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Abstract

scPipe is a flexible R/Bioconductor package originally developed to analyse platform-independent single-cell RNA-Seq data. To expand its
preprocessing capability to accommodate new single-cell technologies, we further developed scPipe to handle single-cell ATAC-Seq and multi-
modal (RNA-Seq and ATAC-Seq) data. After executing multiple data cleaning steps to remove duplicated reads, low abundance features and
cells of poor quality, a SingleCellExperiment object is created that contains a sparse count matrix with features of interest in the rows and
cells in the columns. Quality control information (e.g. counts per cell, features per cell, total number of fragments, fraction of fragments per
peak) and any relevant feature annotations are stored as metadata. We demonstrate that scPipe can efficiently identify ‘true’ cells and provides
flexibility for the user to fine-tune the quality control thresholds using various feature and cell-based metrics collected during data preprocessing.
Researchers can then take advantage of various downstream single-cell tools available in Bioconductor for further analysis of scATAC-Seq data
such as dimensionality reduction, clustering, motif enrichment, differential accessibility and cis-regulatory network analysis. The scPipe package
enables a complete beginning-to-end pipeline for single-cell ATAC-Seq and RNA-Seq data analysis in R.
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ingle-cell sequencing technology has undergone rapid devel-
pment in the past decade to allow researchers to study cel-
ular heterogeneity across multiple omic modalities, including
he transcriptome, epigenome and proteome. Single Cell Assay
or Transposase Accessible Chromatin Sequencing (scATAC-
eq), is a relatively recent approach for profiling chromatin
ccessibility at single-cell resolution (1) that has been widely
sed to define chromatin state across cell types, discover cis-
nd trans- regulatory regions, identify master regulators, and
haracterise gene regulatory networks (2).

The four main protocols for scATAC-Seq include the
ombinatorial indexing approach (sci-ATAC-Seq) (3),
icrofluidics-based methods (scATAC-Seq) (1), nano-well
ased protocols (μscATAC-Seq) (4) and droplet-based (10X
cATAC-Seq, dscATAC-Seq and dsciATAC-seq) approaches
5,6).

The general workflow for scATAC-Seq data analysis com-
rises of (i) preprocessing: demultiplexing, adaptor trimming,
ead mapping, quality control, cell calling and multiplet re-
oval (optional); (ii) feature matrix construction: defining re-

ions via peak calling or genome binning, counting defined
eatures, transformation and dimensionality reduction and
iii) downstream analysis: cell clustering, secondary peak call-
ng, visualisation, differential accessibility analysis and cis-
egulatory network analysis (7,8).

The growing popularity of scATAC-Seq technology war-
ants the development of analysis tools that can preprocess
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this type of data efficiently and effectively. There are currently
14 tools that can preprocess scATAC-Seq data that are sum-
marised in Table 1. Some are written in R (i.e.ArchR,BROCK-
MAN, ChromSCape, chromVAR, Destin, scABC, SCRAT,
Snaptools) while others are Python and Shell based. Fur-
thermore, the feature matrix construction step varies amongst
these tools where some of them use bulk peak calls, TSS re-
gions, k-mers, or a genome binning approach. It has been
shown previously that out of these, a genome binning ap-
proach is more sensitive to the detection of rare open chro-
matin regions present in a sub-population of cells (9).

A current limitation of these tools is that most cannot han-
dle data from multiple technologies (i.e. droplet-based and
plate-based) or they require the use of specific data struc-
tures that have limited compatibility with current well-known,
light-weight, single-cell data structures such as SingleCellEx-
periment objects (SCEs) in R/Bioconductor.

In this study, we extend scPipe (10) to enable handling of
scATAC-Seq data and generation of SCE objects that can be
manipulated using various SCE-friendly downstream analy-
sis tools available in R/Bioconductor (11). An SCE container,
most popular for scRNA-Seq data storage, can easily be used
to store scATAC-Seq data due to its flexibility (i.e., rows rep-
resenting features (genomic regions) and columns represent-
ing cells). scPipe is able to take scATAC-Seq reads (FASTQ
format) as input, which are demultiplexed (if needed) and fil-
tered based on quality and Ns (i.e. non-called bases), aligned
to the reference genome and filtered based on various quality
: November 23, 2023
enomics and Bioinformatics.
ns Attribution License (http://creativecommons.org/licenses/by/4.0/),

provided the original work is properly cited.

https://doi.org/10.1093/nargab/lqad105
https://orcid.org/0000-0002-2229-8106
https://orcid.org/0000-0002-7383-0609


2 NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 4

Table 1. Summary of current packages available for scATAC-Seq data preprocessing

Method / tool name Year Language Input Multiple Feature matrix
Technologies? Construction method

APEC 2019 Python FASTQ, matrix + peaks � Peak
ArchR 2020 R BAM, fragments � Bin
BROCKMAN 2018 R FASTQ × k-mer
Cell Ranger ATAC 2018 Command line FASTQ × Peak
ChromSCape 2019 R Shiny Various × Bin, Peak, TSS
chromVAR 2017 R BAM + peaks × Motif, k-mer
Cusanovich et al. 2018 2015 Scripts BAM × Peak
Destin 2019 R FASTQ, BAM + peaks � Peak
Gene scoring 2019 Scripts FASTQ × TSS
scABC 2018 R FASTQ × Peak
scasat 2018 JupyterNotebook BAMs × Peak
scATAC-pro 2019 Command line FASTQ, various � Peak
SCRAT 2017 R,WEB BAMs × Various
Snaptool 2019 Python FASTQ � Bin, Peak
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metrics such as mapping rate, fraction of reads mapping to
the mitochondrial genes and the number of duplicate or high-
quality reads. Cleaned up data will then be used to conduct
cell calling and optionally peak calling, to generate the final
feature by cell sparse matrix which is stored as a SCE object.
These improvements also allow scPipe to be used for mul-
tiome projects that collect both scRNA-Seq and scATAC-Seq
on the same cells.

Materials and methods

Architecture of the scPipe scATAC-Seq module

scPipe was developed using the R (12) / Bioconductor (13)
platform, with the underlying code written in C++, R and
Python with the Rcpp (14) and reticulate (15) packages
used to wrap the C++ and Python code for R, respectively.
Data from both UMI (Unique Molecular Identifiers) and non-
UMI protocols can be handled by scPipe. The pipeline for
scATAC-Seq data preprocessing is initiated with FASTQ files
and outputs include a feature count matrix and a variety of
quality control (QC) statistics and a standalone HTML report
generated using rmarkdown (16) that contains a summary of
the QC statistics collected during data preprocessing.

Demultiplexing and read alignment

Demultiplexing is performed by the sc_atac_trim_barcode()
function (Figure 1A) using a similar approach to that used
in scPipe for scRNA-Seq analysis. The scATAC-Seq module
can accommodate data in .fastq format as well as .csv format,
with the user defining which format the data is in and the rel-
evant demultiplexing strategy will be executed. In brief, the
barcode is either extracted from the reads themselves based
on the entries in a csv file where the second column of the
file contains the barcodes or from the sequences of a comple-
mentary FASTQ file and appended to the read names in the
FASTQ files containing the ATAC sequences.

A read correction step is incorporated to ensure sequenc-
ing errors that appear in barcodes are identified and removed
to avoid unwanted data loss. In summary, after the barcodes
are determined, error correction is carried out with a ham-
ming distance of 1 to correct for sequencing errors. Each
barcode can be optionally validated against a known list
of valid barcodes (either as is or the reverse complement)
and the frequency of each valid barcode is then counted.
scPipe corrects barcodes that are not matched to the valid
barcode list by allowing for one mismatched base in com-
parison with the valid barcode list, and counting the num-
ber of corrected barcodes in the complete dataset. In the
case that multiple sequences are found matching the valid
barcode list with one mismatched base, each mismatched
base’s quality (Q) score is compared and the sequence with
the lowest Q score at the mismatch position is considered
valid.

Demultiplexed data is stored in four data files; i.e. complete-
match: no error correction was necessary for the data in this
file; partial-match: error-corrected reads; no-match: data that
were unable to be demultiplexed even after error correction;
and full-data: a concatenated version of the data across the 3
aforementioned categories. The user is able to select either one
of the more stringent files or the complete dataset for down-
stream analysis (by default, the complete dataset is used).

Read alignment is run with the function sc_aligning() which
uses Rsubread::align() (17) internally (Figure 1A). The user
has to define the technology (i.e. RNA or ATAC) to execute the
most appropriate alignment approach (i.e. single-end align-
ment for RNA and paired-end for ATAC). The resulting BAM
file contains the read name in the first column, and unmapped
reads are denoted by an asterisk (*).

Demultiplexing aligned reads, removing duplicates,
creating fragments and peak calling

Demultiplexing aligned reads is performed by the
sc_atac_bam_tagging() function which extracts the bar-
code information from the read names of the aligned BAM
file and generates a new column with the tag CB:z: to record
the cell barcode (Figure 1A). As some reads may not have an
assigned barcode, this column in the resulting demultiplexed
BAM file may be empty in such positions.

The main difference in the scATAC-Seq module compared
to original scRNA-Seq module is the need to extract biological
information from both reads in the former. Therefore, it was
important to retain both reads (i.e. forward and reverse) for
scATAC-Seq data as compared to retaining only the forward
of the pair of reads for scRNA-Seq module where reverse will
be the barcode followed by the polyA tail, which can be dis-
carded after demultiplexing of the read takes place.

Removal of duplicate reads uses samtools, where the
BAM file is processed with the removeduplicates function (18).
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Figure 1. Overview of the scPipe scATAC-Seq module and its QC outputs. (A) The pipeline is shown on the left and the QC metrics gathered during
preprocessing are shown on the right. Purple coloured boxes denote the inputs and light colour purple define the inputs that are optionally accepted as
they are not incorporated into current scATAC-Seq library preparations yet. Blue colour box depicts the final output. Black boxes denote the main pipeline
steps that should be followed. Green boxes denote the steps that are running within these the main pipeline without having to call them specifically, still
can also be called separately if needed. (B) QC plot showing the separation of ‘cell’ and ‘non-cell’ based on the fraction of fragments overlappping peaks
(y-axis) vs total number of fragments (x-axis) after cell calling step of scPipe. (C) QC plot showing the separation of cell and ‘non-cell’ based on read
density (y-axis) versus total number of fragments (x-axis) after cell calling step of scPipe. (D) QC plot showing the fraction of features overlapping
different functional regions (i.e., Peaks, TSS, Promoter, Enhancer, Mitochondrial genes).
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This step can be run externally to scPipe and the resulting
BAM file can be re-entered to the scPipe pipeline if sam-
tools is not installed locally.

Fragment file generation was adopted from a python-based
tool named Sinto (version 0.8) (19). Briefly, the fragment
file is in .BED format created from the aligned read file (i.e.
BAM) with the position of each Tn5 integration site, barcode
of the cell that the fragment belongs to and the number of
times the fragment was sequenced while collapsing the PCR
duplicates. This is achieved by first extracting the cell barcode
sequence associated with each read and adjusting the align-
ment positions for the 9 bp Tn5 shift by applying +4/−5 to
the start and end position of the paired reads. Next, fragments
below a certain quality threshold and a size larger than a max-
imum provided by the user are removed before collapsing any
duplicates (if present). This python-based capability was in-
tegrated into the scPipe R package using basilisk (20).
Feature matrix construction can be via a .bed file provided
to the workflow (e.g. bulk peak file from MACS3) or using
the reference genome (i.e. ‘genome_bin’ approach). In the
‘genome_bin’ approach, the genome is cut in to chunks of
user-defined size and the overlap is calculated between the bed
file and the fragment file. Using such an approach is resource
intensive, yet more sensitive to rare open regions than using a
bulk approach. Furthermore, being able to converge on the
same features via this approach will make downstream in-
tegration of the multiple scATAC-Seq data sets more conve-
nient. An optional peak calling step can also be carried out
using the R version of MACS3 (MACSr (21)) which has been
implemented to execute bulk-level peak calling across all the
data. This is a faster method than the in-built genome−bin
approach described above to identify features to generate the
feature × cell matrix.

Generating the feature × cell matrix, SCE objects
and QC statistics

The externally created (e.g. via Cell Ranger) or scPipe
generated feature matrix and fragment file is used as the main
input to generate the feature × cell count matrix. This step
involves multiple filtering steps including cell calling and row-
wise (i.e. feature-level), and column-wise (i.e. cell-level) filter-
ing as well as read correction for the Tn5 cut site. A Genom-
icAlignments object (22) is generated for the fragments with
cell barcode information and the feature file (peaks/bins) with
the feature coordinate information which is then overlapped
to generate the unfiltered counts matrix. This matrix then en-
ters the cell calling step to distinguish ‘true’ cells from ambi-
ent background DNA. It has been previously been shown that
filtering cells based on multiple QC metrics is the most ef-
fective approach to do cell calling (7), and this approach has
been adopted in scPipe. This can be called with the param-
eter cell_calling=filter within the sc_atac_feature_counting()
function. The resulting matrix is then converted to a bi-
nary matrix as well as a SCE object (11). An HTML re-
port is generated using rmarkdown as an optional output
of this step. This report summarises the QC metrics gath-
ered during preprocessing to allow data quality to be visu-
ally assessed (Figure 1B−D), and is easy to share with col-
laborators. ScPipe’s ATAC-Seq module also logs all details
in the workflow so that a user can track the progress if a
step fails or wants to further explore the pipeline parameters

used.
Integration of SCE objects

Another important aspect of scPipe is the ability to integrate
datasets where a common barcode file is available to match
the cells between SCE objects to create a combined SCE ob-
ject, as occurs for example in 10X Genomics multiome experi-
ments. The R/Bioconductor package MultiAssayExperi-
ment is used for this (23) to output combined SCE objects
with colData() from the same barcodes bound together
(Figure 1A). If there are barcodes with missing data from one
or more SCE objects, they will still be included with the ad-
dition of ‘NAs’ to columns corresponding to the cells that do
not share common barcodes. Storing data in this way allows
the user to further leverage Bioconductor software and design
principles to make biologically relevant inferences (e.g. to cor-
rect for batch effects, perform integration and clustering).

Human lung adenocarcinoma cell line dataset

The cell culture and sample preparation of mixtures of cells
from different cell lines was performed as previously described
(24). Briefly, five human lung adenocarcinoma cell lines
(A549, H1975, H2228, H838 and HCC827) were obtained
from ATCC (https://www.atcc.org/) and cultured separately
in Roswell Park Memorial Institute (RPMI) 1640 medium
with 10% fetal calf serum and 1% penicillin-streptomycin
at 37◦C with 5% carbon dioxide until near 100% conflu-
ency. Cells were counted manually using a hemocytometer and
mixed with equal number to form single-cell suspension with
around 2 000 000 cells. Cells were permeabilised with nu-
clei EZ Lysis Buffer from Sigma-Aldrich supplemented with
Protector RNase Inhibitor and filtered to isolate nuclei. Nu-
clei underwent fluorescence-activated nuclei sorting (FANS)
and 1 600 000 nuclei were output from the sorter. After con-
centrating the nuclei suspension to achieve 10 000 nuclei re-
covery during Gel Bead-In EMulsions (GEM) generation, 11
960 nuclei were input to form GEMs that were used to gen-
erate 10× Multiome (GEX + ATAC) libraries. The cDNA li-
brary was sequenced using Illumina NextSeq 500 with rec-
ommended cycles and the ATAC library was sequenced using
Illumina NextSeq 500 with the custom recipe. FASTQ files
were then generated with Cell Ranger ARC 2.0.0 mkfastq.
The raw data are available from GEO under accession number
GSE224045.

We have processed the scATAC-Seq data in two ways; (i) via
the Cell Ranger ATAC pipeline, and (ii) via the scPipe
pipeline. The scRNA-Seq data was processed through the
standard Cell Ranger pipeline. The paired read were
aligned to the hg38 reference. The tool demuxlet (25) was
used to assign the cell line identity (i.e. ground truth) to the
data using variant information as previously described (24).
Next we developed custom scripts (available via GitHub) us-
ing mainly ggplot2(26), Seurat (27) and NMI R packages
to generate plots for visualisation and comparison.

Results

Resource requirements of scPipe on scATAC-Seq
data

We ran the scPipe scATAC-Seq pipeline on both the 20%
and 80% GEMs to profile time and memory usage. For the
20% sample, which contains 31,749,732 reads, the pipeline
ran for approximately 140 minutes, and required approxi-
mately 85 GB of RAM allocated. The longest processing step

https://www.atcc.org/
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Figure 2. Comparing scPipe and Cell Ranger on a 10× dataset. (A) Summary of experimental design, which used cells from five distinct lung
adenocarcinoma cell lines. An equal mixture of cells and nuclei were captured by the 10X protocol, and sequenced on the Illumina platform (see
Materials and Methods). FASTQ files were generated by Cell Ranger ARC 2.0.0 and these reads were processed by scPipe and Cell Ranger.
The panels of this figure pertain to the 80% results. (B) Venn diagram showing the overlap of cell barcodes detected by Cell Ranger and scPipe. (C)

Box plot showing the percentage of mitochondrial gene counts in cells that are called by Cell Ranger and are common with/unique in comparison to
scPipe or (C’) scPipe and are common with/unique in comparison to Cell Ranger output. (D) Scatter plot of the per cell total counts and (D’)

number of features per cell obtained from Cell Ranger and scPipe in cells called in common between the two and cells that were unique to each of
the two pipelines. Marginal density plots show the count distributions for each category. (E) UMAP plot generated for Cell Ranger and (E’)scPipe
output. Cell barcodes that only exist in (E) Cell Ranger or (E’) scPipe are highlighted in red. (F) UMAP coloured by the ground truth for Cell
Ranger and (F’)scPipe. Seurat identified clusters are demarcated by coloured lines and numbered. The ARI and NMI values calculated per dataset
are shown in the top right of the panels.
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as sc_aligning, which internally uses Rsubread, and re-
uired 63 minutes to complete. For the 80% sample, contain-
ng 112,463,635 reads, the pipeline required approximately
04 minutes (10 hours) to complete and 540 GB of RAM
llocated.

ownstream comparison between scPipe and
ell Ranger ATAC
e compared the clusters identified from scPipe prepro-

essed data to those obtained from the Cell Ranger ATAC
pipeline, a popular tool for 10X scATAC-Seq preprocessing.
A dataset that contains around 5,800 cells with ground truth
available in the form of cell line identity labels obtained using
variant information was used to compare the results from the
two approaches (Figure 2A). Cell Ranger returned 5728
cells and scPipe 5599 cells after QC, with 5267 in com-
mon (Figure 2B). Inspection of features overlapping the mi-
tochondrial genes as a QC metric shows that Cell Ranger
has called more dead/poor quality cells that should be ex-
cluded from downstream analysis (Figure 2C). On the other
hand, the mitochondrial contamination is lower and similar
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for scPipe-only called cells and those identified by scPipe
in common with Cell Ranger (Figure 2C’). Overall, there
was high concordance between the called cell (Figure 2D) and
feature counts (Figure 2D’) within for the cells in common
between the two pipelines. Moreover, ‘scPipe-only’ called
cells contained counts and features that were more similar
those found in common than the counts and features from
‘Cell Ranger-only’ called cells, whose distributions were
concentrated towards the lower ranges for both quantities.
The UMAP (28) generated from the Cell Ranger output
shows that the 129 cells that appear in the Cell Ranger re-
sults but not in scPipe tend to cluster together away from the
large clusters or in the margins of them (Figure 2E). In con-
trast, the UMAP generated from the scPipe output shows
that the cells that only appear in scPipe results but not in
Cell Ranger tend to be located within the main clusters
(Figure 2E’).

Comparison of the cell line labels assigned to these cells
using demuxlet (25) to the clustering results obtained us-
ing the scATAC-Seq data alone in a Seurat analysis, was
made by calculating the adjusted rand index (ARI) and nor-
malised mutual information (NMI) scores which should be
closer to 1 when the clustering is highly concordant between
the two approaches. For the Cell Ranger data, an ARI of
0.56 and NMI of 0.64 (Figure 2F) were obtained. The scPipe
generated output resulted in a higher ARI of 0.68 and NMI
of 0.75 (Figure 2F’), indicating better concordance between
the Seurat clustering and demuxlet results. Taken together,
scPipe seemed to identify higher quality cells that were bet-
ter separated according to the biological signal present in the
data relative to the Cell Ranger processed data.

Discussion

To ensure flexibility, scPipe can preprocess data from a va-
riety of different scATAC-Seq protocols that includes droplet-
based and plate-based methods.scPipe can also handle com-
binatorial barcoding options when demultiplexing the reads,
and can handle Unique Molecular Identifier (UMI) based
scATAC-Seq approaches if they arise in the future. The result-
ing preprocessed data output by scPipe is stored in a versa-
tile SingleCellExperiment (SCE) format, which means that the
data can be further analysed downstream using SCE-object
friendly tools available in R/Bioconductor. We demonstrate
that data preprocessing with scPipe’s scATAC-Seq prepro-
cessing workflow produces comparable results to those from
10×’s Cell Ranger ATAC pipeline. As the integration of
numerous large-scale data modalities becomes more routine,
scPipe provides convenient and scalable preprocessing op-
tions for both scRNA-Seq and scATAC-Seq data, allowing
data integration and joint analyses.

Data availability

scPipe’s scATAC-Seq preprocessing module is available
from Bioconductor, DOI: https://doi.org/doi:10.18129/B9.
bioc.scPipe. The code used for the timing calculations and gen-
erating Figure 2 (panels B–F) are available from Zenodo, DOI:
https://zenodo.org/doi/10.5281/zenodo.10185302.
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