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A B S T R A C T   

The Mendelian disorders of chromatin machinery (MDCMs) represent a distinct subgroup of disorders that 
present with neurodevelopmental disability. The chromatin machinery regulates gene expression by a range of 
mechanisms, including by post-translational modification of histones, responding to histone marks, and 
remodelling nucleosomes. Some of the MDCMs that impact on histone modification may have potential thera-
peutic interventions. Two potential treatment strategies are to enhance the intracellular pool of metabolites that 
can act as substrates for histone modifiers and the use of medications that may inhibit or promote the modifi-
cation of histone residues to influence gene expression. In this article we discuss the influence and potential 
treatments of histone modifications involving histone acetylation and histone methylation. Genomic technolo-
gies are facilitating earlier diagnosis of many Mendelian disorders, providing potential opportunities for early 
treatment from infancy. This has parallels with how inborn errors of metabolism have been afforded early 
treatment with newborn screening. Before this promise can be fulfilled, we require greater understanding of the 
biochemical fingerprint of these conditions, which may provide opportunities to supplement metabolites that can 
act as substrates for chromatin modifying enzymes. Importantly, understanding the metabolomic profile of 
affected individuals may also provide disorder-specific biomarkers that will be critical for demonstrating efficacy 
of treatment, as treatment response may not be able to be accurately assessed by clinical measures.   

1. Introduction 

Historically, most forms of intellectual disability (ID) have been 
considered untreatable; therefore, health providers and families have 
focussed on improving affected children’s neurodevelopmental out-
comes through a range of disability supports. Advances in genomic 
testing have enabled diagnosis of a specific genetic aetiology for many 
patients with ID, with the diagnostic yield approaching 60% in some 
cohort studies. In parallel, ongoing research aims to identify causal 
genes in the remaining undiagnosed individuals [1]. Further, reduced 
cost and improved access to genomic testing has enabled access to 
earlier genetic diagnosis, with research currently underway to demon-
strate the efficacy of genomic newborn screening, this means that 
diagnosis via newborn screening may be possible in the near future 
[2–4]. The advent of specific and early diagnosis for genetic causes of ID 

creates new opportunities for therapeutic intervention [5]. Although 
parental views support the early diagnosis and intervention for rare 
diseases, there will continue to be unmet need if the diagnosis does not 
translate to an improvement in care [6]. 

To date, genomic studies into ID have identified causative single 
nucleotide variants in >1000 genes. Within this group, genes involved in 
discrete molecular pathways are overrepresented, particularly genes 
associated with metabolism. Other pathways associated with ID include 
those involved with molecular transport of metabolic substrates, ner-
vous system development, RNA metabolism, transcription, mitochon-
drial function, cell cycle, synaptic function, chromatin machinery and 
microtubules [7,8]. For these groups of disorders, finding targeted 
treatments that improve neurodevelopmental and cognitive outcomes 
should be a priority. 

Some genetic disorders with ID are already amenable to treatment 
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and there has been a significant drive in the last decade to identify more 
of such conditions [9,10]. Many treatable intellectual disabilities are 
caused by biallelic genetic variants genes that encode metabolic en-
zymes. For these conditions, treatments have arisen largely from a 
strong biological understanding of affected metabolic pathways, 
enabling the application of a range of dietary and pharmaceutical-based 
treatments to detoxify metabolites, supplement deficient metabolites 
and cofactors, reduce metabolic substrates or replace dysfunctional 
enzymes via enzyme replacement or gene therapy [11]. For some of 
these conditions, such as phenylketonuria, early treatment in the post- 
natal period has prevented the development of intellectual disability 
[12]. To date, these treatments have targeted the modification of sub-
strates, yet the understanding of how these conditions lead to ID is 
continuing to evolve. Some metabolic abnormalities have downstream 
effects including changes to DNA methylation and expression, interfer-
ence with metabolic pathways such as the PI3K/AKT/mTOR pathway, 
and accelerated neuronal cell death as evidenced by elevated bio-
markers, such as glial fibrillary acidic protein (GFAP) and neurofilament 
light chain (NfL) [13–15]. 

The Mendelian disorders of the chromatin machinery (MDCMs) are a 
newly recognised group of genetic disorders associated with a wide 
range of physical and neurodevelopmental features [7,16]. The MDCMs 
result from variants in the genes encoding a group of proteins that are 
responsible for regulating chromatin structure and gene expression, by 
modifying histones and DNA as part of cellular processes referred to as 
epigenetics. The interplay between cellular metabolism and epigenetic 
regulation has been well described; however, how the communication 
between these two pathways is impacted in MDCMs is poorly under-
stood [17,18]. Most of the early research and knowledge about the genes 
involved in MCDMs is derived from cancer research, but recently there 
has been growing awareness of the interplay between epigenetics and 
metabolism in the research surrounding MDCM, and increasing evi-
dence supporting metabolic differences in MDCMs [16,19]. Learning 
from successful treatments used in metabolic disorders, harnessing both 
the metabolic environment and targeted medications, may provide op-
portunities for therapeutic intervention in MDCMs. An emerging 
consensus view is that earlier diagnosis and treatment is likely to be 
more effective [11,20]. 

2. Mendelian disorders of the chromatin machinery: what are 
they and how do they work? 

DNA is packaged into nucleosomes by coiling around an octamer of 
proteins known as histones [21]. Histones are positively charged pro-
teins and encompass five major families: H1, H2A, H2B, H3 and H4 [22]. 
As DNA condenses, nucleosomes form compact, elaborate structures 
known as chromatin [23]. Chromatin can be in an open (euchromatin) 
or tightly packed and condensed conformation (heterochromatin). 
Highly condensed chromatin reduces the ability of molecular factors to 
access and influence sequences that influence gene expression [19]. 

Conversion of chromatin to an open configuration can occur by the 
modification of nucleotides in the DNA or of amino acid residues in 
histone proteins. These modifications result in increased access of pro-
teins and other regulatory molecules to specific areas of the genome, 
allowing alteration to chromatin structure and/or gene expression [19]. 
The modifications enable genome-associated processes to occur by 
providing sites that regulatory proteins or other molecules recognize: for 
example, transcription factors, histone chaperones, chromatin modifiers 
and chromatin remodellers [21]. Histones are chiefly modified on their 
tails, with a variety of modifications, including acetylation, other acyl-
ation, methylation, phosphorylation, ubiquitination, hydroxylation, 
glycation, serotonylation, glycosylation, sumoylation and ADP ribosy-
lation [24–26]. 

The MDCMs affect a system of cellular machinery that include the 
enzymes that modify chromatin [16]. The machinery components are 
encoded by genes that often are dose-dependent, with the majority of 

MDCMs caused by heterozygous gene variant [16]. The proteins enco-
ded by these genes may form complexes with several other protein 
subunits to carry out their role in chromatin modification. An example of 
one of these multi-subunit complexes is the MOZ/MORF complex, which 
comprises contributions from the histone acetyltransferases KAT6A or 
KAT6B, the adaptor proteins BRPF1,2 or 3, ING5 or ING4 and MEAF6 
[27–29]. Pathogenic loss of function variants in the genes encoding 
KAT6A, KAT6B and BRPF1 are associated with genetic syndromes that 
cause intellectual disability [16]. 

It has been proposed, and in some cases shown, that in MDCMs, there 
are alteration in the histone modifications that determine whether 
chromatin is in an open or closed conformation. An open conformation 
is generally associated with gene expression [30]. The chromatin ma-
chinery has several functions, and chromatin associated proteins fall 
into four distinct categories, described as writers, erasers, readers and 
remodellers [30] (Fig. 1). These roles are not mutually exclusive, and 
writers, erasers and ~ 80% of remodeller proteins have a protein 
domain, termed the reader domain that is present/a key domain 
required for the function of reader proteins [30]. 

The writers are a group of proteins that function to regulate marks on 
histones which then can enable opening of the chromatin and increased 
gene expression or closing of the chromatin and gene silencing [31]. 
Conversely the erasers remove marks from histones, which then allows 
deposition of potentially opposing chromatin marks [32]. The readers 
are a group of proteins that sense whether the histones are marked and 
therefore whether the chromatin is open or closed. The readers have an 
important function of guiding the writers and erasers to regions of the 
chromatin that have specific histone modifications and in feeding this 
information back to the cell [30]. Remodellers of chromatin are ATP- 
dependent complexes that induce structural changes in chromatin 
through their interaction with actin and actin related domains [33,34]. 
Chromatin remodellers also are responsible for positioning nucleosomes 
so that they are able to interact with DNA which subsequently affects the 
transcription machinery and DNA repair [34,35]. 

3. Potential for metabolic treatment of the MDCMs 

It is now recognised that chromatin status can be influenced by 
metabolic factors, and that in MDCMs these represent a potentially 
modifiable mechanism to alter chromatin states [19]. The chemical 
groups, for example acetyl- and methyl-groups, that are added to the 
chromatin by the writers and removed by the erasers represent a 
potentially modifiable substrate that may be influenced by the metabolic 
environment. 

Some chromatin modifications, such as acetylation and methylation, 
may be significantly altered by changes in the intracellular environment 
because they have kinetic (Km values) and thermodynamic (Kd values) 
properties such that the interactions are dependent on the concentration 
of the metabolites involved in that pathway [36]. Hence, increasing the 
substrate in these reactions may help to drive the processes of acetyla-
tion or methylation [19]. Identifying suitable substrates may be feasible 
by examining known metabolic disorders involving methylation and 
acetylation; however, there may also be limitations on the efficacy of 
substrate supplementation once the peak activity of the chromatin ma-
chinery, or enzyme, is reached. The phenotype and treatment response 
of the chromatin machinery, for example in Arboleda-Tham syndrome 
caused by heterozygous variants in the KAT6A gene, may depend on the 
location of the variants in the gene and the degree of loss of function in 
the chromatin machinery, necessitating a personalised approach to 
treatment [37]. 

There is also the potential for inhibition of histone substrate removal, 
using histone deacetylase inhibitors (HDACi) and histone demethylase 
inhibitors. These treatment strategies attempt to globally increase his-
tone acetylation through preventing the removal of acetyl groups for 
histones, generally increasing DNA accessibility and in turn specifically 
influence the transcription of genes that may be involved in the 
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development of intellectual disability. For some MCDM’s there have 
been preclinical experiments and clinical trials to test these treatment 
strategies, summarised in Table 1. For example Kabuki syndrome, 
caused by heterozygous variants in KMT2D, has been found to be 
associated with a decrease in H3K4 monomethylation and H3K27 
acetylation, leading to the trial of both histone deacetylase inhibitors 
and histone demethylase inhibitors in mouse models, with the obser-
vation of improved behavior [38]. It is currently unknown if more tar-
geted inhibition of the specific deacetylase and demethylase enzymes 
would result in better outcomes or fewer off target treatment effects. 

4. Histone acetylation 

Acetyl-coenzyme A (acetyl-CoA) is the donor of the acetyl-group 
transferred to histone lysine residues during histone acetylation. There 
are multiple compounds that can function as precursors for acetyl-CoA 
production. As depicted in Fig. 2, several discrete metabolic pathways 
are involved in the generation of acetyl-CoA, including protein meta-
bolism, fatty acid metabolism, glycolysis, the tricarboxylic acid (TCA) 
cycle and the metabolism of ethanol. Ensuring good nutrition in MDCMs 
affecting histone acetylation is important to ensure an adequate supply 
of acetyl-CoA; ensuring that there are sufficient cofactor metabolites, 
such as citrate and CoA, may be important for maintaining energy 
production in the TCA cycle. Deficiencies in these metabolites have 
previously been shown to cause neurodevelopmental problems, for 
example, reduced citrate in neurons has been linked to early onset 
epileptic encephalopathy that evolves into neurodevelopmental 
disability [55–57]. 

The synthesis of intracellular CoA is a highly conserved pathway 
involving several enzymes that are involved in the transformation of 
pantothenate to CoA [58]. Pantothenate is a cofactor that is instru-
mental in metabolic processes involving acyl group carriage and has a 
carbonyl-activating group that participates in the TCA cycle and fatty 

acid metabolism [58]. CoA is predominantly produced in the mito-
chondria with homeostasis maintained by feedback inhibition [58]. The 
key regulatory enzyme and first initial enzyme in this process is 
pantothenate kinase (PANK) [58]. Subsequent to production, the CoA is 
then distributed in many organelles, with transporters to mitochondria 
and peroxisomes identified [59–61]. The conditions associated with 
deficient CoA production are characterised by neurodegenerative pro-
cesses with neuronal brain iron accumulation and basal ganglia damage 
[58]. The developmental regression and basal ganglia damage observed 
have some clinical overlap with mitochondrial disorders, which is not 
surprising given that the final steps in CoA production involve a mito-
chondrial bifunctional enzyme (COASY) [58]. Analysis of fibroblast cells 
and plasma from patients with pantothenate-kinase associated neuro-
degeneration (PANK) have demonstrated abnormal cholesterol and lipid 
biosynthesis, with the fibroblasts also demonstrating mitochondrial 
dysfunction [62,63]. 

An example of a potentially treatable MDCM in which histone 
acetylation is compromised is the autosomal dominant disorder 
Arboleda-Tham syndrome (MIM616268), caused by heterozygous loss 
of function variants in KAT6A leading to syndromic intellectual 
disability and complex speech and language disorders [64,65]. Associ-
ated features include microcephaly, cardiac abnormalities, hypotonia, 
feeding difficulties, constipation, and frequent infections [64]. In 
KAT6A patient derived fibroblast models from several patients with 
KAT6A, supplementation with L-carnitine and pantothenate (B5) has 
been reported to rescue histone acetylation, partially correct protein and 
transcriptomic levels and improve cell biogenics; however, a limitation 
of this study is that the baseline metabolomic fingerprint of KAT6A is not 
known, so it is unknown if there are other metabolic substrates that may 
benefit from supplementation [39]. Understanding of KAT6A biology 
has evolved from cancer research, where its inhibition induces cellular 
senescence through the INK4/ARF pathway and also through down-
regulation of the PI3K/AKT pathway [66,67]. The PI3K/AKT/mTOR 

Fig. 1. Effect of the chromatin machinery on the chromatin and gene expression. The figure illustrates the relationship between the environmental and metabolic 
influences on chromatin writers and erasers. It also shows the effect of histone marks, depicted in green as methyl groups attached to histones, on the chromatin 
readers and subsequent feedback to the cell. Modified from Fahrner and Bjornsson, 2014 [19]. Figure created by biorender.com. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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pathway is also becoming more prominent in intellectual disability 
research, with downregulation and upregulation in mTOR implicated in 
the biology of intellectual disability [68]. It is important to characterise 
the metabolomic fingerprint and biomarker characteristics of KAT6A 
and other MDCMs to better understand the metabolic processes 
contributing to the ID in these conditions and to observe if biochemical 
and biomarker correction may be possible in model systems and 
humans. 

5. Histone methylation 

Histone methylation influences gene expression by the application of 
methyl groups to histones. The appropriate expression of genes that 
provide instructions for neurogenesis and neural migration is important 
for the development of normal neural networks and when this process is 
dysregulated from abnormal gene expression then there can be adverse 
cognitive outcomes [69,70]. An example of histone methylation influ-
encing neurodevelopment is the methylation of Histone H3 Lysine K4 
(H3K4), which is important for learning and memory. MCDM’s involved 
in methyltransferase activity and demethylase activity cause a range of 
ID syndromes including Kleefstra syndrome and Kabuki syndrome [71]. 
As with histone acetylation, identifying potential therapeutic targets for 
supplementation in the methylation cycle (Fig. 3), involving cobalamin, 
folate, betaine and methionine, to increase the pool of methyl-group 
donors may become important to drive methylation [72]. Genetic con-
ditions affecting B12 metabolism, folate metabolism and 

methylenetetrahydrofolate reductase (MTHFR) are well established to 
cause neurodevelopmental regression, poor growth and microcephaly 
[73,74]. Conversely, abnormalities in these pathways leading to eleva-
tions of homocysteine lead to overgrowth [75]. These are interesting 
observations given that many of the MDCMs demonstrate abnormal 
growth outcomes, with small stature and overgrowth being reported 
features [16]. 

Disorders involving folate metabolism cycle, such as severe MTHFR 
deficiency and severe folate deficiency (caused by inadequate cellular 
uptake of folate when the folate receptor alpha (FOLR1) is dysregu-
lated), lead to a deficiency of components of the methylation cycle, and 
manifest with early seizure disorders, failure to thrive, microcephaly 
and intellectual disability [76]. These metabolic disorders involving 
folate metabolism have some clinical overlap with Rett syndrome, an 
MDCM caused by pathogenic variants in the gene encoding methyl-CpG- 
binding protein 2 (MECP2). Folate levels in cerebrospinal fluid have 
been found to be reduced in patients with Rett syndrome and treatment 
with folinic acid has been trialled for one year in females with Rett 
syndrome aged 2–30 years [54]. Although this treatment did not result 
in clinical benefit or change in the levels of CSF folate metabolites the 
study, it is possible that treatment might be successful if commenced 
earlier, continued for longer, or combined with other therapies, such as 
histone demethylase inhibitors [53,54,77]. The other possibility to 
consider in early trials prior to clear genetic diagnosis, for example in 
patients with a clinical diagnosis of Rett syndrome, but no causative 
MECP2 variant, there may have been a variety of genetic conditions 

Table 1 
Examples of Mendelian Disorders of Chromatin Machinery, metabolic pathways affected and results from preclinical and human research using substrate modification 
of histones via supplementation or inhibition of removal of substrates.  

Gene Chromatin 
interaction 

Primary 
metabolic 
pathway affected 

Cellular/Animal research Human research 

KAT6A Writer/ 
Reader 

Histone 
acetylation  

• Substrate supplementation of carnitine and pantothenate in 
patient derived fibroblasts demonstrated improvement in 
histone acetylation with partial correction of protein and 
transcriptomic changes [39].  

• No current clinical trials 

KAT6B Writer/ 
Reader 

Histone 
acetylation  

• No published trials  • No current clinical trials 

BRPF1 Reader Histone 
acetylation  

• No published trials  • No current clinical trials 

KMT2D Eraser Histone 
methylation  

• Mouse model demonstrated improved cognition and 
neurogenesis with ketogenic diet and administration of 
beta-hydroxybutyrate [40].  

• Mouse model demonstrated improved DNA methylation 
with HDACi AR-42 [41].  

• Mouse model demonstrated improvement of neurogenesis 
and normalisation of hippocampal memory deficits with 
treatment with HDACi – AR-42 (42).  

• Mouse model demonstrated normalisation of hippocampal 
memory deficits with administration of lysine-specific 
demethylase 1 A (KMD1A) inhibitor TAK-418 (43).  

• No current clinical trials 

CREBBP Writer/ 
Reader 

Histone 
acetylation  

• Patient derived iPSC neurons demonstrated evidence of 
rescue of function with HDACi Trichostatin A and valproic 
acid [44]  

• Unpublished trial: Rubinstein-Taybi syndrome: Functional 
Imaging and Therapeutic Trial (RUBIVAL), ClinicalTrials. 
gov ID NCT01619644. 

MECP2 Reader   • Triheptanoin treatment in male Mecp2 knock out mouse 
improved longevity, motor function and social interaction 
[45].  

• Acetyl-L-carnitine supplementation in Mecp2(1lox) null 
mice resulted in improvement in hippocampal dendritic 
morphology abnormalities and early in life resulted in 
improvements to motor and cognitive functions early in life, 
but this was not sustained as the mice aged [46].  

• Treatment with selective HDAC6 inhibitor tubastatin A 
restores microtubule dynamics in astrocytes and reversed 
early impaired exploratory behavior deficits in Mecp2308/y 

mouse model of Rett syndrome [47]. 
• Treatment with Valproate or KW-2449, a multikinase in-

hibitor, resulted in improvements in neuronal deficits and 
evidence of restoration towards normal transcriptome 
changes in cerebral organoids derived from human embry-
onal stem cells [48].  

• Ketogenic diet trialled patients with a reduction in seizure 
frequency [49,50].  

• Creatine supplementation in a double blind randomised trial 
demonstrated increases in global methylation, but no 
statistically significant difference on clinical scoring 
symptoms [51].  

• Folinic acid trialled in a small number of patients 
normalised 5-MHTF and 5-HIAA levels and resulted in par-
tial clinical improvement [52].  

• Folinic acid trialled as a treatment in patients with Rett 
syndrome for 6 months with low CSF folate levels did not 
result in clinical improvement [53].  

• Folinic acid supplementation in randomised blinded cross 
over trial improved 5-MTHF levels but did not result in 
improved clinical outcome measures [54].  
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causing their clinical phenotype, resulting in varying degrees of 
responsiveness to treatment. Other disease specific biomarkers, such as 
CSF lipidomics analyses, might be an effective tool to measure response 
to treatment in MECP2 disorders because treatment might alter 
cholesterol biosynthesis in the brain but not plasma [78]. 

In contrast, some of the disorders of the methylation cycle, such as 
homocystinuria due to cystathionine beta-synthase (CBS) deficiency, 
lead to significant elevations of plasma homocysteine levels and cause 
ID and overgrowth [75]. In double knock out mouse models of homo-
cystinuria due to CBS deficiency, increased methylation of H4K20me1 
and increased gene expression of histone demethylase PHF8 was re-
ported [13]. The same study also reported increased mTOR expression, 
autophagy downregulation and increased expression of biomarkers that 
indicate neuronal damage, such as neurofilament light chain and glial 
fibrillary acidic protein [13]. Abnormal homocysteine levels and 
abnormal DNA methylation have also been reported in neurodegener-
ative conditions, such as Alzheimer’s disease [79]. The development of 
biomarkers for Alzheimer’s disease, such as neurofilament light chain, 
may also have clinical utility in the MDCMs for disease monitoring and 
assessing response to treatment [80,81]. 

6. Limitations of substrate supplementation 

One potential issue with substrate supplementation is that there may 
be a narrow therapeutic window where patients may experience a 
clinical benefit. For some substrate treatments, the doses used for 
tolerability of supplements might be derived from treatment in other 
diseases involving metabolism. For some substrates, such as carnitine, 

this may be limited by gastrointestinal tolerability or tolerability of 
other side effects, such as the production of trimethylamine causing a 
fishy odour. For other substrates, such as treatment of the methylation 
cycle, it is important to recognize that methylation of different chro-
matin targets results in different transcriptional outcomes. Trimethyla-
tion of histone H3 lysine 4 is associated with active gene transcription, 
whereas trimethylation of histone H3 lysine 27 is associated with gene 
repression [82,83]. Therefore, simply raising or lowering general 
methylation levels may not achieve the desired therapeutic result. 

It is also essential to anticipate and treat deficiencies that occur 
because of modulating the methylation cycle. One of the best examples 
of this is the treatment of homocystinuria with betaine and the need for 
surveillance of vitamin B12 and folate, which decrease over time as they 
are consumed in the methylation cycle [75,84]. Studying neuronal 
models of conditions, for example by the use of metabolomic profiling, 
could identify biomarkers that will be useful in vivo to monitor and 
optimise supplementation. 

7. Potential treatments with disease modifying drugs 

Histone deacetylase inhibitors (HDACi) and lysine-specific deme-
thylase 1 inhibitors (KDM1Ai) inhibit histone deacetylation and histone 
demethylation processes, respectively, and may be therapeutic strate-
gies in the treatment of certain MDCMs [85–87]. There are several 
classes of HDACi based on their chemical structure (outlined in Table 2) 
[32]. The lysine-specific demethylase 1 inhibitors have actions that can 
be irreversible or reversible, some of these compounds are also sum-
marised in Table 2 [88]. This includes the zinc dependent group of 

Fig. 2. Effect of nutritional substrates on the acetyl-group donor, acetyl-CoA, and effects on histone acetylation. This figure demonstrates the metabolism of Acetyl- 
CoA and potentially modifiable pathways for treatment to increase metabolic precursors of Acetyl-CoA and the potential impact of treatment with histone deacetylase 
inhibitors. Figure legend Acetyl-CoA; acetyl-coenzyme A, CoA; coenzymeA, NAD; nicotinamide adenine dinucleotide, NADH; reduced for of NAD with hydrogen, 
GDP; Guanosine diphosphate, GTP; Guanosine triphosphate, FAD; flavin adenine dinucleotide, FADH; reduced form of flavin adenine dinucleotide with hydrogen, 
KATs; lysine acetyltransferases, HDACi; histone deacetylase inhibitors. Modified from Sheikh et al. [18]. Figure created by biorender.com. 
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histone deacetylase inhibitors and the inhibitors of the sirtuin (SIRT) 
group of histone deacetylase, which are dependent on nicotinamide- 
adenine-dinucleotide (NAD) [89]. Some of these drugs (or com-
pounds) have already been trialled in mouse models and humans for 
other conditions related to cancer, neurodegeneration or neurological 
deterioration [86,90]. 

HDAC inhibitors have been used to treat animal models of neuro-
cognitive diseases, with improved learning and neuroprotection 
demonstrated in mouse models for Rubinstein-Taybi syndrome, Hun-
tington disease, Alzheimer’s disease, Parkinson’s disease and spinal 
muscular atrophy [91–103]. Similar improvement in clinical phenotype 
was reported using HDAC inhibition of Drosophila models of Huntington 
disease and Parkinson’s disease [104,105]. Increased expression of the 
survival of motor neuron 2, centromeric (SMN2) transcript and elevated 
steady-state SMN2 were observed in patient derived fibroblasts cells 
from patients with Spinal Muscular Atrophy after treatment with ben-
zamide M344 and LBH589 [106,107]. Some of these findings have been 
translated to clinical trials in frontotemporal dementia, Alzheimer’s 
disease, Huntington disease, Parkinson’s disease [85,108]. 

The use of HDAC inhibition has been trialled as a potential treatment 
strategy in neuronal stem cell models and animal models of some 
MCDM. HDAC inhibition using trichostatin A was recently trialled in 
iPSC-derived neurons from patients with Rubinstein-Taybi syndrome, 
which is caused by pathogenic variants in the gene encoding cyclic 
adenosine monophosphate response element binding protein binding 
protein (CREBBP) [44]. Cortical neurons treated with trichostatin A, 
both short-term (1 week) and long-term (6 weeks), demonstrated com-
plete/partial rescue of key molecular disease-associated phenotypes 
such as nuclear area, neuronal excitability and sodium/potassium 

Fig. 3. Effect of nutritional substrates on precursors for methylation and effects on DNA and histone methylation. This figure demonstrates the metabolic pathways 
that influence the methyl group precursors. Methylation is influenced by several metabolic pathways including the folate cycle, methylation cycle and trans-
sulfuration pathway. Figure legend B6; pyridoxine, B2; thiamine, THF; tetrahydrofolate, MTHFR; methylene tetrahydrofolate reductase, MS; methionine synthase, 
SAM; s-adenosylmethionine, SAH; S-Adenosyl-L-homocysteine. Drawn based on Dai [19] and Morris et al. [75]. Figure created by biorender.com. 

Table 2 
Classes of Histone Deacetylase Inhibitors and Histone Demethylases.  

Class of inhibitor Example of inhibitor  

Class A HDACi 
Hydroxamic acids 

Trichostatin A (TSA) 
LBH589 (Panobinostat) 
PDX101 (Belinostat) 

SAHA (Voronistat/ 
Zolinza) 
SB939 (Pracinostat) 

Class B HDACi 
Short chain fatty acids 

Valproic acid 
Butyric acid 

AN-9 (Pivanex) 

Class C HDACi 
Benzamides 

CI-994 
M344 

MGCD0103 
(Mocetinostat) 
MS-275 (SNDX-275/ 
Entiostat) 

Class D HDACi 
Cyclic Peptides 

Apicidin 
CHAP31 
FK228 (Romidepsin/ 
Istodax) 

Largozole 
Trapoxin (TPX) 

Irreversible lysine 
demethylase 1 inhibitors 

TCP 
S2101 
Compound 4c 
ORY1001 
Compound 11 h, RN1 
Compound 1c 
Compound 191 
OG-L002 
GSK2879522 

Compound 15 
Pargyline 
Bizine 
Compound 5a 
Compound 3 
Compound 1a 
Compound 1 
Compound 18 

Reversible lysine demethylase 
1 inhibitors 

Compound 6d 
Cryptotanshinone 
Compound 26 
Verlyndamycin 
Compound 9a 
Curcumin 
HCI-2509 
Compound 5n 

Compound 6b 
Compound 17 
NCL-1 
N-alkyl NCL-1 
Namaline 
PRSFLV SNAIL Peptide 
CBB107 
Compound 16q  
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channel activity [44]. Similar findings of rescue of nuclear size were 
demonstrated with valproic acid treatment [44]. However, a limitation 
of these studies is that both trichostatin A and sodium valproate have the 
potential for off-target effects as a result of non-selective HDAC inhibi-
tion. There are also no disease specific biomarkers currently available to 
measure treatment effect in vivo. Valproic acid supplementation has also 
been trialled in MECP2 in human embryonic derived knock out cerebral 
organoids, which had demonstrated downregulation of the genes 
involved in the PI3K/AKT pathway in untreated form [48]. Treatment of 
these organoids from day 10 with valproic acid demonstrated restora-
tion of the genes in this PI3K/AKT pathway [48]. 

Histone demethylase inhibitors, targeting lysine-specific demethy-
lase 1 A, which is responsible for removing H3K4 methyl marks, have 
recently been shown to improve the dysregulated gene expression and 
hippocampal memory defects in mice models of Kabuki syndrome, 
caused by pathogenic variants in the gene encoding the lysine-specific 
methyltransferase 2D (KMT2D) [42,43]. 

8. Potential complications with using disease modifying drugs 

The use of HDACi and histone demethylase inhibitors is not without 
potential complications as these treatments do not target specific histone 
modifications and, in addition, may have off target effects. For an 
example of this sodium valproate demonstrates off target effects which 
increase histone acetylation and DNA demethylation [109]. Fetal 
exposure to sodium valproate during gestation has been reported to 
result in a teratogenic effect in both animal models and humans, with 
dysmorphic facial features, congenital malformations, skeletal abnor-
malities and neural tube defects reported [110]. The problems associ-
ated with sodium valproate administration are not limited to the 
physical malformations, with neurodevelopmental issues including 
reduced intellectual functioning and autistic traits also reported 
[111,112]. The changes induced by valproate exposure include histone 
acetylation and DNA methylation, and chromatin remodelling genes 
have also been reported to be differentially expressed subsequent to 
valproic acid exposure [113]. 

Treatment with sodium valproate can also cause hepatotoxicity and 
manifest with hyperammonaemic encephalopathy [114]. Valproate is 
metabolised in the liver via several processes including oxidation in the 
cytosol and mitochondria and glucuronic acid conjugation [114]. Val-
proate decreases carnitine synthesis by decreasing the precursor con-
centration of alpha-ketoglutarate [114]. 

In addition to the off target effects, treatment with HDACi may have 
a narrow therapeutic window. Currently there aren’t any robust bio-
markers to monitor off target effects in HDACi, which makes the 
development of robust biomarkers important to minimise harm from 
treatment. 

9. Potential treatments: the path forward 

The outcomes of substrate manipulation and modulation of histone 
modification by inhibitors of deacetylation and demethylation in mouse 
and patient-derived neural stem cells demonstrates the potential of these 
treatments for treating MDCMs in vivo. Characterising the specific 
metabolomic profile of MDCM patients may provide opportunities for 
targeted intervention with supplementation of deficient metabolites and 
potentially therapies to enable the reduction of toxic metabolites. 

Currently there is a knowledge gap in many of the MDCMs where the 
metabolomic profile of the disorders is unknown. Characterising the 
metabolomic profile prior to the use of potential therapeutic treatments 
would be helpful to understand the pathophysiology of the MDCMs, to 
identify potential metabolic supplements and to evaluate the impact of 
treatments. There is also a need for the identification of non-invasive 
biomarkers that may be used to monitor treatment response. 

The development of biomarkers is particularly important as many 
children will have significant ID that will impact on their ability to 

communicate, complete developmental assessments and track progress 
from interventions. These biomarkers used in conjunction with substrate 
supplementation and using HDAC inhibitors and histone demethylase 
inhibitors represent an additional therapeutic opportunity. Some of 
these drugs that modify chromatin marks have previously been trialled 
or are in clinical use in cancer, epilepsy and neurodegenerative disor-
ders. The expansion of these drugs to treatment of some of the MDCMs 
presents a therapeutic opportunity to specifically targeted treatments. 

Understanding the disordered metabolic pathways that occur as a 
result of MDCMs may provide other potential treatment strategies if 
substrate modification is not successful in restoring neurometabolism. 
The PI3K/ATK/mTOR pathway is an obvious candidate for targeted 
treatment as this has been modulated in-vitro in other disorders causing 
intellectual disability. 

10. Conclusions 

The MDCMs are a potentially treatable cause of intellectual 
disability, particularly those that may be amenable to supplementation 
of precursor chemicals to supplement deficient metabolites that are 
utilised by chromatin writers to modify histones. The use of medications 
that prevent the removal of histone modifications may also provide a 
therapeutic strategy to treat these conditions. As the children with many 
of these conditions may have significant neurodevelopmental disability, 
the identification of disease biomarkers may provide important tools in 
advancing our knowledge and understanding of these conditions. Sub-
strate manipulation and the use of drugs to modify chromatin marks 
have some therapeutic limitations and potential off-target effects. The 
development of disease biomarkers will become important for moni-
toring treatment success and to enable determining the optimum doses 
of substrate and medications. 
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