is used to assign cells to indi-
viduals with default settings ( see the ‘Materials and Meth-
ods’ section ) and these are used as the ‘ground truth’ to as-
sess the accuracy of the HTO demultiplexing methods. Tests
of vireo on simulated data sets show close to 100% accuracy
on singlets and > 90% accuracy on between-sample doublets
( 1 ) . While such performance may be optimistic for real-world
data sets, vireo returns similar assignment scores for all three
batches in the BAL data set ( Supplementary Figure S2 ) . This
consistent performance is in contrast to the HTO demultiplex-
ing methods. 

Throughout this paper, we make a distinction between the
labels assigned to cells using vireo and the labels of the cor-
responding HTOs. The vireo labels are denoted by the data
set name followed by an alphabetical suffix, e.g. BAL A, CL
B and OT C, while the corresponding HTO labels contain a
numeric suffix, e.g. BAL 1, CL 2 and OT 3. 

QC visualization 

To assess the quality of the HTO labelling and sequencing,
we suggest using some common qualitative visualizations that
can guide overall expectations of the performance of HTO de-
convolution. Figure 1 shows the probability density function,
approximated using kernel density estimation, of the loga-
rithm of counts per cell of each HTO across the three batches
in the BAL data set ( Figure 1 A–C ) . The tSNE ( t-distributed
stochastic neighbour embedding ) dimensional reductions of
the principal component analysis ( PCA ) of log-normalized
HTO counts in each batch are also shown ( Figure 1 D–F ) . Each
HTO in batch 1 of the BAL data set follows a bimodal distri-
bution ( Figure 1 A ) , with a lower peak corresponding to the
background counts in the majority of droplets and a higher
peak corresponding to the cells from the tagged sample. In
batches 2 ( Figure 1 B ) and 3 ( Figure 1 C ) , some HTOs ( e.g.
BAL J and BAL N in batch 2, BAL U in batch 3 ) appear uni-
modal, indicating lower quality labelling. In the right column,
the tSNE of batch 1 ( Figure 1 D ) has eight distinct clusters,
corresponding to the eight individual samples, with a con-
stellation of smaller, interspersed clusters that correspond to
doublets and unassigned droplets based on the genetic assign-
ments. Batches 2 ( Figure 1 E ) and 3 ( Figure 1 F ) also show eight
clusters; however, the boundaries of these clusters are closer
than in batch 1, and overlap for some samples in batch 3.
While not quantitative, the tSNE plots in Figure 1 indicate that
the cells in batch 1 are well labelled, while those in batches
2 and 3 are labelled more poorly, highlighting that demulti-
plexing these batches is likely to be more challenging and de- 
multiplexing less accurate ( as shown in the following section ) .
In addition, specific samples within a batch are labelled more 
poorly than others as indicated by the density plots of the in- 
dividual HTOs and the overlapping tSNE clusters. Overall,
the density and tSNE plots of the HTO counts can be used 

to quickly evaluate the quality of the HTO labelling. High- 
quality data are indicated by bimodal density plots and tSNE 

plots with distinct, major clusters corresponding to the num- 
ber of samples. 

Quantitative comparisons of demultiplexing 

methods 

Each of the three batches in our BAL data set contains cells 
from eight samples, from genetically distinct donors. Each de- 
multiplexing method ( including the genetic demultiplexing ) 
can return one of 10 assignments for a cell: singlet, corre- 
sponding to one of the eight unique samples; doublet; or neg- 
ative. We compare seven HTO demultiplexing methods: BFF 

( 18 ) , deMULTIplex ( 8 ) , demuxmix ( 17 ) , GMM-Demux ( 16 ) ,
hashedDrops ( 15 ) , HTODemux ( 7 ) and HashSolo ( 19 ) . BFF 

has two modes, BFF raw 

and BFF cluster , and we present the out- 
put of both. All of the methods we consider have some ad- 
justable parameters that affect output; however, in our ex- 
ploration, changing the default options does not significantly 
change the assignments. We discuss the details of each method 

and their parameters further in the ‘Materials and Methods’ 
section. The exception is hashedDrops, which uses a simple 
count threshold to distinguish negatives and singlets. We find 

that in many cases the default value of this threshold is too 

high, and performance ( defined here as the F -score; see the 
‘Materials and Methods’ section ) is improved by lowering its 
value. To illustrate this, we present the hashedDrops classifi- 
cations with both the default value ( confident.min = 2 ) and 

the value we find maximizes the F -score ( confident.min = 

0.5 ) . As each batch was processed across two captures, we run 

the demultiplexing methods on HTO data from each individ- 
ual capture. However, for simplicity, the results are presented 

per batch as we do not observe significant variation between 

captures within a batch. 
In Figure 2 , we show the fraction of assignments in each 

broad category: singlet, doublet or negative, from vireo and 

each hashtag demultiplexing method for the three batches in 

the BAL data set. Two clear trends are apparent in Figure 2 .
First, vireo is able to assign more droplets as singlets than any 
of the hashtag demultiplexing methods. Second, the hierar- 
chy of HTO tagging quality between the batches suggested 

by Figure 1 is confirmed in Figure 2 . The fraction of negative 
droplets increases from batch 1 to batch 3 for most methods.
The exception to both is BFF cluster , which assigns slightly more 
singlets than vireo in batches 1 and 2, and assigns fewer neg- 
ative droplets in batches 2 and 3 than in batch 1. HashSolo 

assigns fewer negative cells than any other method, excluding 
vireo and BFF cluster , and assigns a similar fraction of doublets 
in each batch, with the doublet fraction greater than vireo in 

all batches. 
We next compare the specific individuals allocated by the 

singlet assignments of each HTO demultiplexing method to 

the ‘ground truth’ of genetic assignments from vireo. To quan- 
titatively assess their performance, we calculate the F -score 
( see the ‘Materials and Methods’ section ) , a statistic that is 
the harmonic mean of precision and recall. The F -score ranges 
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Figure 1. Quality assessment visualizations of the BAL data set. ( A –C ) Probability density function of the logarithm of HTO counts for each hashtag 
and ( D –F ) tSNE dimensional reduction of HTO counts, coloured by genetic donor in batches 1 ( D ) , 2 ( E ) and 3 ( F ) . 
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etween 0 and 1, with a higher value indicating better per-
ormance. Figure 3 shows a heatmap of the F -score of each
ethod, for each possible singlet assignment, split by batch. 
Table 1 shows the mean F -score of each sample for each
ethod in all data sets. The BAL data are shown in the second,

hird and fourth columns. Numerical values of the F -scores for
ll samples and methods are included in the Supplementary
ata. Figure 3 and Table 1 show that all methods perform well

or batch 1. The overall performance of all methods drops for
atches 2 and 3 and some methods begin to show significant
erformance differences between batches. Notably, BFF cluster ,
hich has the highest mean F -score in batch 1, has F < 0.1 for
ll HTOs except BAL 9 in batch 2 and all HTOs except BAL
7, BAL 18, BAL 19 and BAL 20 in batch 3. BFF raw 

is unable
o classify any cells to BAL 10 or BAL 14 in batch 2 or BAL
7, BAL 21 and HTO 14 in batch 3. hashedDrops has higher
cores in all batches with optimized parameters than with the
efault settings, and has the highest mean F -score of all meth-
ods in batches 2 and 3. Demuxmix, GMM-Demux, HashSolo
and HTODemux show consistent performance across all three
batches. 

Next, we investigate doublets in more detail. As shown in
Figure 2 , almost all methods assign more doublets than vireo.
Assigning true doublets as singlets is potentially a more signif-
icant source of error in downstream analysis, such as cell type
identification, than misclassifying a true singlet as a doublet,
negative or incorrect singlet ( 20 ) . Therefore, we exclude the
doublet and negative classifications from our F -score analysis
above. Instead, we perform a separate, complementary anal-
ysis of how each HTO demultiplexing method classifies the
genetic doublets. For each batch in the BAL data set, we take
the droplets assigned as doublets by vireo, and look at which
broad category ( i.e. doublet, singlet or negative ) they are as-
signed by each of the HTO demultiplexing methods. For this
analysis, the best-performing method is the one that minimizes
the number of ‘true’ doublets assigned as singlets. Since both
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Figure 2. The proportion of cell assignments to singlets, doublets or negative droplets for each demultiplexing method of the BAL data set. Each panel is 
a method and each bar is a batch. 
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Figure 3. F -scores of each singlet assignment from each demultiplexing method for the BAL data set. Left panel: batch 1; middle panel: batch 2; right 
panel: batch 3. Methods are ordered from highest to lo w est a v erage F -score across all three batches. 

Table 1. Singlet fraction and mean F -score of each demultiplexing method for all batches in all data sets 

Metric BAL batch 1 BAL batch 2 BAL batch 3 OT batch 1 OT batch 2 CL 

Genetic singlet fraction 21 851 / 24 091 41 816 / 48 841 50 496 / 62 306 11 296 / 12 510 8683 / 9547 40 118 / 45 977 
F mean ( hashedDrops ) 0.930 0.847 0.785 0.679 0.813 0.864 
F mean ( demuxmix ) 0.907 0.833 0.775 0.511 0.506 0.743 
F mean ( HTODemux ) 0.892 0.794 0.742 0.620 0.654 0.737 
F mean ( GMM-Demux ) 0.905 0.770 0.720 0.645 0.632 0.823 
F mean ( HashSolo ) 0.920 0.783 0.737 0.606 0.688 0.806 
F mean ( deMULTIplex ) 0.907 0.791 0.624 0.218 0.684 0.828 
F mean 

( hashedDrops—default ) 
0.907 0.613 0.573 0.406 0.46 0.663 

F mean ( BFF raw ) 0.879 0.539 0.466 0 0.623 0.791 
F mean ( BFF cluster ) 0.935 0.119 0.188 0 0.408 0.874 

The best-performing method for each batch is indicated in bold. 
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egative droplets and doublets are typically excluded from
ownstream analysis, misclassification of genetic doublets as
egatives is relatively unimportant. 
Figure 4 shows the fraction of vireo doublets assigned by

ach method as doublet, singlet or negative. Figure 4 illus-
rates several points not apparent in Figure 3 and Table 1 .
irst, BFF cluster , which has the highest F -score for batch 1,
as the worst performance on the doublets, assigning more
han half of the genetic doublets in that batch as singlets.
econd, while adjusting the parameters of hashedDrops from
heir default values improves the F -score, the number of in-
orrectly assigned genetic doublets approximately doubles in
ll batches. Third, the other best-performing methods based
n F -score, demuxmix, HTODemux and GMM-demux, per-
orm well on the doublet analysis as well, assigning < 20% of
enetic doublets as singlets in all batches, though HashSolo
erforms slightly worse, with ≈30% of genetic doublets iden-
ified as singlets. 

v ar ian tumour data 

he second data set we analyse consists of eight samples from
igh-grade serous ovarian carcinoma patients from ( 12 ) . Un-
ike the BAL data samples, which are liquid, these tumour
samples require dissociation prior to hashtagging and single-
cell sequencing. The samples were tagged with TotalSeq-B
ADTs and processed in two batches of four samples each, with
12 510 droplets in batch 1 and 9547 droplets in batch 2. 

Genetic demultiplexing with vireo positively assigns > 90%
of droplets as singlets for both batches ( 12 ) . Initial quality con-
trol ( QC ) of the HTO counts ( Supplementary Figure S6 ) sug-
gests poor performance of the hashtagging in this experiment,
which is borne out by the low F -scores of all demultiplexing
methods on this data set. 

Figure 5 shows a heatmap of the F -scores for each method
on each sample and the assignment of genetic doublets as dou-
blets, singlets or negatives by each method. The mean F -scores
for each method in each batch are shown in the fifth and sixth
columns of Table 1 . In general, the performance of all demul-
tiplexing methods is worse for both batches in the ovarian
tumour data set than the BAL data. This is possibly due to
the additional dissociation step in the sample processing ( 4 ) .
As for the BAL data set, using hashedDrops is a trade-off be-
tween F -score and doublet classification accuracy. HashSolo,
GMM-Demux and HTODemux all perform relatively well,
while demuxmix, the method with best overall performance
on the BAL data set, falls behind on F -score but makes fewer
errors on doublets. How these two factors should be weighed
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Figure 4. Fraction of genetic doublets assigned by each HTO demultiplexing method to doublets ( black ) , negatives ( grey ) or singlets ( red ) in the BAL data 
set. Methods are in the same order as Figure 3 . 
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against one another cannot be answered objectively for all
cases, especially as the overall fraction of doublets depends
on the overall number of cells per batch ( 1 ) . For example, in
batch 3 of the BAL data set, using hashedDrops instead of de-
muxmix improves the mean F -score by only 0.01, while an ad-
ditional ≈3000 doublets are incorrectly labelled as singlets. In
batch 1 of the ovarian tumour data set, however, using hashed-
Drops instead of demuxmix improves the mean F -score by
0.307, while misclassifying ≈500 doublets as singlets. In the
former case, demuxmix is clearly superior, while in the latter
case it might make sense to prefer hashedDrops. BFF raw 

and
BFF cluster again perform poorly, especially on batch 1, where
both fail to classify any cells. 

Cell line data 

We perform the same analysis on a third data set, the cell line
data set, consisting of three samples from genetically distinct
human lung cancer cell lines. Here, H3122, H358 and H1792
cells were tagged with different MULTI-seq LMOs ( 8 ) , a dif-
ferent tagging technology to the ADTs used on the BAL and
ovarian tumour samples. These samples were pooled together
and processed in one batch across three captures, with 45 977
total droplets. 

Since both the ADT and LMO technologies produce an
N HTOs × N droplets count matrix with similar distributions
( see Supplementary Figure S7 ) , we expect the demultiplexing
methods to perform similarly on the LMO and ADT data.
Figure 6 shows the F -score for each method on each of the
three samples in this data set ( Figure 6 A ) , as well as the cate-
gorical assignments of the 4945 genetic doublets ( Figure 6 B ) .
Figure 6 and Supplementary Figure S7 show that the cell line
data are somewhere between the quality of batches 1 and 2
of the BAL data, and the performance of each of the methods
is similar. Based on F -score alone ( Figure 5 A ) , BFF cluster per-
forms best; however, looking at Figure 5 B, we see that > 75%
of genetic doublets are assigned as singlets. Based on the two
metrics, we find that deMULTIplex, GMM-Demux and de-
muxmix perform well, hashedDrops with default parameters
and HTODemux perform relatively poorly, and hashedDrops 
with lowered thresholds and HashSolo perform well based on 

the F -score, but misidentify nearly 60% of genetic doublets 
as singlets—more than twice as many as the best-performing 
methods. 

Discussion 

As sample multiplexing becomes more common in scRNA- 
seq experiments, reliable demultiplexing of cells becomes 
paramount. We benchmark seven methods for cell demulti- 
plexing based on HTO data. Of the methods we consider,
demuxmix shows the best overall performance across the 
three data sets included in this study, using our two crite- 
ria of accurately classifying singlets and rarely misclassifying 
genetic doublets as singlets. However, the difference between 

demuxmix, GMM-Demux and HTODemux is small, and all 
should perform relatively well on most data sets. Furthermore,
for data sets with lower quality hashing, we suggest that it 
may be prudent to trial several of these methods to maximize 
the number of positively identified singlets. Looking only at 
the F -score, hashedDrops is the best overall performer when 

the threshold for confident detection is lowered. However, this 
comes at the cost of misclassifying doublets as singlets. de- 
MULTIplex and BFF methods perform especially poorly on 

lower quality hashing data, as they rely on measurement of 
two peaks in a density estimate of the transformed counts,
which may not exist when a large number of background 

counts are present. 
Our results are broadly consistent for hashtagging using 

ADTs and LMOs, as well as liquid and solid tissues, indicating 
that the performance of the demultiplexing methods is agnos- 
tic to the choice of tagging protocol. 

Although most of the tools are straightforward to run, and 

interact well with popular single-cell analysis packages, there 
are some important usability differences. demuxmix is part 
of the Bioconductor ecosystem and can easily be run in R.
As it only requires an HTO count matrix to return assign- 
ments, it can be incorporated as part of a Bioconductor- or 
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Figure 5. ( A ) Heatmap of F -scores for each demultiplexing method on each sample from the o v arian tumour data set. ( B ) Fraction of the genetic doublets 
in each batch assigned to different categories by each method. Methods are ordered from highest to lo w est a v erage F -score across the tw o batches. 
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eurat-based single-cell analysis pipeline. HTODemux is part
f the Seurat package and requires a Seurat object as in-
ut, and therefore runs most easily alongside other Seurat
ools for single-cell analysis. HashSolo is part of the scanpy
cosystem and can be run easily as part of a scanpy analy-
is pipeline. However, although HashSolo performs well on
igh-quality data, its tendency to misidentify genetic dou-
lets as singlets means that care should be taken on super-

oaded data. GMM-Demux is a command-line tool, which
ay provide a barrier to entry for some users, although
wrappers such as cellhashR ( 18 ) can be used to run it
from R. 

We demonstrate two simple visualization methods to assess
the quality of hashtag data, and confirm that if the probabil-
ity density of counts follows a bimodal distribution, and the
counts separate into well-defined clusters on a dimensional
reduction plot, then all demultiplexing methods perform well.
However, if these conditions are not met, demultiplexing al-
gorithms that explicitly assume bimodal distributions ( such as
deMULTIplex and BFF ) fail to correctly assign some droplets
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Figure 6. ( A ) Heatmap of F -scores for each demultiplexing method on each sample from the cell line data set. ( B ) Fraction of the genetic doublets 
assigned to different categories by each method. Methods are ordered from highest to lowest average F -score. 
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o their samples of origin. Threshold-based methods, such
s hashedDrops, can perform well but make a trade-off be-
ween greater recovery of singlets and false positives. More
ophisticated methods, such as the clustering-based HTODe-
ux and demuxmix, and the Bayesian estimation-based meth-
ds GMM-Demux and HashSolo perform best and most con-
istently on both high- and low-quality hashtag data. 

Low-quality hashtag data do not imply low-quality RNA
xpression data; importantly, the two are largely uncorre-
ated ( see Supplementary Figure S1 ) . We show that the dif-
erence between demultiplexing methods becomes more pro-
ounced as the quality of the hashtag data reduces. Therefore,
aximizing performance of demultiplexing methods on lower
uality hashtag data is particularly important to prevent oth-
rwise good quality cells being excluded in a single-cell anal-
sis. 

For samples with similar or identical genetic backgrounds,
abelling of cells before pooling will continue to be an im-
ortant strategy and this manuscript provides a benchmark
or applying these methods. While genetic demultiplexing has
een shown to be accurate for deconvolving samples from out-
red populations ( 1 ) , there is potential for information from
he genetics and hashtags to be used together for more ac-
urate deconvolution ( 21 ,22 ) and we expect to see continued
evelopments in this area. 

ata availability 

ode to reproduce the analysis in this paper can be viewed
t https:// oshlacklab.com/ hashtag- demux- paper , and the raw
ount data and vireo assignments for the BAL and cell line
ata sets can be accessed through Zenodo at https://zenodo.
rg/ record/ 8304003 (DOI: 10.5281 / zenodo.8304002). The
varian tumour data set is taken from the preprint ‘Per-
ormance of computational algorithms to deconvolve het-
rogeneous bulk tumour tissue depends on experimen-
al factors’ by Hippen et al. ( 12 ), and can be ac-
essed at https:// www.ncbi.nlm.nih.gov/ projects/ gap/ cgi-bin/
tudy.cgi?study _ id=phs002262.v2.p1 . 
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upplementary Data are available at NARGAB Online. 
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