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Abstract 

Cellular senescence is an important mechanism that restricts tumour growth. The Ink4a-

Arf locus (also known as Cdkn2a), which encodes p16INK4A and p19ARF, plays a central 

role in inducing and maintaining senescence. Given the importance of cellular 

senescence in restraining tumour growth, great emphasis is being placed on the 

identification of novel factors that can modulate senescence. In this study, we show that 

the MYST-family histone acetyltransferase MOZ (MYST3/ KAT6A), first identified in 

recurrent translocations in acute myeloid leukaemia, is a potent inhibitor of senescence 

via the INK4A-ARF pathway. Primary mouse embryonic fibroblasts (MEFs) isolated 

from Moz-deficient embryos exhibit premature senescence, which was rescued on the 

Ink4a-Arf-/- background. Importantly, senescence resulting from the absence of MOZ 

was not accompanied by DNA damage, suggesting that MOZ acts independently of the 

DNA damage response.  Consistent with the importance of senescence in cancer, 

expression profiling revealed that genes over-expressed in aggressive and highly 

proliferative cancers are expressed at low levels in Moz-deficient MEFs. We show that 

MOZ is required to maintain normal levels of histone 3 lysine 9 (H3K9) acetylation at 

the transcriptional start sites of at least four genes, Cdc6, Ezh2, E2f2 and Melk, and 

normal mRNA levels of these genes. CDC6, EZH2 and E2F2 are known inhibitors of 

the INK4A-ARF pathway. This work establishes that MOZ is an upstream inhibitor of 

the INK4A-ARF pathway, and suggests that inhibiting MOZ may be one way to induce 

senescence in proliferative tumour cells. 

 

Introduction 

The monocytic leukaemia zinc finger protein (MOZ) is a MYST family histone 

acetyltransferase (HAT), which was first identified in a recurrent translocation, 

t(8;16)(p11;p13) leading to an aggressive type of acute myeloid leukaemia (AML)1. 

Patients with a t(8;16) translocation, which generates a fusion transcript between MOZ 

and CBP, are typically diagnosed with a FAB M4/M5 sub-type of AML, commonly 

associated with coagulopathy, erythrophagocytosis and extramedullary dissemination2, 

3. The prognosis of patients with a t(8:16) translocation is poor with median survival 

times, after diagnosis, reported between 2 months2 and 4.7 months4.  Gene expression 

analysis shows that this forms a distinct sub-type of AML that is typified by up 

regulation of HOX genes and their co-factor MEIS14,5. Additional chromosomal 
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rearrangements have been identified that generate chimeric genes in which MOZ is 

fused to genes coding for other transcriptional regulators: NCOA2 (TIF2), NCOA3 and 

p3006-8.  Consistent with the importance of self-renewal in leukemias, MOZ-TIF2 is 

able to induce the property of self-renewal in committed progenitors9. 

Typically for an oncogene involved in haematological malignancy, studies of the 

normal function of MOZ show that it is has an important role in normal haematopoiesis.  

Studies of loss-of-function mutations in MOZ have shown that it is essential for the 

development of hematopoietic stem cells10,11, and the HAT activity of MOZ is required 

for maintaining the self-renewal of HSCs12. During embryonic development, MOZ is 

required for the acetylation of histone 3 at lysine 9 (H3K9ac) at Hox13, Tbx1 and Tbx5 

loci14, and for their correct expression. Accordingly, embryos lacking Moz show an 

extensive anterior homeotic transformation of the axial skeleton and neural tube13, as 

well as cardiac and craniofacial defects mirroring the human DiGeorge syndrome14. 

Recent studies have examined the role of MOZ in cellular senescence. It has been 

reported that overexpressed MOZ is able to bind to p53, and that MOZ is required to 

activate p21 expression in response to DNA damage to induce senescence15. This study 

suggests that in the absence of Moz, cells are unable to senesce and undergo apoptosis 

instead. However, a conflicting report has recently been published in which studies 

using mice that possess a catalytically inactive MOZ, suggest that the HAT activity of 

MOZ is important for restraining senescence16.  It is unclear how the fundamental 

differences between these studies can be reconciled.  

In order to examine the role of MOZ in senescence, we used primary MEFs isolated 

from Moz-/- embryos to show that endogenous MOZ is an inhibitor, and not an activator 

of senescence. Primary MEFs lacking MOZ undergo premature senescence at passage 3 

and express the senescence markers β-galactosidase, Ink4a and Arf. Apoptotic cell death 

was unaffected in Moz-/- cultures. Using microarray and chromatin immunoprecipitation 

(ChIP), we show that MOZ is required for the maintenance of H3K9ac at gene loci 

encoding repressors of the INK4A-ARF pathway including Cdc6, Ezh2 and E2f2. 

Consistent with these findings, we show that premature senescence in Moz-deficient 

cells was rescued completely by deletion of the Ink4a-Arf locus. This work identifies 

MOZ as an upstream inhibitor of the INK4A-ARF pathway and premature senescence.  
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Results 

Primary Moz-deficient MEFs show premature senescence 

To investigate the role of MOZ in cellular senescence, we isolated and cultured primary 

fibroblasts from E12.5 wild type, Moz+/- and Moz-/- embryos. Compared to wild type, 

Moz-/- cultures failed to accumulate cells from passage three onwards (Figure 1a; p < 

0.001, n = 4 Moz+/+, 5 Moz-/- cultures). Moz+/- MEFs showed an intermediate phenotype, 

with a failure to accumulate cells from passage six onwards. These data indicated that 

Moz-deficient MEFs were either defective in cell proliferation, exhibited increased cell 

death, or underwent cellular senescence prematurely.  

A senescent phenotype is characterised by an increase in β-galactosidase activity17, 

increased reactive oxygen species (ROS) production18, and an increase in the levels of 

senescence inducers p16INK4A and p19ARF. We compared these parameters of cellular 

senescence in wild type and Moz mutant MEFs. β-galactosidase activity was increased 

in Moz-/- cultures from passage two onwards (Figure 1b,c). At passage two, a 50% 

increase in β-galactosidase activity was observed in Moz-/- cultures (p = 0.005), while 

the levels of β-galactosidase activity were more than two-fold higher in Moz-/- cultures 

from passage 3 onwards (Figure 1c, Figure S1, p < 0.001, n = 5 wild type, 3 Moz-/- 

cultures). Consistent with the proliferation characteristics of Moz+/- cells, there was 

significantly more β-galactosidase activity in Moz+/- cultures from passage 4 onwards 

compared to wild type cultures (p < 0.01, n = 4 Moz+/- cultures). Consistent with the 

reported increase in ROS in senescent cells18, a 70% increase in ROS production (O2•-) 

was observed in Moz-/- cultures at passage three compared to wild type (Figure 1d, p < 

0.001, n = 6 Moz+/+, 11 Moz-/- cultures). We compared Ink4a, Arf and Ink4b mRNA 

levels at passage five between wild type and Moz-/- cultures (Figure 1e). Compared to 

wild type, a 13-fold increase in Ink4a levels (p = 0.031), a 2.6-fold increase in Arf levels 

(p = 0.012), and a 1.8-fold increase in Ink4b mRNA levels (p = 0.002) were observed in 

Moz-/- cultures (n = 3). Altogether, the increase in (1) β-galactosidase activity, (2) 

increased ROS production, and (3) an increase in Ink4a, Arf and Ink4b mRNA all 

suggest that Moz-deficient MEFs fail to proliferate due to premature senescence.  

Proliferation in Moz-/- MEFs is only affected at late passages 

Since senescence results in cell cycle arrest, we tested whether DNA synthesis was 

affected in Moz-deficient cultures by examining incorporation of the thymidine 

analogue BrdU and analysing cell cycle characteristics. At passage two, there was no 
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difference in BrdU incorporation between wild type and Moz-/- MEFs, suggesting that 

DNA synthesis and cell proliferation was relatively normal at this time point (Figure 1f, 

p = 0.231, n = 4 wild type, 5 Moz-/- cultures). At passage four, 2.2-fold fewer Moz-/- 

MEFs stained positive for BrdU compared to wild type cultures (p = 0.05). These data 

were consistent with the cell cycle profiles of MEF cultures assayed by Ki67 and DAPI 

staining, and analysed by flow cytometry (Figure S2). Together, these data suggest that 

proliferation is not a primary defect in early-passage Moz-deficient MEFs. Rather, the 

reduced proliferation in Moz-/- cells at later passages likely reflects increased 

senescence. 

 

Apoptosis is not affected in MEFs lacking MOZ 

It has been previously suggested that in response to UV or drug-induced DNA damage, 

Moz-/- MEFs undergo apoptosis at an increased rate compared to wild type15. Therefore, 

we tested whether the failure of cell accumulation in primary Moz+/- and Moz-/- MEF 

cultures might be due to an increase in cell death. The proportion of apoptotic cells in 

wild type (n = 5), Moz+/- (n = 4) and Moz-/- (n = 3) cultures was determined over 72 

hours after passages two, four and six by annexin V binding of externalised 

phosphatidylserine (Figure 1g). Compared to wild type, there was no difference in the 

proportion of annexin V-binding cells in Moz+/- cultures at all time points analysed (p > 

0.10). Similarly, the proportion of annexin V-binding cells in Moz-/- was similar to wild 

type, apart from a small increase of approximately 2% in annexin V-binding cells 48 

hours after passages two and four. These data show that apoptotic cell death is not the 

major cause of the failure of cell accumulation in Moz+/- and Moz-/- primary MEF 

cultures.  

 
Premature senescence in Moz-deficient cultures is independent of DNA damage 

A major cause of cellular senescence is DNA damage19. Since MEFs deficient in 

repairing double stranded DNA breaks senesce prematurely19, and previous work has 

suggested that Moz-deficient MEFs are unable to senesce in response to DNA-

damage15, we determined whether Moz-deficient MEFs had an increased level of DNA 

damage. In response to double stranded breaks, histone H2A.X is phosphorylated at 

serine-139 (Figure 2a, γH2A.X)20, and this modification can be detected by flow 

cytometry21. Moz MEFs were separated based on the quantity of DNA, to ensure that 
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the levels of γH2A.X staining were determined proportionally to the amount of DNA in 

the cell (Figure S3).  Levels of γH2A.X staining increased with passage number (Figure 

2b). This is consistent with the reported increased senescence in MEFs over multiple 

passages19. The levels of γH2A.X staining of wild type (n = 5), Moz+/- (n = 4), and Moz-

/- cultures (n = 3) were similar at passages one and five. At passage three, there was a 

small but significant increase in γH2A.X levels in Moz-/- MEFs compared to wild type 

(p < 0.01). However, this small increase in γH2A.X levels in Moz-/- MEFs at passage 

three is unlikely to explain the continuous increase in senescence observed as early as 

passage two in Moz-/- MEFs (Figure 1c).  

 

The premature senescence phenotype in Moz-deficient MEFs is also present at 

physiological levels of oxygen (3% O2)  

MEFs cultured at physiological oxygen levels (3%) accumulate significantly less DNA 

damage and are therefore able to avoid early senescence19. To determine if the 

premature senescence phenotype observed in Moz-deficient MEFs was evident at 

physiological tissue levels of oxygen, we analysed the growth characteristics of MEFs 

grown at 3% O2. Over the first five passages, there were no differences in the number of 

cells in wild type (n = 6), Moz+/- (n = 5) and Moz-/- (n = 5) cultures (Figure 2c, p > 0.05). 

From passage 6 onwards, there were significantly fewer cells in Moz-/- cultures 

compared to wild type (p < 0.05). Similarly, from passage 8 onwards, there were 

significantly fewer cells in Moz+/- cultures compared to wild type (p < 0.05). To confirm 

that the decrease in cells in Moz-/- cultures was due to increased senescence, we 

analysed the expression levels of the senescence markers and inducers Ink4a, Arf and 

Ink4b. We chose to analyse passage five MEFs as this was before the decrease in Moz-/- 

MEFs was first evident. At passage five, mRNA levels of Ink4a were increased 2.9-fold 

(p < 0.001), Arf 1.73-fold (p = 0.001), and Ink4b 2-fold in Moz-/- cultures (p = 0.001, 

Figure 2d, n = 4 wild type and 4 Moz-/- cultures). These data suggest that Moz-/- MEFs 

also show premature senescence, albeit delayed, when cultured in 3% O2. Thus, 

increased senescence in Moz-deficient MEFs in unlikely to be related to increased DNA 

damage.    

 

To ensure that the primary defect was not related to cell proliferation or apoptosis at 3% 

oxygen, we analysed cell proliferation and cell death. At passages two and five, there 
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was a reduction in BrdU incorporation in Moz-/- MEFs compared to wild type (Figure 

2e, p < 0.05, n = 4 wild type, 5 Moz-/-). However, cell cycle parameters analysed by 

Ki67 staining and DAPI were normal at passage two, and only revealed a decrease in 

Moz-deficient cells in the G2/M-phase at passages five and eight (Figure S4, p < 0.05). 

The rate of apoptotic cell death in each culture was determined by annexin V staining. 

We analysed the proportion of apoptotic cells in wild type (n = 4), Moz+/- (n = 3) and 

Moz-/- (n = 5) cultures over 72 hours after passages two, five and seven. There were no 

significant differences between any of the genotypes at all nine time points analysed 

(Figure 2f). Thus, consistent with our results at atmospheric (20%) oxygen, the 

reduction in Moz-/- MEFs at physiological oxygen levels (3%) was primarily due to 

early senescence. 

 

Expression profile of Moz-deficient MEFs 

To identify genes regulated by MOZ in MEFs, we carried out microarray analysis using 

RNA isolated from passage 3 wild type, Moz+/- and Moz-/- (Figure 3a). We used passage 

3 MEFs as senescence levels in Moz+/- cultures were the same as wild type, while Moz-/- 

cultures showed a mild increase in senescence at passage 3 compared to later passages 

(Figure 1). Using a false discovery rate (FDR) cut-off of 10% (equivalent to p < 

0.0015), we found 205 genes to be differentially expressed in Moz-/- cultures compared 

to wild type (Figure 3b, Table S1), and only three genes to be differentially expressed in 

Moz+/- cultures compared to wild type (Table S2). Since Moz+/- MEFs have an 

intermediate phenotype compared to wild type and Moz-/- cultures (Figure 1), we 

combined the information from Moz+/- and Moz-/- cultures to look for genes that show a 

graduated change in expression from wild-type to Moz+/- to Moz-/- fibroblasts. This 

allowed us to identify 269 genes that were differentially expressed in the Moz-deficient 

cultures (Table S3). The combined analysis provided increased statistical power, so we 

used this gene list for all subsequent analysis. 

 

We investigated whether genes differentially expressed in Moz mutant cultures 

correlated with published senescence, proliferation and apoptosis datasets. Mutations in 

the gene encoding the pre-laminin A processing enzyme Zmpste24 lead to premature 

ageing, and consistently, Zmpste24-/- MEFs show premature senescence22. Interestingly, 

there was a strong overlap between the Moz dataset and the Zmpste24-/- MEF dataset 

(Figure 3c). Genes up-regulated in Zmpste24-/- MEFs were also over-expressed in Moz-
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deficient cultures (p = 0.021), while genes down-regulated in Zmpste24-/- MEFs were 

also reduced in Moz-deficient MEFs (p = 0.009). Furthermore, targets of p53 that are 

down-regulated during senescence23 were over-represented in Moz wild type MEFs (p = 

0.05). In contrast, there was no overlap between genes differentially expressed in 

oncogene (RASV12)-induced senescence24 and the Moz dataset (p > 0.90). Consistent 

with the senescence phenotype in Moz-/- MEFs, genes associated with proliferation in 

both aggressive undifferentiated cancers25 and in liver cancer (Hepatocellular 

carcinoma)26, were more highly expressed in wild type and not Moz-mutant MEFs 

(Figure 3d, p < 0.05). In contrast to senescence and proliferation related genes, no 

correlation was observed between apoptosis-related genes and the Moz dataset (Figure 

3e, p > 0.25). We also compared the Moz dataset to datasets available through the Broad 

Institute. The top 30 datasets best correlating with the Moz dataset are provided in 

Figure 3f, while the complete list can be found in Table S4. These comparisons show 

that genes that are normally over-expressed in cancers, particularly aggressive cancers, 

were under-expressed in Moz-deficient cultures compared to wild type MEFs. 

Altogether, these analyses suggest that decreased levels of MOZ lead to a gene-

expression profile associated with increased senescence and decreased cell proliferation. 

 

The premature senescence of Moz-/- MEFs is rescued by deletion of Ink4a-Arf  

Our phenotypic and expression analyses both suggested that Moz-/- MEFs senesce 

prematurely. Cell cycle progression is regulated by cyclins and cyclin-dependent 

kinases (CDKs), which advance cells through phases of the cell cycle. Senescence is 

generally induced and maintained by proteins that inhibit the cyclin-CDK complexes27-

29. There are two families of CDK inhibitors, namely the INK4 and CIP-KIP families27-

29. The INK4 family consists of INK4A, INK4B, INK4C and INK4D, while the CIP-

KIP family consists of p21CIP1, p27KIP1 and p57KIP2. To determine whether any CDK 

inhibitors are affected by the absence of MOZ, we quantified the mRNA levels for these 

families in sub-confluent MEFs, one day after passage three.  

 

Compared to wild type, there was a 2.6-fold increase in Ink4a mRNA (Figure 4a, p = 

0.001, n = 4 wild type and Moz-/-) and a 1.9-fold increase in Arf mRNA in Moz-/- MEFs 

(p = 0.022). Similarly, Ink4b, which lies adjacent to the Ink4a-Arf locus, showed a 2.2-

fold increase in mRNA in Moz-/- MEFs (p = 0.005). In contrast, Ink4c (p = 0.003) and 
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Ink4d (p = 0.042) showed a small but significant decrease at the mRNA level in Moz-/- 

MEFs. The CIP-KIP family members showed comparably minor changes (Figure 4b). 

Compared to wild type, there was a small but significant increase in the level of p21 

mRNA (p = 0.042), while p27 (p = 0.104) and p57 (p = 0.089) levels were unchanged. 

At the protein level, increased levels of p16INK4A and p19ARF, but not p21CIP1, were 

observed in passage 3 Moz-/- MEFs (Figure S5). Together, these data imply that 

increased expression of the Ink4a-Arf and the adjacent Ink4b locus is the most likely 

cause of premature senescence in Moz-/- MEFs. These data are consistent with the 

increase in Ink4a and Arf mRNA levels in passage 5 MEFs (Figure 1e), and the 

microarray data, which showed an increase in Ink4a and Arf (Cdkn2a) mRNA 

expression (Table S1).  

 

Previous work has shown that MEFs lacking Ink4a-Arf escape cellular senescence30. 

Therefore, we hypothesized that if MOZ regulated senescence through the INK4A-ARF 

pathway, ablating Ink4a-Arf should rescue the senescence phenotype of Moz-/- MEFs. 

Indeed, when we cultured Ink4a-Arf-/-;Moz+/+, Ink4a-Arf-/-;Moz+/- and Ink4a-Arf-/-;Moz-/- 

MEFs, MEFs of all three Moz genotypes show similar growth characteristics (Figure 4c, 

p > 0.75, n = 5 independent cultures per genotype), suggesting that MOZ acts through 

the INK4A-ARF axis to repress cellular senescence.  

 

Cdc6, E2f2, Ezh2, Melk and Skp2 are potential targets of MOZ 

We have previously shown that MOZ is a transcriptional activator, and in Moz-/- 

embryos, expression of MOZ target genes is reduced by approximately 50%13, 14. 

Therefore, we hypothesized that MOZ regulates the expression of one or more genes 

encoding upstream repressors of the Ink4a-Arf locus rather than repressing the Ink4a-

Arf locus directly. We examined the expression of known repressors of the Ink4a-Arf 

locus and other senescence mediators identified from the Moz microarray (Tables S1-

S3). 

 

As expected in Moz-/- cultures, no Moz mRNA was detected (Figure 5a, p < 0.001, n = 4 

wild type, 4 Moz-/-). Next, we examined mRNA levels of genes encoding polycomb 

repressive complex (PRC)1 and PRC2 family members, which are known to directly 

bind and repress transcription at the Ink4a-Arf locus31-33. There was no difference in the 

expression levels of PRC1 genes Bmi1, Mel-18, Pcgf2, Pcgf3, Scmh1 and Ring1b 
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between wild type and Moz-/- cultures (Figure 5b, p > 0.05), while small increases were 

observed in the levels of Cbx7, Cbx8 and Ring1a mRNA (p < 0.05). In contrast, the 

expression of PRC2 member Ezh2 was reduced by 40% in Moz-/- cultures (Figure 5c, p 

< 0.001), while Eed and Suz12 were unchanged (p > 0.15). Thus, Ezh2 is the only 

member of the PRC1 or PRC2 complex that could be responsible for the increase in 

Ink4a-Arf expression levels in the absence of MOZ. 

 

We next analysed three of the eight members of the E2f family, E2f1, E2f2 and E2f3, 

which encode proteins essential for the G1- to S-phase transition in MEFs34. While E2f1 

and E2f3 mRNA levels were unchanged (p > 0.05), a 35% reduction in E2f2 mRNA in 

Moz-/- MEFs was observed (Figure 5d, p < 0.001). The cell division cycle associated 

genes, Cdca235, Cdca836 and Cdc637, 38, are all over-expressed in a range of tumour 

samples, and knockdown of Cdca235 or Cdc639 leads to cell cycle arrest. In Moz-/- 

MEFs, mRNA levels of Cdca2, Cdca8 and Cdc6 were all halved compared to wild type 

(Figure 5e, p < 0.001). Lastly, we analysed the expression levels of an array of genes 

that participate in mediating or maintaining senescence (Figure 5f). Interestingly, 

mRNA of Csf1, which mediates p53-dependent cell cycle arrest40, was increased by 

45% in Moz-/- MEFs (p = 0.007), while mRNA levels encoding for maternal embryonic 

leucine-zipper kinase (MELK), which has been shown to mediate the transition of 

cancer cells from G1 to S-phase41, were halved in Moz-/- MEFs (Figure 5f, p < 0.001). 

SKP2 mediates cellular senescence by targeting p21CIP1, p27KIP1 and p57KIP2 for 

degradation42-44. Skp2 mRNA was reduced by 30% in Moz-/- MEFs (p = 0.001).  

 

Together, our qRT-PCR analysis identified five potential targets that could lead to 

increased senescence in the absence of MOZ – Ezh2, E2f2, Cdc6, Melk and Skp2. 

Expression of these genes was also approximately halved in Moz-/- MEFs cultured at 3% 

oxygen, suggesting that these gene expression changes are independent of DNA damage 

(Figure S6).  

 

H3K9 acetylation is reduced in Moz-/- MEFs at the Cdc6, E2f2, Ezh2 and Melk loci 

We have previously shown that in the absence of Moz, H3K9 acetylation, and not 

H3K14ac or H4K16ac, is reduced at MOZ target genes in vivo13, 14. Therefore, we 

determined whether H3K9ac was reduced at the identified gene loci that are expressed 
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at low levels in the absence of MOZ and normally repress the Ink4a-Arf locus. All ChIP 

experiments were carried out on subconfluent MEFs one day after passage three.  

 

Compared to wild type, there was a 35% reduction in H3K9ac levels at the 

transcriptional start site (TSS) of Cdc6 in Moz-/- cultures (Figure 6a, p < 0.001, n = 3 

independent cultures per genotype). Similarly, a 33% reduction in H3K9ac at the TSS 

of E2f2 (p = 0.003), a 30% reduction at the TSS of Ezh2 (p = 0.023), and a 32% 

reduction at the TSS of Melk (p = 0.002) was also observed in Moz-/- cultures (Figure 

6a). In contrast, H3K9ac levels at the TSS of Skp2 were unchanged (p = 0.420). 

Furthermore, H3K9ac levels at the TSS of our positive control, β-2-microglobulin 

(B2m, p = 0.883), and negative control, Albumin (p = 0.136), were not different between 

wild type and Moz-/- samples. Interestingly, the reduction in H3K9ac levels was only 

evident at the TSS of Cdc6, E2f2, Ezh2 and Melk, and not 500 bp (three to four 

nucleosomes) upstream of the TSS (Figure 6b, p > 0.05). In contrast to H3K9ac levels, 

H3K14ac levels were not different between wild type and Moz-/- samples at the TSS 

(Figure 6c, p > 0.10), or 500 bp upstream of any gene analysed (Figure 6d, p > 0.35). 

These data suggest that in the absence of MOZ, cells are unable to maintain normal 

levels of H3K9ac levels at the TSS of Cdc6, E2f2, Ezh2 and Melk, and in turn maintain 

the required levels of transcription of these genes.  

 

Discussion 

In this study, we have shown that MOZ is an inhibitor, and not a promoter of cellular 

senescence. Accordingly, Moz-/- MEFs showed premature senescence due to aberrant 

and early expression of the Ink4a-Arf gene locus. Indeed, on the Ink4a-Arf-/- 

background, Moz-/- MEFs grow as well as wild type MEFs. Through gene expression 

analysis, we observed that genes normally over-expressed in aggressive and highly 

proliferative cancers were expressed at low levels in Moz-deficient MEFs. In addition, 

we show that known inhibitors of Ink4a-Arf expression, namely Cdc6, Ezh2 and E2f2, 

were expressed at low levels in Moz-deficient MEFs. Our data strongly suggest that 

MOZ is an upstream inhibitor of the INK4A-ARF pathway.  
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Senescence is important for inhibiting the over-proliferation of cells and plays a pivotal 

role in preventing and restraining tumour growth45-47. Products of the Ink4a-Arf locus, 

p16INK4A and p19ARF are potent inhibitors of senescence30, and are commonly mutated 

and inactivated in human cancers48. The Ink4a-Arf locus is alternatively spliced to 

produce two protein products in mice, p16INK4A and p19ARF(49). P16INK4A retards the 

cycling of cells by directly binding and inhibiting cyclin dependent kinase 4 (CDK4) 

and cyclin D50, thereby retaining cells in G1-phase of the cell cycle51. P19ARF sequesters 

MDM2, an inhibitor of p53, and promotes senescence by releasing p5352. Genes under-

expressed in the absence of MOZ are strongly expressed in cancer. Indeed, CDC6 was 

found to be strongly expressed in 50% of brain tumours37 and in 50% of non-small-cell 

lung carcinomas38, while knockdown of CDC6 in HeLa cells lead to cell cycle arrest39. 

Similarly, high levels of EZH2 protein in human melanoma, prostate, uterine and breast 

cancers correlate with an aggressive tumour phenotype and poor prognosis53-55. In 

contrast, knockdown of EZH2 in the PC3 prostate cancer line was able to markedly 

reduce proliferation55. The role of E2F2 in cancer is much more complex, as E2F2 can 

act as both an oncogene or tumour suppressor depending on the cancer model and the 

context in which it is tested56. Nevertheless, in MEFs, knockout models of E2f1 to 3 

show a reduction in proliferation in a functionally redundant manner34, suggesting a role 

for E2Fs in the G1 to S-phase transition. Importantly, CDC657 and EZH231 have been 

shown to directly stall senescence by repressing the Ink4a-Arf locus, while E2F2 is 

likely to indirectly repress Ink4a-Arf through its ability to activate Cdc658 and Ezh259 

expression. The role of MELK is less well established. However, MELK has been 

shown to regulate the self-renewal of neural progenitors60, is highly expressed in brain 

tumours, and high MELK expression correlates with a poor prognosis61. Indeed, 

knockdown of MELK in cancer cell lines leads to a decrease in proliferation41, 61 and 

cell cycle arrest in G1-phase41. These observations are consistent with our data 

indicating that genes normally overexpressed in cancers were expressed at low levels in 

Moz-/- MEFs (Figure 3).  

 

The premature senescence identified in Moz-knockout cells in this study is more severe 

than cells that only lack the catalytic activity of MOZ16. Nevertheless, our data are 

largely in agreement with the Perez-Campo study showing that MOZ is required to 

suppress senescence16, although we favour a model in which MOZ acts as an activator 
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of gene expression, specifically of genes coding for inhibitors of senescence. However, 

it has also been shown that in response to DNA damage, Moz-/- MEFs are unable to 

induce p21 expression to the same levels as wild type controls and are unable to 

senesce15. While this is difficult to reconcile with our results, one possibility is that in 

the abovementioned study15, Moz-/- MEFs may have been in an advanced state of 

cellular senescence due to de-repression of the Ink4a-Arf locus described here. If this 

were the case, normal levels of p21CIP1 would not be expected upon UV-irradiation, as a 

smaller number of Moz-/- MEFs would be cycling and most would already be arrested. 

Rokudai and co-workers have also shown that over-expressed MOZ binds to p53, 

acetylates p53 at K120 and K382 in cell free assays and together with p53, activates the 

expression of p21 in response to DNA damage15, 62. These studies suggest that in 

response to DNA damage, MOZ acts as an activator and not a repressor of senescence. 

While we can not rule out that MOZ, like other chromatin modifying complexes, may 

act via different mechanisms depending on the cellular context (i.e. induced DNA 

damage versus untreated MEFs), conclusions based on overexpression experiments and 

cell-free assays must be carefully considered. For instance, in cell-free assays, MOZ is 

able to acetylate histone H3, H4 and H2A12, 63. In contrast, when the complete 

MOZ/MORF-ING5 complex is incubated with oligonucleosomes, MOZ specifically 

acetylates H3K1464, while in Moz-/- embryos, a specific reduction in H3K9ac and not 

H3K14ac at MOZ target genes is observed13, 14. 

In conclusion, we have established that MOZ represses cellular senescence in MEFs 

while not affecting apoptosis or DNA damage. Through gene expression analysis, we 

have shown that in the absence of MOZ, there is a reduction in the mRNA levels of 

genes that inhibit senescence including Cdc6, E2f2, Ezh2 and Melk, and that H3K9ac 

levels are reduced at the TSS of these genes. Altogether, this work establishes MOZ as a 

key inhibitor of senescence at the level of chromatin regulation and gene transcription. 

 

Materials and Methods 

Animals 

All mice were maintained on a C57BL/6 background. The Moz- allele13 and the Ink4a-

Arf mutant mice30 have been previously described. All experiments were performed 

under approval from the Walter and Eliza Hall Institute’s Animal Ethics Committee.  
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Cell culture proliferation, cell death, and senescence assays 

MEFs were isolated and cultured from E12.5 embryos of Moz+/- intercrosses. MEFs 

were plated at a density of 12,500 cells/cm2. Subconfluent MEFs were treated with 

BrdU (Sigma, B5002) and stained with anti-BrdU antibody (1:10, Clone Bu20a, Dako 

M0744), followed by detection with a fluorescent secondary antibody as described 

previously14. MEFs were counterstained with Hoechst 33258 and counted. DAPI/Ki67 

staining was carried out using one million subconfluent MEFs using the BD 

Cytofix/Cytoperm kit (BD Biosciences, 554714), and the Ki67-FITC antibody (BD 

Bioscience, 556026) as per manufacturer’s instructions. For viability assays, cells were 

analysed by flow cytometry by staining with propidium iodide and FITC-conjugated 

annexin V (Life Technologies A13199, 1:200). β-galactosidase staining and analysis 

were carried out on subconfluent MEFs as described65. γH2A.X staining was performed 

using the BD Cytofix/Cytoperm kit (BD Biosciences, 554714), and a γH2A.X-biotin 

conjugated antibody (1:400, Millipore 16-193) and was detected using APC-

streptavadin and flow cytometery essentially as described by21.  O2•- production was 

measured by staining with 10 μg/ml dihydroethidium and 2 μg/ml Hoechst-33258 at 

37°C for 30 min. The ratio of DHE to Hoechst used to determine O2•- production.  

 

Gene expression analysis 

RNA was isolated from wild type, Moz+/- and Moz-/- MEFs one day after passage 3 and 

hybridized to Illumina MouseWG-6 v2.0 BeadChips at the Australian Genome 

Research Facility. Intensity values were neqc normalised66. Probes were filtered if they 

failed to be detected (P<0.01) on any array. First, the Moz+/- and Moz-/- cultures were 

each compared to wild type. Second, the expression of each gene was regressed on a 

covariate representing the degree of Moz-deficiency (wild type = 0, Moz+/- = 0.2, Moz-/- 

= 1). Differential expression was assessed using empirical Bayes moderated t-

statistics67.  

 

The CAMERA procedure68 was used to test whether signatures in the C2 collection of 

the Molecular Signatures Database69 were correlated with Moz-deficiency. Proliferation, 

apoptosis and senescence gene sets were further tested using ROAST gene set tests70. 
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Genes differentially expressed in Zmpste24-/- MEFs were determined from a previously 

published study22. Probe-sets showing 2-fold change or more after gcRMA 

normalization71 were considered to be differentially expressed. 

 

Quantitative RT-PCR was carried out using the LightCycler 480 (Roche) and SYBR 

green chemistry (Table S5). Western blot analyses were performed using antibodies 

raised against p21CIP1 (Santa Cruz c-19, sc-397), p19ARF (Abcam, ab80), p16INK4A 

(Santa Cruz M156, sc-1207) and detected using an anti-rabbit IgG-HRP conjugated 

antibody (GE Healthcare NA934v).  Actin loading control was detected using an Actin-

HRP conjugated antibody (Santa Cruz, sc-1616) 

 

Chromatin Immunoprecipitation (ChIP)   

ChIP was carried out as previously described72 with two million subconfluent MEFs per 

sample. Immunoprecipitation was carried out using 5 μg of H3K9ac (Cell signaling, 

#9649S) and H3K14ac (Cell signaling, #7627) antibodies. Primer sequences are 

provided in Table S6.   

 

Statistical Analysis 

Statistical analyses were carried out using the Stata v12 software (Stata Corporation, 

USA). Data were analysed using ANOVA followed by Bonferroni’s post-hoc test. Data 

are presented as mean ± s.e.m.  
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Figure Legends 

Figure 1 – Moz mutant MEFs display premature senescence. 

(a) Cell numbers in cultures of  primary wild type (n = 4), Moz+/- (n = 3), and Moz-/- (n 

= 5) MEFs. Cell numbers in Moz-/- cultures were reduced from passage 3. (b) Detection 

of senescence associated β-galactosidase activity in passage 3 MEFs. Note the strong 

staining in Moz-/- (n = 3) and not wild type (n = 5) MEFs. (c) Quantification of β-

galactosidase activity by flow cytometry between passages 2 and 5. Compared to wild 

type (n = 5), there was a significant increase in senescence associated β-galactosidase 

activity in Moz-/- cultures (n = 3) from passage 2, and in Moz+/- cultures (n = 4) from 

passage 4 (FACS plots in Figure S1). (d) ROS (O2•-) production in passage 3 

fibroblasts. ROS levels were higher Moz-/- (n = 11) versus wild type (n = 6) cultures. 

Data are a combination of 3 independent experiments. (e) mRNA expression of 

senescence marker genes Ink4a, Arf and Ink4b, which were all significantly increased in 

passage 5 Moz-/- cultures (n = 3) compared to wild type (n = 2). (f) BrdU incorporation 

at passages 2 and 4 to quantify cells undergoing DNA synthesis, showing a decrease in 

BrdU incorporation at passage 4 in Moz-/- cultures. n = 4 wild type and 5 Moz-/- cultures. 

(g) Quantification of apoptotic cell death over 3 days after passages 2, 4 and 6 by 

annexin V and flow cytometry. Cell death was similar in wild type and Moz-/- cultures. n 

= 5 wild type, 4 Moz+/- and 3 Moz-/- cultures at each time point.  

Asterisks indicate a statistically significant difference between the marked genotype and 

wild type at *p < 0.05, **p < 0.01, and ***p < 0.001. Scale bars in (B) equal 200 μm. 
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Figure 2 – Premature senescence in Moz-/- MEFs is independent of DNA damage. 

(a) Immunofluorescence detection of γH2A.X (red) marking double stranded DNA 

breaks in the nucleus (blue, Hoechst 33258). (b) Quantification of double stranded 

DNA breaks at passages 1, 3 and 5 by γH2A.X staining in MEFs cultured at 20% O2. 

Analyses were carried out by flow cytometry. MEFs were separated based on DNA 

content to ensure an accurate analysis (FACS plots in Figure S3). n = 5 wild type, 4 

Moz+/- and 3 Moz-/- cultures at each passage. (c) Proliferation curves of primary MEFs 

cultured at physiological (3%) oxygen. There were fewer MEFs in Moz-/- cultures from 

passage 6, and fewer MEFs in Moz+/- cultures from passage 8. (d) qRT-PCR analysis of 

MEFs grown at 3% O2 at passage 5 showing an increase in senescence markers Ink4a, 

Arf and Ink4b. n = 4 wild type and 4 Moz-/- cultures. (e) Analysis of BrdU incorporation 

at passages 2 and 5 in primary MEFs grown at 3% O2. There was a reduction in BrdU 

incorporation in Moz-/- cultures (n = 5) compared to wild type cultures (n = 4), showing 

a decrease in cells undergoing DNA synthesis. (f) Quantification of apoptotic cell death 

over 3 days after passages 2, 5 and 7 by annexin V staining and flow cytometry. n = 4 

wild type, 3 Moz+/- and 5 Moz-/- cultures at each time point. 

Asterisks indicate a statistically significant difference between the marked genotype and 

wild type at *p < 0.05, **p < 0.01, and ***p < 0.001.  

 

Figure 3 – Expression profiling of Moz mutant MEFs. 

(a) Experimental design used to interrogate mRNA expression levels in passage 3 wild 

type and Moz mutant MEFs. (b) Venn diagram showing the number of significantly up-

regulated and down-regulated genes in Moz-/- and Moz+/- cultures compared to wild 

type. A false discovery rate cut-off of 10% was used. The full gene lists for these 

comparisons can be found in Tables S1 and S2. Moz+/- cultures were more similar to 

wild type at passage 3 compared to Moz-/- cultures. Analysis of genes showing an 

intermediate phenotype in Moz+/- cultures compared to wild type and Moz-/- can be 

found in Table S3. This gene list was used for subsequent gene-set analysis.  (c,d,e) 

Gene-set analysis comparing the Moz dataset to published microarray studies analysing 

senescence (c), proliferation (d) and apoptosis (e). Consistent with the phenotype of 

Moz mutant MEFs, genes up-regulated during p53-mediated senescence and in the 

premature aging model of Zmpste24-/- MEFs were expressed at high levels in Moz-/- 
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MEFs. In contrast, genes down-regulated during senescence were enriched in Moz wild 

type MEFs. The Moz dataset did not show any correlation with oncogene (RASV12) 

induced senescence or apoptosis. Genes up-regulated in proliferating cells were 

enriched in Moz wild type, and not Moz-mutant MEFs. (f) Gene-set analysis comparing 

the Moz dataset to datasets available through the Broad Institute. The 30 gene-sets 

showing the strongest correlation to the Moz dataset are provided here. A full list can be 

found in Table S4. n = 2 independent cultures of each genotype. p-values as indicated in 

Figure. 

 

Figure 4 – Analysis of senescence mediators in Moz-/- MEFs in 20% oxygen. 

(a) mRNA expression levels of the Ink4 family genes encoding regulators of 

proliferation and senescence, showing a significant increase in expression from the 

Ink4a-Arf-Ink4b locus. n = 4 wild type and 4 Moz-/- cultures. (b) mRNA levels of genes 

encoding the CIP-KIP family of cell cycle regulators. n = 4 wild type and 4 Moz-/- 

cultures. (c) Proliferation curves of wild type, Moz+/- and Moz-/- MEFs on an Ink4a-Arf 

null background. There were no differences in the number of MEFs across the three 

genotypes at all passages. n = 5 cultures of each genotype.  

All MEFs were grown at atmospheric (20%) O2. qRT-PCR analyses were carried out on 

subconfluent MEFs 24 hours after passage 3. Asterisks indicate a statistically significant 

difference between the marked genotype and wild type at *p < 0.05, **p < 0.01, and 

***p < 0.001. 

 
Figure 5 – Analysis of regulators of senescence and cell proliferation in Moz-deficient 

MEFs. 

(a) Moz mRNA was not detected in Moz-/- MEFs. (b) mRNA expression analysis of the 

polycomb repressive complex 1 (PRC1) genes. No decrease in the mRNA levels of any 

PRC1 genes was found in Moz-/- MEFs. An increase in Cbx7, Cbx8 and Ring1a was 

observed. (c) Expression levels of PRC2 member genes. Ezh2 mRNA levels were 

approximately halved in Moz-/- MEFs.  (d) mRNA levels of Myc and its downstream 

target genes E2f1, E2f2 and E2f3, the protein products of which regulate cell cycle 

progression. E2f2 mRNA was significantly reduced. (e) Analysis of cell division cycle 

(Cdc) genes that were significantly reduced in the Moz-/- MEF microarray. CDC 

proteins regulate the progression of the cell cycle, while CDC6 also directly represses 

the Ink4a-Arf locus. Expression levels of Cdca2, Cdca8, and Cdc6 were halved in Moz-/- 
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MEFs. (f) mRNA analysis of senescence mediators. Only Melk and Skp2 mRNA were 

significantly reduced in Moz-/- MEFs.  

All MEFs used for qRT-PCR analysis were grown at atmospheric (20%) O2 

(Corresponding data for cultures in 3% O2 in Figure S6). Analyses were carried out on 

subconfluent MEFs 24 hours after passage 3. Asterisks indicate a statistically significant 

difference between the marked genotype and wild type at *p < 0.05, **p < 0.01, and 

***p < 0.001. n = 4 wild type and 4 Moz-/- cultures. 

 
 
Figure 6 – H3K9 acetylation is reduced in Moz-/- MEFs at gene loci that repress 

senescence 

(a) H3K9ac levels were reduced at the transcriptional start sites (TSS) of Cdc6, E2f2, 

Ezh2, and Melk, but not Skp2 in Moz-/- cultures. The β-2-microglobulin (B2m) gene is 

provided as a positive control, and the albumin gene, which is transcriptionally inactive 

in MEFs, is provided as a negative control. H3K9ac levels of control genes were not 

changed in Moz-/- MEFs compared to wild type. (b) H3K9ac levels were unchanged 

~500 bp upstream of the TSS, suggesting that changes in H3K9ac levels in the absence 

of MOZ are specific to the TSS. (c,d) H3K14ac levels were not different between wild 

type and Moz-/- MEFs at the TSS (c) or upstream of the TSS (d) at the Cdc6, E2f2, 

Ezh2, or Melk loci.  

All analyses were carried out on subconfluent MEFs grown in atmospheric oxygen 

(20% O2) at passage 3. H3K9ac levels were standardised to H3K9ac levels at the TSS 

of the housekeeping gene Hsp90ab1, while H3K14ac levels were standardised to 

H3K14ac at Hsp90ab1. n = 3 independent cultures of each genotype. Asterisks mark 

statistically significant differences between wild type and Moz-/- cultures at *p < 0.05, 

**p < 0.01, *** p < 0.001. 
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