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A B S T R A C T

The ability for vaccines to protect against infectious diseases varies among individuals, but computational
models employed to inform policy typically do not account for this variation. Here we examine this issue:
we implement a model of vaccine efficacy developed in the context of SARS-CoV-2 in order to evaluate
the general implications of modelling correlates of protection on the individual level. Due to high levels
of variation in immune response, the distributions of individual-level protection emerging from this model
tend to be highly dispersed, and are often bimodal. We describe the specification of the model, provide an
intuitive parameterisation, and comment on its general robustness. We show that the model can be viewed as
an intermediate between the typical approaches that consider the mode of vaccine action to be either ‘‘all-or-
nothing’’ or ‘‘leaky’’. Our view based on this analysis is that individual variation in correlates of protection
is an important consideration that may be crucial to designing and implementing models for estimating
population-level impacts of vaccination programs.
1. Introduction

Mathematical and computational models of disease transmission
are often used to estimate the population-level impact of vaccines
and guide the design of immunisation programs. In such models, the
effect of a vaccine on protection against infection or other outcomes
is typically modelled in one of two ways. The ‘‘all-or-nothing’’ model
assumes that a proportion of vaccinated individuals are completely
protected from infection, while the remainder are not protected and
maintain the susceptibility of an immune-naive individual (see, e.g., [1–
3]). The ‘‘leaky’’ model assumes that each vaccinated individual has
a reduced risk of becoming infected each time they are exposed (see,
e.g., [4–6]).

Estimates of the likely impact of immunisation programs can differ
substantially depending on which model of vaccine action is used.
In simulations, the magnitude of this difference increases as an out-
break grows, especially for highly contagious pathogens. This differ-
ence arises because, in the leaky model, the vaccinated individuals are
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partially protected and may become infected due to repeated expo-
sures [7,8]. Both the all-or-nothing and the leaky models are abstrac-
tions that treat vaccine efficacy as a phenomenological variable that
is estimated based on outcome data from phase III vaccine trials and
population efficacy studies [9]. Neither model explicitly accounts for
the underlying mechanisms of vaccine-induced protection.

While the cohort-level efficacy estimates drawn from phase III trials
are useful population-level measures, they do not directly describe the
variation in risk over a population. From this perspective, the all-
or-nothing model represents a logical extreme by assuming maximal
variation over a population, while the leaky model assumes the oppo-
site extreme of minimal variation [10]. Outcome-based models with
intermediate levels of variation have been proposed [10]. In these
models, risk is estimated based on observed population-stratified vac-
cine effects. Such approaches highlight the complexity and limitations
encountered when constraining models of population heterogeneity
using outcome data only.
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In general, models of vaccine effects based on clinical outcomes do
not provide sufficiently flexible methods for accommodating popula-
tion heterogeneity in vaccine-derived protection. Such heterogeneity
can be accounted for by identifying correlates of protection (CoPs,
reliable measurements of an individual’s vaccine-induced immune re-
sponse), which have been described as the ‘‘holy grail’’ of vaccine
research [11]. Measurements of CoPs from immunogenicity studies
of vaccines typically show high levels of variation in the immune
response of individuals. For example, the concentrations of neutralising
antibodies produced by a vaccine challenge can often vary over orders
of magnitude [12–15]. As a result, models of vaccine effects that
incorporate the role of CoPs in determining population heterogeneity
typically demonstrate high variability in protection against infection
or disease outcomes, either explicitly (e.g., through best-fit beta dis-
tributions [16,17]) or implicitly through the use of logistic regression
methods [11,18–23].

Here, we assess the implications of modelling vaccine efficacy as
being mechanistically linked to underlying immune correlates of pro-
tection. With SARS-CoV-2 as a well-developed case study, we high-
light the hypothesis implicit in such models: that vaccine effects are
broadly dispersed over a population due to high levels of variation
in CoPs between individuals in that population. The formulation we
assess produces a time-varying logit-normal distribution of protec-
tion. Through stochastic SIR simulations, we show that this model of
protection can act as a flexible intermediate of the leaky and all-or-
nothing models, that emerges naturally as a consequence of computing
individual-level vaccine-derived protection as a function of an under-
lying immune correlate. We compare realistic distributions of vaccine-
induced or exposure-induced protection to the extremes defined by the
all-or-nothing and leaky models.

The model of protection we analyse was developed in the context
of the SARS-CoV-2 pandemic after phase II and III trials had been
conducted for seven different vaccines including mRNA vaccines, viral
vector vaccines, whole virus vaccines and a protein based vaccine. By
relating phase III trial outcomes to the levels of neutralising antibodies
measured in corresponding phase II trials, these studies demonstrated
that neutralising antibodies could serve as a cohort-level correlate of
protection against symptomatic infection [24,25]. Notably, declines
in neutralising antibody concentrations were found to correspond to
waning of levels vaccine efficacy [26].

The model can be calibrated based on empirical evidence relating
CoP levels to outcomes, providing nuanced estimates of the impact
of vaccines. Furthermore, the model is adaptable to observations of
time-varying CoP levels, and can readily incorporate additional layers
of heterogeneity such as altered neutralisation levels corresponding to
newly emerged viral variants. It therefore provides a flexible approach
to modelling vaccine effects that enables the principled investigation of
intermediate levels of heterogeneity in vaccine-derived protection.

2. Model description

We employ the model used by Khoury et al. [24] (adapted from
CoP studies using logistic regression methods [18–20,22]) in which the
level of protection against symptomatic infection varies as a function
of a single CoP value (in this case, the concentration of neutralising
antibodies, relative to convalescent serum). Note that our focus in this
work differs from the focus of Khoury et al. in which they present a
model of the average level of protection in a population for a given
distribution of neutralising antibody titres in the population. In this
work, we interrogate the underlying individual-level model that gives
rise to the population model presented in Khoury et al. [24].

This model developed by Khoury et al. assumes that when an
immune-naive individual is exposed to antigens, their immune system
responds by producing neutralising antibodies which then peak and
wane with time. We simplify the dynamic immune response after vacci-
nation by considering only the peak neutralisation level and subsequent
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decay, while neglecting the relatively short period of time over which
the antibody concentration initially increases. The initial peak immune
response is modelled as a normally-distributed random variable for
each individual 𝑖:

𝑁𝑜(𝑖) ∼  (𝜇𝑛, 𝜎𝑛) , (1)

n which 𝑁𝑜(𝑖) is the log-transformed neutralising antibody concentra-
ion for individual 𝑖 at the time of peak protection following exposure,
𝑛 is the population mean, and 𝜎𝑛 is the population standard devia-
ion. This assumption corresponds to the observation that neutralising
ntibody concentrations are approximately log-normally distributed in
tudies of immunogenicity following pathogen exposure, vaccination,
r combinations thereof (see, for example [12,13,15]).

If an individual is exposed to the same or a similar infectious
athogen following production of neutralising antibodies, their sus-
eptibility to infection will be lower than that of an immunonaive
ndividual. The efficacy against infection is defined as:

infection = 1 −
𝑝1
𝑝𝑜

, (2)

where 𝑝𝑜 is the probability of infection, given exposure, for an im-
munonaive individual and 𝑝1 is the probability for an individual with
some existing protection derived from vaccination or prior exposure.
Recent and past work [18,19,24] has provided support for the use of a
logistic mapping between the measured levels of (log-transformed) neu-
tralising antibodies, and the level of protection an individual receives,
such that:

𝐸infection(𝛥𝑡, 𝑖) =
1

1 + exp[−𝑘(𝑁(𝛥𝑡, 𝑖) − 𝑛𝑐 )]
, (3)

where 𝑁(𝛥𝑡, 𝑖) is the log-transformed neutralising antibody concentra-
tion for each individual 𝑖 at time 𝛥𝑡 since vaccination and 𝑛𝑐 is the
threshold for 50% protection. If we make the simplifying assumption
that neutralising antibody concentrations decay exponentially at the
same rate 𝜆 for each individual, then for a group of individuals who
reached peak neutralisation at time 𝑡𝑜, observed at a later time 𝑡, then
𝛥𝑡 = 𝑡 − 𝑡𝑜 and:

𝑁(𝛥𝑡, 𝑖) ∼  (𝜇𝑛(𝛥𝑡), 𝜎𝑛), (4)

where

𝜇𝑛(𝛥𝑡) = 𝜇𝑛 − 𝜆𝛥𝑡 , (5)

s the time-dependent mean of the log-transformed distribution of neu-
ralising antibody concentrations in the group, after a period 𝛥𝑡 since
eaching the concentration peak. The above equations produce a time-
arying logit-normal distribution of protection over the population:

infection(𝛥𝑡, 𝑖) ∼ logit-normal(𝜇∗, 𝜎∗) , (6)

ith parameters

∗ = 𝑘𝜎𝑛 , (7)

nd

∗ = 𝑘(𝜇𝑛(𝛥𝑡) − 𝑛𝑐 ) . (8)

The logit-normal distribution is bimodal when the density of the un-
derlying normal distribution is split through the logistic mapping.
Therefore, even if the initial distribution of protection is strongly clus-
tered at high values, the gradual decay of the antibody concentration
for each individual will result in periods of time over which the pop-
ulation distribution of protection is bimodal if the CoP distribution is
sufficiently broad (Fig. 1). See the Supporting Information for a detailed

derivation of the extended parameterisation in Eqs. (7) and (8).
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Fig. 1. Examples of how shifting the mean of the underlying normally-distributed
control parameter (a) alters the shape of the resulting logit-normal distribution (b)
produced through a standard logistic mapping of the control variable. Bimodality
occurs when the density of the underlying normal distribution has substantial portions
on either side of the logistic mapping function. See the Supporting Information for
additional details about the methods used to produce this figure.

3. Results

3.1. Case study: SARS-CoV-2

In a case study, we investigate whether realistic parameterisations
of the protection model described above produce bimodal population
distributions of vaccine efficacy.

With the model specified by:

• Eq. (1) (distribution of initial immune response),
• Eq. (5) (decay of initial response),
• Eq. (3) (efficacy as a function of antibody concentration) and,
• Eq. (6) (the resulting efficacy distribution),

the key parameters are the population standard deviation of the peak
immune response (𝜎𝑛), the population mean of the peak immune re-
sponse (𝜇𝑛), the steepness of the logistic function (𝑘), and its inflection
point (𝑛𝑐). The parameters 𝜎𝑛 and 𝜇𝑛 are derived from neutralisation
studies, which do not require measurement of infection or disease
outcomes. These two parameters can vary as a function of the type of
stimulus producing protection (e.g., a vaccine or previous infection), or
as functions of the viral variant against which neutralisation is tested.
On the other hand, the parameters 𝑘 and 𝑛𝑐 relate to the position and
shape of the function relating neutralisation level to relative outcome
risk, and their estimation requires clinical trials or population efficacy
studies. They may therefore be subject to variation based on population
structure and the distribution of underlying risk factors. We posit that
the clear conceptual separation between the parameter sets {𝜇𝑛, 𝜎𝑛}
and {𝑘, 𝑛𝑐} is intuitively useful for establishing sources of variation in
real-world studies applying this model.

In this case study, we use parameters estimated by Khoury et al.
for a convalescent (previously infected) cohort in the context of the
6632
Fig. 2. Numerical characterisation of the standard logit-normal distribution’s polarisa-
tion as a function of the mean (𝜇) and standard deviation (𝜎) of the normally-distributed
control variable. Subfigure (a) shows the entire parameter space investigated in this
work, while subfigure (b) zooms in to demonstrate the parameter space over which
the modes separate. In subfigure (a), shades and red contours correspond to the ‘‘mode
density ratio’’ the fraction of the logit-normal probability density lying on either side
of the minimum separating the modes (if there are two). The blue contours in (a)
and (b) correspond to the distance between maxima (if there is more than one), and
demonstrate that the modes rapidly separate as 𝜎 increases beyond the threshold for
bimodality. See the Supporting Information for additional details about the methods
used to produce this figure. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

ancestral variant of SARS-CoV-2 [24]. We use the parameters corre-
sponding to convalescent serum for two reasons: first, we do not aim to
comment on the effectiveness of any particular vaccine (especially now
that these efficacy levels are largely irrelevant to the current situation
with SARS-CoV-2 due to the emergence of variants). Second, Khoury
et al. used convalescent serum as a baseline measure relative to which
they computed CoPs for each of the vaccines studied in their work. Con-
valescent neutralising antibody titres provided an intermediate level of
protection, with some vaccines producing stronger responses and others
weaker. In this context, the following parameters define the time-
varying distribution of immune-derived protection against symptomatic
infection:

• 𝜇 = 0, 𝜎 ≈ 1.07, 𝑛 ≈ −1.6, 𝑘 ≈ 1.3, and 𝜆 ≈ 0.0064,
𝑛 𝑛 𝑐
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Fig. 3. A case study of COVID-19 infection-derived protection, where the parameters correspond to those computed by Khoury et al. for convalescent serum in the context of the
ancestral strains of SARS-CoV-2. The curves in (a) show the underlying distribution of log-transformed neutralising antibody concentrations from peak protection (black curve) and
after three periods of waning (dashed curves). The green trace in (a) is the logistic mapping that produces the logit-normal efficacy distributions shown in (b). The mean efficacy
as a function of 𝜇∗ is shown in (c), with vertical lines indicating the 𝜇∗ values for each waning period illustrated in (a) and (b). The distributions in (b) are not bimodal but do
demonstrate high levels of dispersion and correspond to a part of the model parameter space that is close to the bimodal phase, indicated by the dashed line and red circles in
(d). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
which, at the time of peak protection (𝑡 = 𝑡𝑜) gives 𝜇∗ = 2.1 and
𝜎∗ = 1.38, (according to Eqs. (7) and (8)) corresponding to a high
level of protection without bimodality (Fig. 2). See the Supporting
Information for further details about parameter selection. The distri-
butions of neutralisation calculated for 0, 10, 30, and 50 weeks after
peak neutralisation are illustrated in Fig. 3(a), while the corresponding
distributions of protection are shown in 3(b). Because 𝜎∗ does not
change with time, the population mean efficacy as a function of 𝜇∗

is shown in Fig. 3(c). Though the distributions shown in 3(b) are not
bimodal, they are widely dispersed, and close to the bimodal part of the
model’s parameter space (3d). Small increases in either 𝑘 or 𝜎𝑛 would
produce bimodal distributions of protection.

The absence of a bimodal distribution in Fig. 3(b) is indicative of
a vaccine that is relatively leaky, suggesting that the results of COVID-
19 vaccine trials could have been affected by the presence of repeat
exposure, given background infection rates and study duration [27–
29]. We anticipate that trials conducted in environments with higher
background infection risk or which were conducted for longer duration
could conceivably have produced lower estimates of vaccine efficacy
than studies conducted for shorter periods, or with lower background
prevalence. We note that if accounting for leaky vaccine effects substan-
tially altered estimates of vaccine efficacy, this could potentially alter
the best-fit parameter values of the logit-normal model. Such a scenario
implies a recursive analysis in which the ascertainment of leakiness (as
measured by the inferred value of 𝜎∗) would influence the magnitude
of any bias produced by trial exposure conditions. Such a bias would
require adjusting the corresponding estimates of efficacy, which could
lead to an updated best-fit parameter set with different 𝜎∗.
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3.2. Implications for generic epidemic dynamics (SIR)

Here, we depart from our case study of SARS-CoV-2 and use a
generic stochastic SIR epidemic simulator to illustrate qualitatively
some of the general implications of using a logit-normal distribution
of individual vaccine efficacy.

To illustrate some of the implications of using a logit-normal dis-
tribution of vaccine efficacy, we depart from our SARS-CoV-2 case
study and consider a generic stochastic SIR model. Our goal here is
not to examine a particular scenario, but rather to demonstrate how
the results of using a logit-normal distribution of protection differ from
those produced by more traditional modelling approaches. Note that
we use the logit-normal model to describe the population distribution of
protection against infection and do not model symptom onset explicitly.
We neglect the effects of waning (i.e., we assume that waning occurs on
a timescale much slower than that of an outbreak). We also assume im-
plicitly by using the SIR framework that prior exposure produces very
high levels of immune-derived protection, which makes re-infection
impossible over the duration of the outbreak.

We implemented a discrete-time individual-based disease transmis-
sion model setting 𝑅0 = 2, and used this transmission simulation
to compare three contrasting models for vaccine-derived protection
against infection. The leaky model assumes that the force of infection
applied to each susceptible individual is reduced by a factor equal to
(1−⟨𝐸infection⟩). The all-or-nothing model assumes that each member of
the population is protected completely and permanently from infection
with probability 𝑝 = ⟨𝐸infection⟩. Finally, the logit-normal model uses a
similar approach to the leaky one, but draws each individual’s efficacy
value from a logit-normal distribution with parameters (𝜇, 𝜎), such
that ⟨𝐸 ⟩ is the distribution mean (Figure S1). In all scenarios,
infection
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Fig. 4. Comparison of SIR epidemic simulations using three different types of vaccine efficacy (leaky, all-or-nothing, and logit-normal). Plots a and b show the median final size
(cumulative number of infections) over 1000 simulations, for efficacy values of 0.1 and 0.3, respectively. Here, we computed the median final size over only those simulation
instances for which outbreak size exceeded 9 cumulative cases. Each scenario (point) uses the average efficacy computed from the logit-normal distribution as a function of 𝜇 and
𝜎, and 𝜇 is varied to hold efficacy constant as 𝜎 increases. Values of 𝜇 corresponding to each value of efficacy and 𝜎 are shown in Figure S2a and the probability of an outbreak
with 10 or more cases is shown in S2b. See the Supporting Information for additional details about the methods used to estimate 𝜇 for each value of efficacy and 𝜎, and for
additional details about how SIR simulations were implemented.
the entire simulated population is vaccinated, and each simulation is
initialised with a single infected individual. Comparing the results of
repeated stochastic SIR simulations shows that the logit-normal model
produces outcomes that lie between those produced by the leaky and
the all-or-nothing models. The plots of epidemic final size for different
values of mean efficacy in Fig. 4 demonstrate that when 𝜎 is near 0,
the final epidemic sizes generated by the logit-normal implementation
are equivalent to those of the leaky approximation. However, as 𝜎
increases, the final size output of the logit-normal model approaches
that of the all-or-nothing model, as the density of the distribution of
protection accumulates near the extremes.

If neutralising antibody levels are broadly distributed in a vacci-
nated population (i.e., 𝜎 > 1), this result supports the assertion, made
in previous studies, that assuming mean efficacy levels apply uni-
formly to each member of the population produces overly conservative
(pessimistic) predictions of epidemic size [7].

4. Discussion

The logit-normal model described here for immune-derived pro-
tection against SARS-CoV-2 was introduced when billions of people
globally were being vaccinated in one of the most rapid and exten-
sive vaccination campaigns in human history. While mRNA vaccines
appeared promising in their initial capacity to limit transmission of the
ancestral variants of the virus, the emergence of variant strains and
waning of vaccine-derived protection have led to a endemicity of the
SARS-CoV-2 virus, dominated by Omicron variants as of mid-2023 [30–
32].

In this context, the role of vaccines in public health efforts to
mitigate the disease burden of SARS-CoV-2 has shifted from preventing
transmission to mitigation of severe clinical outcomes [33]. However,
emerging evidence suggests that waning of vaccine-derived protection
against severe disease may occur, though protection against severe
disease does appear to be more robust and long-lasting than protection
against infection [34]. In order to estimate the future effectiveness of
SARS-CoV-2 vaccines in mitigating public health burden, models of
transmission must account for the waning of immunity. Models that
include quantifiable immune mechanisms will be helpful in this regard
because they have the flexibility to connect vaccine effectiveness to
6634
immune correlates of protection [35]. Traditional mathematical models
of vaccine effects that treat protection as a phenomenological variable
guided only by efficacy estimates from phase III trials or observational
studies are less well equipped to adapt to changing conditions such
as emerging variants and waning immunity. This is because phase III
vaccine trials are challenging for endemic pathogens due to highly
variable exposure histories [36,37], and present ethical concerns when
vaccines have been established to provide benefits. In addition, tradi-
tional leaky and all-or-nothing models are inflexible in their implicit
treatment of population heterogeneity of immune-derived protection.
Using such models will lead either to pessimistic (leaky) or optimistic
(all-or-nothing) estimates of the effectiveness of vaccination programs.

While models based on correlates of protection are more flexible
and suitable for adaptation to long-term endemic processes, there are
many challenges to implementation of these models, both in terms
of establishing correlates of protection, and in terms of fitting the
individual-level models that map known immune correlates to risk
reduction [17,22,30,35]. We showed here that the model adapted
by Khoury et al. to SARS-CoV-2 vaccination provides a flexible and
intuitive framework for modelling vaccine efficacy as a function of
underlying immune correlates of protection on the individual level.

The logit-normal distribution of efficacy is produced by mapping a
normally-distributed CoP through a logistic response function. It can
be viewed as an intermediate between the leaky and all-or-nothing
models of vaccine-induced protection that are commonly implemented.
As a heuristic, our results indicate that the all-or-nothing approximation
could be appropriate when the distribution of immune correlates is
very broad in the population and the effect of those correlates on pro-
tection follows a steeply non-linear mapping over a relatively narrow
threshold range. If, on the other hand, immune correlates are narrowly
distributed over the vaccinated population, or the mapping from CoP
to effectiveness has a more gradual slope over a broader range, the
leaky model may be a more accurate approximation. In this sense, the
standard deviation of the underlying CoP distribution 𝜎 corresponds
inversely to the protection model’s ‘‘leakiness’’ because low values of
𝜎 correspond to logit-normal distributions that approach the extreme
represented by the leaky model, while high values of 𝜎 will cause the
model to approach the all-or-nothing extreme.

We have focused here on immune-derived protection against initial
infection. Extending this approach to consider protection against severe
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clinical outcomes following infection is more challenging. The study
by Khoury et al. that correlates neutralising antibody titres with vac-
cine effectiveness primarily concerns protection against symptomatic
SARS-CoV-2 infection. Estimates of the neutralisation level associated
with protection against severe infection have been reported, but with
the caveat that this implicitly assumes neutralising antibodies play a
primary role in the protective immune response against critical or fatal
COVID-19 [24,38]. Other immunological mechanisms such as 𝑇 cell
responses may also play an important role in preventing progression
to severe disease [39]. As such, population-level effectiveness against
severe disease may follow a more complex pattern of temporal de-
cay than the simple exponential model we used in this study [40].
However, it is our conjecture that increasing the complexity of the
underlying correlates of protection is likely to introduce additional
sources of individual variation. Because bimodality in the distribution
of individual-level efficacy is a result of wide variation in the indi-
vidual correlate of protection, we hypothesise that the general model
described here applies qualitatively to downstream clinical outcomes
as well, consistent with recent findings [38].

If the same CoPs do apply to multiple stages of a clinical cascade
(i.e., infection → severe illness → death) then the dispersion of the re-
sulting efficacy distributions will alter the cohort-level CoP distribution
at each subsequent stage due to ‘‘selection by natural infection’’ (see,
e.g., Gomes et al. [33]). If we consider infection as a probabilistic sam-
pling process, with weights determined by each individual’s immune
protection (or other exposure-related risk factors), then we arrive at
a scenario in which individuals with lower CoP values are naturally
selected at each stage of clinical progression. The larger the dispersion
of the distribution of protection applied to each stage of a cascade, the
more influence this sampling process will have on the distribution of
CoP levels determining protection against subsequent events. In other
words, if people with lower levels of neutralising antibodies are more
likely to become infected, then the CoP levels in the infected cohort will
be lower on average than those in the general population. This natural
sampling process will have three general effects on the underlying CoP
distribution for subsampled cohorts at different stages of a clinical
cascade, relative to the general population. The first is that the CoP
mean will decrease. The second is that the CoP variance will decrease.
The third is that the CoP distribution will be skewed towards lower
values, departing from the normal (Gaussian) distribution function.
This third effect means that the quantitative robustness of the logit-
normal model presented here could be low with respect to downstream
outcomes conditional on infection and any subsequent processes that
are influenced by the same CoP that governs relative infection risk. A
similar effect would occur if the decay parameter 𝜆 were heterogeneous
in the population. Because 𝜆 is bounded from below (it cannot be nega-
tive), its distribution cannot be symmetric around the mean. The more
skewed the distribution of decay rates, the more the variance in the CoP
distribution would vary as a function of time. This would also skew
the CoP distribution and shift the final distribution of efficacy from
the logit-normal form. However, we propose that a linear combination
of logit-normal models, representing different population strata, could
provide a useful and robust approximation. Such an expansion would
be able to account for variability in the distribution of CoPs (𝜇𝑛), their
decay over time (𝜆), and their relationship to protection (𝑛𝑐 and 𝑘) for
different subpopulations.

We note that an individual’s level of protection could correlate
with other characteristics relevant to disease transmission or clinical
outcome. We expect that polarised distributions of protection would
magnify the effects of any correlations between immune response and
behavioural or biological factors that influence such correlations. For
example, if those who tend to have weaker immune response (low CoP)
also tend to have fewer contacts, as could potentially occur with older
cohorts, then the effectiveness of the vaccine on the scale of the whole
population would be higher than it would be without such correlations.
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On the other hand, if those at highest risk of severe disease (given C
infection) were also more likely to be exposed due to behavioural
factors, then the public health burden produced by an epidemic would
be higher than expected.

A key limitation of the model as implemented here is that vaccines
act solely by reducing susceptibility to infection. Vaccines may also
reduce the transmissibility of breakthrough infections. In the leaky
model of vaccination, including efficacy against onward transmission
reduces the impact of repeat exposures by reducing the risk of transmis-
sion associated with breakthrough cases. This additional indirect effect
complicates the comparison of the leaky and all-or-nothing models, and
can change which of them provides the more pessimistic prediction of
overall effectiveness [1].

5. Conclusion

In this work, we detailed a general model of immune-derived pro-
tection from infection or disease outcomes. We based our formulation
on a model that was adapted and applied by Khoury et al. [24] in the
context of vaccine-induced protection against symptomatic COVID-19
disease. The model produces a logit-normal distribution of individual
protection, which can be bimodal when the variance of the underlying
correlate of protection is large. Using simulations, we demonstrated
that at extreme values of the dispersion parameter 𝜎, this model can
exhibit the properties of the leaky or all-or-nothing models of vaccine
efficacy that are typically used in simulations of infectious diseases. It
can therefore be viewed, from a modelling perspective, as a general-
isation of these approaches that can be calibrated based on empirical
evidence relating the results of immunogenicity studies to the outcomes
of phase III trials or vaccine effectiveness studies. We note that even if
reliable immunogenicity data is not available, the logit-normal model
allows the systematic relaxation of the assumptions implicit in the leaky
and all-or-nothing approaches, making it a useful tool for sensitivity
analysis. The flexibility of this model enables it to be readily adapted
to emerging observations of waning immune correlates of protection,
or reduced neutralisation levels observed for new viral variants.
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