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A B S T R A C T   

Single-cell RNA sequencing (scRNA-Seq) has emerged as a powerful tool for understanding cellular heterogeneity 
and function. However the choice of sample multiplexing reagents can impact data quality and experimental 
outcomes. In this study, we compared various multiplexing reagents, including MULTI-Seq, Hashtag antibody, 
and CellPlex, across diverse sample types such as human peripheral blood mononuclear cells (PBMCs), mouse 
embryonic brain and patient-derived xenografts (PDXs). We found that all multiplexing reagents worked well in 
cell types robust to ex vivo manipulation but suffered from signal-to-noise issues in more delicate sample types. 
We compared multiple demultiplexing algorithms which differed in performance depending on data quality. We 
find that minor improvements to laboratory workflows such as titration and rapid processing are critical to 
optimal performance. We also compared the performance of fixed scRNA-Seq kits and highlight the advantages 
of the Parse Biosciences kit for fragile samples. Highly multiplexed scRNA-Seq experiments require more 
sequencing resources, therefore we evaluated CRISPR-based destruction of non-informative genes to enhance 
sequencing value. Our comprehensive analysis provides insights into the selection of appropriate sample mul
tiplexing reagents and protocols for scRNA-Seq experiments, facilitating more accurate and cost-effective studies.   

1. Introduction 

Single-cell RNA sequencing (scRNA-Seq) has been powered by ad
vancements in molecular biology, microfluidics, and high-throughput 
sequencing [1]. Applications of scRNA-Seq span cell atlases, pooled 
screens and clinical studies [2]. Single-cell approaches have expanded to 
include additional modalities, such as surface protein measurement, 
open chromatin analysis, and CRISPR perturbation [3]. As scRNA-Seq 
becomes more accessible, increased sample sizes and biological repli
cates enhance scientific rigor but necessitate larger, more complex ex
periments. Although the cost per cell is decreasing, overall experimental 

costs remain high. 
Sample multiplexing has emerged as an elegant solution to reduce 

costs. The concept was first demonstrated by mixing genetically distinct 
samples and subsequently deconvoluting them using genotypes called in 
the sequencing data [4]. However, in many studies the absence of nat
ural genetic variation renders this approach unfeasible. As an alterna
tive, various methods have been developed to deliver exogenous sample- 
identifying DNA barcodes. The first implementation utilized oligo- 
tagged antibodies targeting ubiquitous cell surface proteins [5]. Subse
quent technologies have delivered DNA barcodes via lipids, concanav
alin A, click chemistry, transfection, or transduction [6–10]. 
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Regardless of the delivery mechanism, sample multiplexing neces
sitates additional upfront handling of individual samples, with the po
tential to perturb cell states [11] or reduce viability. Antibody- and lipid- 
based barcodes have become the most popular systems, for their broad 
applicability and ease of use. Recently, Mylka et al., directly compared 
these multiplexing methods, recommending different solutions for 
different sample types [12]. 

The advent of commercial fixed scRNA-Seq kits, such as the Parse 
Biosciences Evercode kits and 10× Genomics Flex, has effectively 
decoupled sample collection from processing. Both kits incorporate 
sample multiplexing into their molecular biology workflows, elimi
nating the need for specific labeling steps. The Parse Biosciences Ever
code kits utilize multiwell plates, enabling sample multiplexing by 
dispensing each sample into a separate well. In contrast, the 10× Ge
nomics Flex kit employs a ligation probe-based assay, where sample 
barcodes are embedded in the probe sequences. 

We have conducted an extensive comparison of antibody, lipid- 
based, and fixed sample multiplexing reagents across diverse and 
broadly representative cell types, including human peripheral blood 
mononuclear cells (PBMCs), mouse embryonic brain, and ovarian car
cinosarcoma patient-derived xenografts (PDX). We compare exogenous 
sample labels introduced by multiplexing oligos with endogenous SNP 
genotypes as ground truth [5]. We also assess cell type recovery bias. 

We evaluate CRISPR-based destruction of non-informative genes, an 
important potential adjunct in controlling the cost of larger single-cell 
experiments. Through upfront optimization and downstream compara
tive analyses, we propose guidelines for experimental design and the 
utilization of different protocols in various contexts. 

2. Results 

2.1. Comparison of multiplexing reagents in human PBMCs 

To evaluate the performance of sample multiplexing reagents 
(Table S1) in a system where we could obtain ground truth from SNP 
genotypes, we analyzed PBMCs from four human donors (Fig. 1A). Each 
PBMC donor sample was divided into technical duplicates for the sample 
multiplexing labeling reaction (Fig. 1A) and captured with 10× Geno
mics v3.1 chemistry at a cell input of 35,000 cells, for a theoretical 
output of 20,000 cell-containing droplets at a 16.11% doublet rate 
(Satija lab calculator). 

After library preparation and sequencing, we examined the count 
distributions for each tag and protocol (Fig. 1B). The signal-to-noise was 
most consistent for MULTI-Seq with hashtag antibody also performing 
well aside from a single labeling reaction, HTO1, which had a high 
background and lower signal indicating an issue with the antibody re
agent rather than an error in sample handling (Fig. 1B). The HTO1 
sample's poor signal to noise negatively impacted other tags. Dimension 
reduction of the hashtag antibody capture revealed satellite clusters 
with a subset of cells having a correct dominant tag but contaminated by 
HTO1 (Fig. S2B). 

CellPlex had the lowest signal-to-noise and highest proportion of 
unassigned cells (p-value 0.031 and 0.004 versus hashtag and MULTI- 
Seq respectively) (Fig. 1C and D).Of note the doublet rate is higher for 
hashtag antibody and MULTI-Seq than the theoretical 16.11% expected 
from loading each 10× Genomics capture with 35,000 cells. We later 
titrated the CellPlex reagent ten-fold below the manufacturer's recom
mendations without a loss in signal (Fig. S3). 

Examination of the relationship between oligo tag library and gene 
expression library size revealed multiplets had a higher library size than 
singlets (Fig. 1E). In contrast, unassigned cells had a similar library size 
to singlets, suggestive of a failure in oligo tag labeling rather than 
unassigned cells being enriched from empty droplets or damaged cells. 

2.2. Accuracy of sample multiplexing oligos compared to SNP genotypes 

We next compared the accuracy of the sample multiplexing tag as
signments to ground truth SNP assignments (Fig. 2A). Given our 
experimental design with four unrelated donors in duplicate, the 
doublet rate was lower from SNP calls (12.08%) than from multiplexing 
tags (16.56%). The identifiable doublet rate excludes homotypic 
doublets. 

The proportions of individual donors recovered when comparing 
SNPs to sample multiplexing oligos was not significantly different aside 
from the unassigned category (Fig. 2A). This was confirmed upon closer 
inspection of the multiplexing tag calls to SNP calls in an alluvial plot 
and heatmap (Fig. 2B and C). The major discordant droplets were non- 
identifiable doublets when calling multiplets based on 4 SNPs versus 8 
multiplexing oligos. Having used the Cell Ranger multi algorithm for 
sample demultiplexing, we next compared other algorithms available in 
the cellhashR package [13]. The three sample multiplexing datasets 
generated had different characteristics with CellPlex having lower signal 
to noise, hashtag antibody having one poorly performing tag and 
MULTI-Seq being a high quality dataset (Fig. 2D). 

Cell Ranger multi performed as well as other algorithms in hashtag 
antibody and MULTI-Seq datasets, despite a warning during runtime 
that these multiplexing tag oligos are not supported. In the CellPlex 
dataset, the Bimodal Flexible Fitting (BFF cluster) algorithm performed 
best (Fig. 2D). In contrast, in the high-quality MULTI-Seq dataset, BFF 
cluster called four-fold more false positives, assigning more multiplets to 
singlets. This protocol dependent variation in algorithm performance 
meant there was no significant difference in demultiplexing algorithms 
(Fig. S4E). We computed the overall classification accuracy, (OCA) the 
same metric used in Mylka et al., [12], (Table 1). The OCA is defined as 
the sum of matching assignments between demultiplexing tags and SNP 
assignments divided by the count of all cell-containing droplets. 
Consistent with the signal-to-noise metrics, MULTI-Seq performed best, 
followed by hashtag antibody with CellPlex the poorest performing 
protocol. 

To evaluate the impact of sequencing depth on demultiplexing ac
curacy, we downsampled the multiplexing tag library sequencing data 
and reprocessed the data using Cell Ranger Multi. The recommended 
number of reads per cell by 10× Genomics is 5000 for hashtag anti
bodies and CellPlex. Beyond 1000 reads per cell, an increase in the 
number of reads per cell exerted a negligible effect on demultiplexing 
performance (Fig. 2E). An alternate guideline provided on the 10×
Genomics website indicates 1000 usable oligo tag reads per cell, which is 
consistent with our findings. Particularly for high-quality datasets, a 
total of 5000 reads per cell for sample multiplexing oligos appears 
excessive. 

2.3. Comparison of sample multiplexing reagents in mouse embryonic 
brain 

PBMCs are a robust sample type that do not require dissociation and 
can be maintained as a single-cell suspension for a prolonged period on 
ice with only minor effects on viability or phenotype [14]. We next 
aimed to benchmark sample multiplexing reagents in mouse embryonic 
brain E18.5, a more challenging tissue (Fig. 3A). In contrast to PBMCs, 
which were processed using a low-throughput labeling protocol in 1.5 
mL tubes, we utilized a high-throughput labeling protocol in a 96 well 
plate. We also adjusted the FACS sort step as per 10× Genomics 
guidelines to conduct the sort after labeling with multiplexing oligos, 
rather than sorting after thawing and before labeling as in the PBMC 
experiment. 

However, in a pilot experiment, we were unable to detect any signal 
using mouse hashtag antibodies with this sample type (Fig. S5A). Thus, 
as a substitute for the hashtag antibody we evaluated a cholesterol 
modified custom MULTI-Seq oligo, composed of the CellPlex oligo 
sequence grafted onto the MULTI-Seq lipid (Fig. S5B). 
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Fig. 1. Benchmarking sample multiplexing reagents in human PBMCs. (A) Experimental design. PBMCs isolated from four unrelated healthy donors were divided 
into technical duplicate prior to labeling. Each protocol was captured in a separate 10× Genomics v3.1 reaction. (B) Log10 transformed oligo tag counts for each 
multiplexing protocol with a summary of signal-to-noise. Signal-to-noise is defined as the difference between the mean background (left) and foreground (right) oligo 
tag counts on a log scale divided by variance. (C) UMAP dimension reduction visualization of multiplexing oligo tag counts for each protocol. Cells are colored by Cell 
Ranger multi call. (D) Summary of multiplexing tag calls per protocol as reported by Cell Ranger multi. Blanks and unassigned are both reported as unassigned. (E) 
Relationship between oligo tag and gene expression library size for each protocol tested. 
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Evaluation of the sequencing counts of the multiplexing tag libraries 
revealed a good separation of signal and background for diluted CellPlex 
(p-value 4.97e-6 and 1.72e-3 versus MULTI-Seq CMO and LMO respec
tively) (Fig. 3B). In contrast the two MULTI-Seq designs had poorer 
signal to background. During laboratory processing there was incom
plete removal of supernatants due to concern over loss of cell pellets. 
With a cell input of 100,000 per well, pellets were invisible. The 
remaining dissociation media may have inhibited MULTI-Seq LMO, as it 
is quenched by proteins [6]. In line with this observation, MULTI-Seq 
CMO which is not quenched by culture media performed 

comparatively better (Fig. 3C). 
A further logistical issue related to shifting the sorting step until after 

multiplexing oligo labeling to conform to 10× Genomics supported 
protocols. This change necessitated a sequential sort of sample pools in 
the order MULTI-Seq LMO, MULTI-Seq CMO and CellPlex. Viability 
measurements dropped from 93% to 76% live cells between MULTI-Seq 
LMO and CellPlex for this reason (Fig. S5I). The number of cell- 
containing droplets retrieved was consistent with a drop in viability 
over time (Table S2). 

Since CellPlex performed the best in this experiment and had the 
shortest time between cell sorting and single-cell capture, we later 
assessed if prolonged storage on ice had any effect on signal-to-noise 
metrics (Fig. S6). Indeed 30 min storage on ice increased background 
and reduced signal for the lipid based CellPlex reagent. 

In the mouse embryo experiment, the MULTI-Seq reagents yielded 
low signal-to-noise ratios and a high proportion of unassigned droplets 
(Fig. 3D). As BFF cluster performed well in the low quality CellPlex 
PBMC dataset, we also assessed its performance in the E18.5 mouse 
embryo cells. Indeed, the proportion of droplets assigned to multiplets 
and singlet samples also increased. 

Fig. 2. Comparison of cell demultiplexing software (A) Comparison of oligo tag calls with Cell Ranger multi versus SNP calls. The white horizontal dashed line 
represents the theoretical doublet rate based on 4 SNP donors.The black line represents doublet rate based on eight multiplexed samples. (B) Alluvial plot for MULTI- 
Seq LMO comparing demultiplexing on a tag basis (left), donor basis (middle) and corresponding SNP calls (right). (C) Heatmap of the sample multiplexing oligo-snp 
assignment contingency table. (D) Comparison of droplet calls from multiple demultiplexing algorithms implemented in cellhashR. (E) Downsampling analysis of 
oligo tag libraries. Oligo tag libraries were downsampled to a fixed number of reads per cell and each dataset was demultiplexed with Cell Ranger multi. 

Table 1 
Overall classification accuracy. OCA is the number of matching assignments 
between sample multiplexing tags and SNP assignments divided by all cell- 
containing droplets.  

Protocol OCA Unassigned 

MULTI-Seq 0.926 0.0153 
Hashtag Ab 0.804 0.145 
CellPlex 0.761 0.185  
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Fig. 3. Benchmarking sample multiplexing reagents in mouse embryonic brain. (A) Experimental design. Embryonic day 18.5 mouse brain from a single animal was 
used. The single cell suspension was split into 12 partitions for each reagent tested. A high throughput labeling protocol in 96 well plates was used. Cells were pooled 
prior to FACS sorting. (B) Log10 transformed oligo tag counts for each multiplexing protocol with a summary of signal-to-noise. (C) Heatmaps of oligo tag counts 
annotated by BFF Cluster call and Demuxafy consensus call. (D) Identity of cell containing droplets from BFF Cluster and Cell Ranger multi algorithms. (E) Library 
size of gene expression library based on Cell Ranger demultiplexing calls. (F) Library size of gene expression library based on BFF Cluster demultiplexing calls. 
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As a single sample from an inbred mouse strain was used for this 
experiment, we were unable to use SNP genotypes as a ground truth. We 
therefore utilized a doublet detection software package, Demuxafy, 
based on gene expression as an alternative source of droplet identity 
information. Demuxafy is a wrapper program around many common 
algorithms [15]. Comparison of droplet calls from demultiplexing al
gorithms based on multiplexing tags with calls based on gene expression 
(Fig. 3E) showed no significant difference in gene expression library size 
between concordant multiplets and singlets. More singlets were recov
ered from the overlap of Demuxafy and BFF Cluster compared to the 
number recovered from the overlap of Demuxafy and Cell Ranger Multi 

(Fig. 3F). 

2.4. Comparison of sample multiplexing reagents in human tumor nuclei 

Having evaluated sample multiplexing reagents in intact cells, we 
next compared the reagents in single-nucleus preparations. Nuclei more 
faithfully represent cell type composition in tissues that are difficult to 
dissociate enzymatically than whole-cell preparations [16,17]. Here, we 
used human ovarian carcinosarcoma patient-derived xenograft (PDX) 
tissue that was snap frozen as tissue pieces according to 10× Genomics 
best practices. Due to the differing growth rates of the different PDX 

Fig. 4. Benchmarking sample multiplexing reagents in ovarian carcinosarcoma xenograft nuclei. (A) Experimental design. Nuclei were isolated from four PDX donor 
samples, performing an immediate microfluidics capture, followed by labeling the remaining nuclei with multiplexing oligos. (B) Log10-transformed oligo tag counts 
for each multiplexing protocol with a summary of signal-to-noise ratios. (C) Heatmaps of oligo tag counts annotated by cellhashR consensus call, Seurat HTODemux 
call, and cluster identity from parallel gene expression data. Cells (columns) are ordered by HTODemux call. (D) Comparison of droplet calls made by demultiplexing 
algorithms. Calls were generated with cellhashR. (E) UMAP dimension reduction visualization of gene expression data for each protocol. Cells are colored by gene 
expression cluster identity. 
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models it was impractical to process all samples fresh on the same day. 
We prepared nuclei with a 10× Genomics isolation kit and immediately 
performed a capture of unlabelled nuclei to identify the effect of pro
longed sample handling required by labeling steps on the quality of the 
transcriptome. We subsequently labelled the remaining nuclei with 
three different multiplexing reagents (Fig. 4A). 

The quality of the nuclei preparation immediately after isolation was 
good but visually deteriorated after the multiplexing oligo labeling step 
(Fig. S7A). The CellPlex sample experienced a clog resulting in a wetting 
failure and low recovery volume. While Souporcell estimated an 
ambient RNA content of 29.97% for droplets from the unlabelled sam
ple, it could not generate an estimate for samples labelled with sample 
multiplexing oligos. In the labelled samples, the majority of cells could 
not be assigned to a SNP donor, likely due to a low molecular complexity 
and fraction of reads in cells (Fig. S7B). 

The corresponding signal-to-noise ratio of the oligo tag libraries was 
poor with low separation from background (Fig. 4B and C). Cell ranger 
multi failed to assign the majority of nuclei to samples (Fig. S7C). We 
used the cellhashR package to compare droplet assignment methodol
ogies; Seurat (srt) HTODemux performed the best under the expectation 
that samples would be in equal proportions (Fig. 4D). 

Since each microfluidic capture contained cells from four PDX 
models, we next checked the gene expression data for separation by 
sample of origin after dimension reduction (Fig. 4E). The unlabelled 
sample showed four major clusters reflecting the SNP donors with minor 
satellite clusters reflecting cell doublets. This association was not as 
clear in the captures labelled with multiplexing oligos, likely due to the 

lower quality of gene expression data (Fig. S7E). 

2.5. Evaluation of fixed single-nucleus RNA-Seq in human tumor nuclei 

In light of the poor performance of sample multiplexing oligos in 
nuclei from solid tumor samples, we evaluated fixed snRNA-Seq kits 
from Parse Biosciences (mini Evercode v2) and 10× Genomics (Flex v1, 
4 barcodes) (Fig. 5A). Immediately after fixation the single nucleus 
suspension appeared free of debris and clumps (Fig. S8A). Following 
probe hybridization and sample pooling multiple washes are required 
for 10× Genomics Flex. With each centrifugation and resuspension step, 
the sample became increasingly more clumpy (Fig. S8B), resulting in a 
clogged microfluidics chip and failed capture. For the Parse Biosciences 
experiment, all four of the nuclei samples exhibited a degree of clump
ing; in 2 samples this was the minority of nuclei (Fig. S8C) but for the 
remaining 2 samples the majority of nuclei were clumped and omitted 
from processing (Fig. S8D). 

To evaluate the accuracy of Parse Bioscience v2 demultiplexing, we 
utilized donor specific clustering based on gene expression (Fig. 5B) 
counting the number of cells labelled with reverse transcription barc
odes that were were in each cluster (Fig. 5C). Excluding likely doublet 
cluster 2, 9 cells were assigned to a cluster where they were the minority 
donor, representing 0.28% of the experiment (Fig. 5D). 

Since the 10× Genomics Flex capture was unsuccessful, we 
compared Parse Biosciences data to the unlabelled 10× Genomics v3.1 
fresh nucleus dataset. Parse Biosciences had more reads in cells 
(Table S4) reflecting a more efficient use of sequencing resources. 

Fig. 5. Benchmarking fixed scRNA-Seq in Ovarian carcinosarcoma xenografts. (A) Experimental design. (B) UMAP of Parse Bioscience v2 gene expression data from 
both donors. (C) UMAP of Parse Bioscience v2 gene expression data from both donors colored by cluster. (D) For each gene expression cluster in C, the number of cells 
from each donor is indicated. (E) Library size comparison between scRNA-Seq protocols. Sequencing reads were downsampled to an equivalent number per cell. (F) 
Gene detection comparison between protocols. (G) Gene expression comparison between scRNA-Seq protocols, each dot is the sum of counts across all single cells for 
a gene. (H) UMAP of 10× Genomics v3.1 data for PDX donor 1. (I) UMAP of Parse Biosciences v2 data for PDX donor 1. (J) Expression plots of indicated genes per 
cluster in 10× Genomics v3.1 data. (K) Expression plots of indicated genes per cluster in Parse Biosciences v2 data. 
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Accordingly, the library sizes and number of detected genes were 
approximately five fold higher in Parse Biosciences when downsampling 
to an equivalent number of reads per library (Fig. 5E and F). Consistent 
with the manufacturer's specifications, the cell doublet rate was an order 
of magnitude lower for Parse Bioscience. There was a high concordance 
(Pearson correlation 0.918) in gene expression between technologies 
(Fig. 5G). 

Importantly, the Parse Biosciences v2 dataset exhibited greater bio
logical variation compared to the 10× Genomics v3.1 dataset. In the 
latter, an outlier cluster distorted the dimension reduction results 
(Fig. 5H). Marker gene analysis identified lncRNAs MALAT1 and 
MIR99AHG as enriched in cluster 3 (Fig. 5J). These genes have been 
described to be enriched in stressed and dying cells [18]. However there 
was no difference in library size or mitochondrial gene percentage in this 
cluster (Fig. S8G). In contrast, the Parse Biosciences dataset captured 
biologically meaningful variation, revealing a distinct cluster expressing 
the NRXN1 gene (Fig. 5K). Neurexin-1-alpha is a cell adhesion protein 
and may represent a more epithelial-like subpopulation within the 
tumor [19,20]. 

2.6. Evaluation of CRISPRclean destruction of abundant genes 

Multiplexing tags reduce per-cell costs for cell capture and library 
preparation by increasing the yield of single-cell partitioning. However, 
superloading does not decrease the cost of sequencing. Instead, it can 
increase required sequencing volumes due to higher doublet rates and 
the need to sequence the sample multiplexing tag library. Thus methods 
that can reduce sequencing requirements are arguably of enhanced 
value for multiplexed experiments. 

We evaluated the Jumpcode Genomics CRISPRclean Single Cell RNA 
Boost Kit in reducing the amount of uninformative sequence data by 
using a guide RNA library targeting unaligned reads, ribosomal, mito
chondrial, and non-variable genes [21]. CRISPRclean lowered the pro
portion of ribosomal and mitochondrial genes in the PBMC library by 
over 30% (Fig. 6A). 

Following CRISPRclean treatment, ribosomal and mitochondrial 
genes were eliminated from the list of most highly expressed genes, and 
MALAT1 was considerably depleted (Fig. 6B). The enhancement in gene 
detection was moderate (Fig. 6C), while off-target depletion of genes 
was minimal (Fig. 6D). Interestingly, mitochondrially encoded ribo
somal genes in the CRISPRclean sample were also degraded, potentially 
due to homology. 

The per-cell percentage of counts for mitochondrial genes is a com
mon quality control metric in scRNA-Seq analysis [22]. We investigated 
whether this metric remains reliable for removing low-quality cells in 
CRISPRclean-depleted samples (Fig. 6E). Although a positive correlation 
between untreated and depleted mitochondrial gene percentages was 
observed, more cells were discarded in the undepleted library (1115 vs 
460). This was entirely explained by outlier-based mitochondrial gene 
percentage filtering (Fig. 6F). 

We next confirmed that cell type recovery remained unaffected by 
the depletion of ribosomal and mitochondrial genes (Fig. 6G). We also 
examined whether CRISPRClean depletion altered the distribution of 
immune subsets. Following clustering and annotation, no significant 
difference in the composition of CRISPRclean-depleted libraries was 
observed (Fig. 6H). 

3. Discussion 

Our study compared various sample multiplexing reagents for 
scRNA-Seq experiments. We limited our comparison to commercially 
available technologies that do not require genetic manipulation of cells. 
For PBMCs, we found MULTI-Seq LMO to be the superior reagent. 
Hashtag antibodies also performed well, with the exception of a single 
tag oligo HTO1 in this particular experiment. Potential explanations 
include the formation of antibody aggregates, which is mentioned on the 

frequently asked questions page of the 10× Genomics website. Reduced 
signal-to-noise ratios might also be attributed to incomplete removal of 
supernatants during wash steps. 

CellPlex at the manufacturer's recommended concentration, exhibi
ted the poorest performance due to high background. By titrating and 
diluting the CellPlex reagent ten-fold, the signal-to-noise ratio was 
improved. The additional background was likely introduced during 
storage of the pooled sample prior to single-cell capture, as the con
centration of the CellPlex reagent is higher than for MULTI-Seq or 
hashtag antibody. Any passive transfer of multiplexing oligo tags by 
diffusion would be more pronounced for a concentrated reagent. The 
mechanism of tag oligo exchange between cells or between nuclei re
mains unclear. In our observations, it occurred in both high-quality cell 
lines and lower-quality dissociated tissues in a time dependent fashion. 
Based on 10× Genomics guidelines to maintain samples on ice after 
pooling, passive diffusion is the likely cause. This phenomenon could be 
further investigated using live cell fluorescent microscopy. 

We caution against the use of sample multiplexing reagents partic
ularly for fragile samples. Labeling of cells with multiplexing oligos 
necessitates additional sample incubation and washing steps. These 
additional manipulations can compromise the viability of fragile cell 
types such as mouse embryonic brain and tumor nuclei. The benefits of 
sample multiplexing with respect to cost and batch effect minimization 
should be assessed against the risk of reductions in data quality. Large- 
scale experiments involving upwards of 96 samples multiplexed 
together have only been demonstrated using cell lines [6]; However, our 
results suggest that it would be challenging to achieve such a scale with 
primary cells or tissues. 

Comparing the assignments based on sample multiplexing oligos 
with SNP assignments confirmed the accuracy of all labeling strategies. 
Fewer than 2% of cells were misclassified to the wrong donor in the 
PBMC experiment. Nevertheless, SNP assignments operated with higher 
cell recovery with fewer cells being lost to an unassigned category. We 
recommend the use of SNPs over sample multiplexing reagents where 
applicable. In our algorithmic comparison, we found that all methods 
performed similarly when data quality is high as was the case in the 
PBMC experiment. This is consistent with other studies [23]. Where the 
algorithms diverge in terms of performance is on lower quality data. 
Here we found BFF Cluster could be used to rescue more cells, at the 
expense of an elevated false positive rate. Combining demultiplexing 
algorithms with orthogonal information, such as SNP genotypes or 
endogenous gene expression, may be a useful strategy to rescue poorly 
performing datasets, particularly with fragile samples where signal-to- 
noise is sub-optimal. It is important to note that we only tested algo
rithms available within the cellhashR package [13]. As new algorithms 
are constantly emerging [24,25], dedicated benchmarking studies 
focusing exclusively on bioinformatics analysis will be necessary [23]. 
Our primary focus was on laboratory elements that can enhance 
demultiplexing performance. 

An advantage of the fixed scRNA-Seq kits from 10× Genomics and 
Parse Biosciences is that sample multiplexing is embedded in the mo
lecular biology, with no additional sample handling required as for 
sample multiplexing oligos. While the Parse Biosciences kit has a lower 
doublet rate, the doublets in the 10× Genomics product are usable. For 
large experiments where gene expression is the sole readout, we expect 
that fixed RNA kits will become dominant. For PDX nuclei, we found 
that the Parse Biosciences kit was more reliable, whereas 10× Genomics 
Flex suffered from recurrent wetting failures. The greater propensity of 
nuclei for aggregation and clumping compared to intact cells may 
explain these failures encountered by the microfluidics-reliant 10×
Genomics technology. It is also possible that the higher nuclei input may 
have also contributed to the formation of wetting failures. In the mul
tiplexing configuration of 10× Genomics Flex, droplets containing het
erotypic doublets are usable, therefore we input a higher number of 
nuclei into the microfluidics device compared to conventional 3′ 
chemistry. This overloading feature is built into the pricing structure, 
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Fig. 6. Evaluation of Jumpcode CRISPRclean Single Cell RNA Boost Kit in MULTI-Seq LMO PBMCs. (A) Percentage of counts on genes in the CRISPRclean panel. The 
gene expression library was sequenced with and without CRISPRclean treatment. (B) Top 20 highly expressed genes in CRISPRclean treated and untreated libraries. 
Genes prefixed as”RP” or”MT-” represent ribosomal or mitochondrial genes, respectively. (C) Relationship between library size and number of detected genes per cell. 
(D) Gene expression comparison, each dot represents the sum of counts across all single cells for a gene. (E) Correlation of per-cell mitochondrial gene percentage. 
The trend line is a linear fit. Cells discarded by data driven thresholds are indicated. (F) Relationship between library size and mitochondrial gene percentage. 
Discarded cells are colored red. (G) UMAP dimension reduction based on gene expression data. The CRISPRclean library was additionally downsampled to 50% of the 
untreated library. (H) Summary of immune subsets recovered from untreated, CRISPRclean treated, and downsampled CRISPRclean treated gene expression data. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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where Flex is more expensive than 5′ and 3′ kits, if overloading is not 
utilized. 

CRISPRclean offers a promising approach to focusing sequencing 
resources on specific genes of interest. In our assessment of PBMCs, 
which represent the sample type used in the manufacturer's demon
stration, we found that the technology is consistent with the manufac
turer's claims. However, when applied to PDX samples, we observed a 
less pronounced re-focusing of sequencing effort. This discrepancy can 
be ascribed to the diminished expression of genes contained within the 
gRNA panel in PDX samples compared to PBMCs. While we conducted a 
comparison of cell type recovery, we did not perform an in-depth 
analysis on the impact of normalization, which typically relies on non- 
variable genes. In our data, we identified off-target depletion of genes, 
some of which have been previously reported [21]. The remaining off- 
target effects could be attributed to statistical noise and additional 
replicate experiments are necessary to evaluate their reproducibility. 
Following our assessment of CRISPRclean, a new gRNAs library has been 
introduced by Jumpcode, marketed as DepleteX, addressing known off- 
target effects and potentially enhancing the specificity of this 
technology. 

In conclusion, our findings indicate that the choice and extent of 
multiplexing for scRNA-Seq should be contingent on the type of sample 
under investigation. Samples composed of cells that withstand ex vivo 
manipulation can accommodate a high degree of multiplexing. 
Conversely for delicate samples, it is more prudent to minimize multi
plexing and instead invest in additional consumable costs. This 
approach ensures the preservation of high data quality. 

4. Methods 

All oligonucleotides were purchased from Integrated DNA Technol
ogies. Sequences are provided in Table S5. 

4.1. Ethical statement 

PBMCs were isolated from unrelated healthy control donor samples 
obtained from the Volunteer Blood Donor Registry (VBDR, WEHI). 
Informed consent was obtained from all individual participants prior to 
inclusion in the study. The study was performed according to the prin
ciples of the 1964 Helsinki declaration and its later amendments and 
was approved by local Human Research Ethics Committee (WEHI 
Approved project 10/02). All experiments involving animals were per
formed according to the animal ethics guidelines and were approved by 
the WEHI Animal Ethics Committee (2019.024). 

4.2. PBMC sample multiplexing labeling 

We first undertook a round of optimization by flow cytometry, 
titrating the Total-Seq hashtag antibody to a concentration of ten-fold 
less than the manufacturer's recommendations (0.1 μg per reaction) 
(Fig. S1A). We next substituted the poly-A capture sequence of the 
described MULTI-Seq oligo [6] with the 10× Genomics feature barcode 
2 sequence (Fig. S1B). Titrating the MULTI-Seq lipid modified oligos 
(LMO) resulted in a rapid loss of signal, therefore we used a concen
tration of 200 nM as reported in the original study (Fig. S1C). 

CellPlex. Labeling was performed according to 10× Genomics 
demonstrated protocol CG000391 Rev. A”Cell Multiplexing Oligo La
beling for Single Cell RNA Sequencing Protocol” with an input of 
250,000 cells. Library preparation was performed according to 
CG000388 Rev. A”Chromium Next GEM Single Cell 3’ Reagent Kits v3.1 
(Dual Index) with Feature Barcode technology for Cell Multiplexing”. 

MULTI-Seq. The MULTI-Seq protocol [6] was followed with 200 nM 
of each anchor-barcode complex being used in the labeling step. The 
poly-A capture sequence was replaced with the 10× Genomics feature 
barcode capture 2 sequence. This required the library preparation PCR 
to be performed with the Nextera read 1 primer instead of the TruSeq 

read 1 primer. PCR conditions otherwise remained the same. 
Total-Seq A Hashtag antibody. The Biolegend protocol for Total-Seq A 

hashtag labeling was followed with the exception that ten-fold less 
antibody was used, 0.1 μg per labeling reaction. Each multiplexing 
protocol was captured on a separate 10× Genomics lane to avoid 
ambient oligo effects. 

4.3. Mouse embryonic brain sample preparation 

RosaERT2Cre/RosaERT2Cre mice were intercrossed with Loxcode/ 
Loxcode mice [26,27]. Presence of a vaginal plug was used to determine 
day of conception. Pregnant dam was induced with 50μg of 4 hydrox
ytamoxifen injected intravenously at day 7.5 of pregnancy. Embryos 
were collected at E18.5. After decapitation, the brain was dissected and 
processed for enzymatic dissociation. Embryos were dissected with the 
10× Genomics protocol CG00055 Rev. C”Dissociation of Mouse Em
bryonic Neural Tissue for Single Cell RNA Sequencing” with the 
following modifications: Embryos were dissected in Hibernate-E Me
dium media (ThermoFisher A1247601), supplemented with 1% B27 
(ThermoFisher 17,504,044) and 1× GlutaMAX (ThermoFisher 
35,050,061). Benzonase Nuclease (Millipore E1014) was added to 
Papain (Millipore P4762) at a dilution of 1:5000 during dissociation. 

4.4. Mouse E18.5 brain sample multiplexing experiment 

100,000 cells were aliquotted per well across 12 wells of a round 
bottom 96 well plate (Falcon 353,077). To label cells at high 
throughput, a combination of 10× Genomics protocols CG000391 Rev. 
B”Cell Multiplexing Oligo Labeling for Single Cell RNA Sequencing 
Protocols with Feature Barcode technology” and CG000426 Rev. A”High 
Throughput Sample Preparation for Single Cell RNA Sequencing” were 
utilized. 

CellPlex. CellPlex oligos were diluted 1:10 in PBS prior to incubation 
with 100,000 cells at room temperature. After 5 min, 200 μL of PBS +
1% BSA was added and samples centrifuged at 300 g for 4 min at 4 ◦C. 
The supernatant was aspirated with a multichannel pipette, leaving 
approximately 10 μL of supernatant. A single wash of 200 μL PBS + 1% 
BSA was performed prior to pooling and sorting by flow cytometry. Li
brary preparation followed the 10× Genomics CG000388 Rev. A pro
tocol with no alternation of PCR cycle number. 

MULTI-Seq lipid modified oligo (LMO). labeling was performed at half 
volume (100 μL total) to avoid overflow of the round bottom 96 well 
plate. 200 nM of anchor-barcode complex was used in the labeling step 
with 100,000 cells for 5 min on ice. Co-anchor oligo was then added for a 
further 5 min on ice prior to quenching with 200 μL PBS. A single wash 
was performed prior to flow cytometry. Library preparation followed 
the same workflow as for the PBMC experiment. 

Custom MULTI-Seq cholesterol modified oligo (CMO). The MULTI-Seq 
LMO process was followed, substituting anchor and co-anchor oligos 
with a custom cholesterol modified oligo (CMO) containing the Nextera 
read 2 PCR handle (Supplementary table 5). Since the oligo was 
designed for compatibility with the CellPlex workflow, library prepa
ration followed the 10× Genomics CG000388 Rev. A protocol without 
PCR cycle alterations. 

10× Genomics capture After labeling with multiplexing tag oligos, 
individual samples were pooled at equal volumes without a cell count. 
The pooled single-cell suspension was counted and diluted to a final 
concentration of 812 cells per μL, aiming to load 35,000 cells into each 
lane and obtain 20,000 barcode-containing droplets at a 16% theoretical 
doublet rate. 10× Genomics v3.1 dual index kits were used. Each mul
tiplexing protocol was captured on a separate 10× Genomics lane to 
avoid ambient oligo effects. 

4.5. Ovarian carcinosarcoma xenograft fresh nuclei experiments 

PDX models were established through transplanting fragments of 
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tumor tissue obtained from patients consented to the WEHI Stafford Fox 
Rare Cancer Program [28]. Following ethical endpoint and tumor 
dissection, rice-sized tissue pieces were snap-frozen on dry ice and 
stored at − 80 ◦C until processing. Single nucleus suspensions were 
generated from frozen tissue pieces using the Chromium Nuclei Isolation 
Kit with RNase inhibitor (PN-1000494), following user guide CG000505 
Rev. A. As input tissue pieces weighed over 50 mg, the four tumor pieces 
from each donor were cut in half, and the nucleus preparation was 
performed in duplicate. 

10× Genomics unlabelled capture. To examine the effects of extended 
storage time on nuclei integrity a capture was performed prior to any 
multiplexing labeling step, approximately 90 min before the labelled 
samples were captured. The single nuclei suspensions from each PDX 
donor were counted and pooled to a final concentration of 692 nuclei 
per μL to load 30,000 nuclei and obtain 17,177 barcode containing 
droplets at 13.82% theoretical doublet rate. 

CellPlex. CellPlex oligos were diluted 1:10 in PBS prior to incubation 
with 250,000 cells at room temperature. After 5 min of labeling time at 
room temperature, 200 μL of PBS + 1% BSA was added and samples 
centrifuged at 300 g for 4 min at 4 ◦C. The supernatant was aspirated 
with a multichannel pipette, leaving approximately 10 μL of superna
tant. A single wash of 200uL PBS + 1% BSA was performed prior to 
pooling and sorting by flow cytometry. Library preparation followed the 
10× Genomics CG000388 Rev. A protocol with no alternation of PCR 
cycle number. 

Custom MULTI-Seq custom cholesterol modified oligo (CMO). The same 
process for MULTI-Seq LMO was performed, except for the substitution 
of the anchor and co-anchor oligos for a custom cholesterol modified 
oligo (CMO) bearing the Nextera read 2 PCR handle. As the oligo was 
designed to be compatible with the CellPlex workflow, library prepa
ration followed the 10× Genomics CG000388 Rev. A protocol with no 
alteration of PCR cycles. 

TotalSeq A anti-Nuclear Pore Complex Antibody. The Biolegend Pro
tocol for Total-Seq A hashtags was followed with 1 μg of antibody per 
labeling reaction (accessed 22 August 2022). 

4.6. Ovarian carcinosarcoma xenograft fixed RNA experiments 

To obtain sufficient nuclei to run the same suspension across both 
fixed kits we used EZ lysis buffer (Sigma NUC101), at the expense of 
greater debris. 500 μL of lysis buffer was added to approximately 50μg 
frozen tissue pieces. Sample was titruated with wide bore p1000 tips 
until homogenized. Nuclei were incubated on ice for 5 min followed by 
centrifugation at 500 g for 5 min at 4 ◦C. The supernatant was removed 
followed by two washes in 1 mL PBS + 1% BSA. Nuclei samples were 
then divided in half and fixed with manufacturer specific protocols and 
reagents. 

Parse Biosciences Evercode version 2 on PDX nuclei. Between 150,000 
and 500,000 nuclei were fixed and stored at − 80 ◦C for 6 weeks prior to 
processing using the Parse Biosciences Evercode WT Mini v2 kit 
(ECW02010) version 2.0.0 protocol. After visual inspection of the nuclei 
following fixation, 2 of the 4 samples exceeded the maximum clumping 
parameters and were omitted, leaving 2 remaining samples. Each sam
ple was then processed in 2 wells of a version 2 mini kit following the 
manufacturer's guidelines. Two sublibraries of 5000 cells underwent the 
downstream cell lysis and PCR amplification steps. 

4.7. Jumpcode CRISPRclean depletion 

The MULTI-Seq LMO library from the PBMC experiment and unla
belled library from the ovarian PDX experiment were treated with 
Jumpcode CRISPRclean Single Cell RNA Boost Kit, (KIT1018) according 
to the manufacturer's instructions. 

4.8. Bioinformatics analysis 

All downstream analysis was performed in R version 4.2.1 [29]. The 
code, data and analyses used to generate these figures is available from 
GitHub. Each multiplexing labeling protocol evaluated was treated as a 
separate dataset without integration. Tabular data was manipulated 
with the tidyverse package [30]. 

Cell annotation was performed with Seurat version 4.0.6, Trans
ferData function [31]. The reference for human PBMCs was provided 
with Seurat multimodal reference mapping vignette. The reference for 
mouse E18.5 brain was [32], subsetting cells for the E18.5 timepoint. 

Doublet detection based on gene expression was performed with 
demuxafy version 1.0.3 [15]. The majority vote from the output of 
DoubletFinder, scDblFinder, scds and scrublet was used to assign mul
tiplets and singlets. Ambient RNA estimation was performed with Sou
porcell version 2.0 [?]. 

4.9. Statistical analysis 

Performance comparison of oligo tag signal to noise ratios and 
demultiplexing algorithm calls was performed by Kruskal-Wallis test 
followed by Dunn test with Bonferroni correction. Differential cell type 
abundance analysis was performed by summarising the number of cells 
labelled with a given cell type annotation for each sample of origin, 
followed by testing for differences in the abundance of cell types be
tween cell demultiplexing protocols with the edgeR package [33]. 

For differential gene expression analysis single-cells were first 
aggregated to pseudobulks based on CRISPRclean treatment with the 
aggregateAcrossCells function from the scuttle package [34]. The edgeR 
package was then used to compute differentially expressed genes. 

AIdeclare 

The initial rough draft of introduction, results and discussion sec
tions were prepared by D.V⋅B without AI assistance. ChatGPT Plus (GPT- 
4) was subsequently used for copy editing of each paragraph with the 
prompt”act as a scientific copy editor and suggest improvements to my 
manuscript. List each change that you suggest.” The edits were manually 
assessed before accepting or rejecting. ChatGPT Plus was then used to 
generate a 200 word abstract based on the results and discussion section. 
The output was manually reviewed and edited by D.V⋅B before inclusion 
and take they full responsibility for the content in the manuscript. 
Finally, ChatGPT was asked to provide five manuscript titles and key
words based on the results and discussion sections. 

CRediT authorship contribution statement 

Daniel V. Brown: Data curation, Formal analysis, Investigation, 
Methodology, Project administration, Software, Supervision, Visualiza
tion, Writing – original draft, Writing – review & editing. Casey J.A. 
Anttila: Methodology, Project administration. Ling Ling: Methodology. 
Patrick Grave: Methodology. Tracey M. Baldwin: Methodology. Ryan 
Munnings: Methodology, Resources. Anthony J. Farchione: Method
ology, Resources. Vanessa L. Bryant: Resources. Amelia Dunstone: 
Software. Christine Biben: Investigation, Methodology, Resources. 
Samir Taoudi: Resources. Tom S. Weber: Methodology, Resources. 
Shalin H. Naik: Resources. Anthony Hadla: Conceptualization, 
Methodology, Resources. Holly E. Barker: Conceptualization, Meth
odology, Project administration. Cassandra J. Vandenberg: Concep
tualization, Project administration, Resources. Genevieve Dall: 
Resources. Clare L. Scott: Resources. Zachery Moore: Methodology, 
Resources. James R. Whittle: Resources. Saskia Freytag: Resources. 
Sarah A. Best: Resources. Anthony T. Papenfuss: Resources. Sam W.Z. 
Olechnowicz: Methodology. Sarah E. MacRaild: Methodology. Ste
phen Wilcox: Methodology, Project administration. Peter F. Hickey: 
Formal analysis, Investigation, Methodology, Software, Writing – review 

D.V. Brown et al.                                                                                                                                                                                                                               



Genomics 116 (2024) 110793

12

& editing. Daniela Amann-Zalcenstein: Funding acquisition, Investi
gation. Rory Bowden: Conceptualization, Funding acquisition, Inves
tigation, Project administration, Resources, Writing – review & editing. 

Declaration of competing interest 

C.L.S reports non-financial support from Eisai Inc., Clovis Oncology 
and Beigene, grants and other support from Eisai Inc., AstraZeneca, and 
Sierra Oncology Inc., grants from Boehringer Ingelheim, other support 
from Roche and Takeda, and non-financial support and other support 
from MSD outside the submitted work. H.E.B reports grants from Eisai 
during the conduct of the study; other support from Eisai, Clovis, 
AstraZeneca, Sierra Oncology Inc., MSD, and Boeringer Ingelheim 
outside the submitted work. All other authors declare no competing 
interests. 

Data availability 

The count matrices and metadata are available as SingleCellExperi
ment objects at Zenodo, DOI: https://doi. 
org/10.5281/zenodo.8031078. Sequencing data is available at NCBI 
Bioproject PRJNA106402 for PBMCs and PRRJNA1064628 for mouse 
embryonic brain. 

Acknowledgement 

We thank all those individuals that donated the samples that enabled 
this study. We acknowledge the WEHI Genomics, Flow Cytometry Fa
cility and Animal Bioservices for professional and timely service. D.V⋅B 
is supported by funding to the Advanced Genomics Facility from the 
Walter and Eliza Hall Institute. S.A.B. is supported by a Victorian Cancer 
Agency Mid-Career Research Fellowship (MCRF22003), Z.M. is sup
ported by the Greg Lange Memorial Postdoctoral Fellowship, S.F. is 
supported by a National Health and Medical Research Council of 
Australia (NHMRC) Ideas Grant (1184421). V.L.B is supported by Sir 
Clive McPherson Family Fellowship and D⋅W Keir Fellowship. This work 
was financially supported in part through the authorsâ€™ membership 
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