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SOCS1 is a critical checkpoint
in immune homeostasis,
inflammation and
tumor immunity
Grace M. Bidgood1,2, Narelle Keating1,2, Karen Doggett1,2

and Sandra E. Nicholson1,2*

1Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia,
2Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
The Suppressor of Cytokine Signaling (SOCS) family proteins are important

negative regulators of cytokine signaling. SOCS1 is the prototypical member of

the SOCS family and functions in a classic negative-feedback loop to inhibit

signaling in response to interferon, interleukin-12 and interleukin-2 family

cytokines. These cytokines have a critical role in orchestrating our immune

defence against viral pathogens and cancer. The ability of SOCS1 to limit cytokine

signaling positions it as an important immune checkpoint, as evidenced by the

detection of detrimental SOCS1 variants in patients with cytokine-driven

inflammatory and autoimmune disease. SOCS1 has also emerged as a key

checkpoint that restricts anti-tumor immunity, playing both a tumor intrinsic

role and impacting the ability of various immune cells to mount an effective anti-

tumor response. In this review, we describe the mechanism of SOCS1 action,

focusing on the role of SOCS1 in autoimmunity and cancer, and discuss the

potential for new SOCS1-directed cancer therapies that could be used to

enhance adoptive immunotherapy and immune checkpoint blockade.
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1 Introduction

1.1 Cytokine signaling

Cytokines are critical regulators of numerous cellular functions, including cell survival,

proliferation, differentiation and chemotaxis, and are essential for growth, haematopoiesis,

and innate and adaptive immunity. Cytokines direct cellular responses by binding to

membrane-bound receptor complexes and activating the intracellular JAK-STAT (JAnus

Kinase-Signal Transducers and Activators of Transcription) signaling pathway. The four

mammalian JAK tyrosine kinases (JAK1, JAK2, JAK3 and TYK2) are constitutively associated
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with various receptor intracellular domains and become activated via

trans or autophosphorylation of the JAK activation loop following

cytokine engagement and receptor oligomerization. Activated JAKs

then phosphorylate tyrosine residues within the receptor cytoplasmic

domains, providing a docking site for Src homology 2 (SH2) domain-

containing proteins, including the STATs (1). There are seven

mammalian STAT proteins, STAT1–4, STAT5A, STAT5B, and

STAT6 that dock to the receptors via their SH2 domains. The

receptor associated JAKs then phosphorylate tyrosine residues in

the STAT proteins, inducing a conformational change in pre-existing

STAT dimers, and enabling nuclear translocation and a

transcriptional response (2–4) (Figure 1A). In addition to the

STATs, cytokines activate various other pathways, notably the

PI3K/AKT (6) and Ras/MAPK (7) signaling cascades. Many

cytokines are pleiotropic and redundant in nature, however, by
Frontiers in Immunology 02
activating various receptor-JAK-STAT combinations, individual

cytokines can direct discrete cellular responses.

Excessive cytokine signaling can lead to inflammation and

myeloproliferative disease, often with disastrous consequences, and

signaling is therefore tightly regulated to maintain an appropriate

cellular and systemic response. The JAK-STAT pathway is regulated

at multiple levels, including by receptor trafficking, phosphatases,

Protein-inhibitors of Activated STAT (PIAS) proteins, and the

Suppressor Of Cytokine Signaling (SOCS) proteins (8–11).
1.2 SOCS family proteins

The SOCS protein family consists of eight proteins, CIS

(Cytokine-Inducible SH2-containing protein) and SOCS1–7, that
A

B

C

FIGURE 1

SOCS1 inhibits the IFNg-driven JAK-STAT pathway. (A) SOCS1 negatively regulates IFNg signaling. Upon engagement with the IFNGR complex, IFNg
induces tyrosine-phosphorylation and activation of JAK1 and JAK2. Activated JAK1/2 phosphorylate intracellular Tyr motifs in the IFNGR1, leading to
STAT1 recruitment via the STAT1-SH2 domain and its subsequent phosphorylation by JAK. pSTAT1 dimers undergo a conformation change and
translocate to the nucleus, binding to gamma interferon activation sites (GAS) to regulate transcription and drive a cellular response. SOCS1 is an
IFNg-response gene and is induced to inhibit IFNg signaling in a classic negative feedback loop. pY = phosphotyrosine; TTCNNNGAA = IFNg-
activated promoter sequences. (B) SOCS domain architecture. The SOCS domain architecture consists of an unstructured N-terminal region of
variable length (teal), a central SH2 domain (blue) and a C-terminal SOCS box motif (purple). SOCS1 and SOCS3 are distinguished by a KIR that
precedes the ESS and SH2 domain region. The CIS and SOCS3 SH2 domains contain a PEST insertion (grey), while SOCS1 contains a putative NLS.
(C) SOCS1 inhibition of JAK. Non-canonical binding of the SOCS1-SH2 domain (blue) to the JAK-GQM motif (pink), enables blocking of JAK-
enzymatic activity via the SOCS1-KIR (orange). PDB: 6C7Y (5). SH2, Src-Homology 2 domain; ESS, Extended SH2 Sequence; KIR, Kinase Inhibitory
Region; PEST, sequence rich in proline (P), glutamic acid (E), serine (S), and threonine (T); NLS*, nuclear localisation signal.
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are characterized by an N-terminal region of varying length,

a central Src homology 2 (SH2) domain and a C-terminal SOCS

box (Figure 1B). CIS was discovered in 1995 by Yoshimura and

colleagues as a regulator of interleukin (IL)-3 and erythropoietin

(EPO) signaling (12), while SOCS1 was independently discovered in

1997 by three different groups through its capacity to suppress IL-6

signaling [SOCS1 (13)], recognition by an anti-STAT3 antibody

[SSI-1 (14)], and binding to the JAK2 kinase domain [JAB (15)].

The homology between CIS and SOCS1 led to the discovery of the

SOCS and greater SOCS box family via a conserved C-terminal

motif referred to as the “SOCS box” (9).

The SOCS N-terminal regions are predicted to be unstructured

(16) and vary in length and sequence, effectively dividing the SOCS

proteins into those with a short (CIS, SOCS1–3) or long (SOCS4–7)

N-terminal region (Figure 1B). To date, there are no clear functional

roles for the N-terminal regions, as at least in structure-function

studies, deletion of the N-terminus has no impact on SOCS function

(17–19).

As in other SH2-containing proteins, the SOCS-SH2 domains

recognise linear phosphotyrosine (pTyr) motifs within their target

proteins, with binding selectivity dictated by residues flanking the

pTyr and with a preference for a hydrophobic residue in the +3

position relative to the Tyr (5, 20–23). Structurally, the SOCS-SH2

domain displays the canonical SH2-fold of three central b-sheets
flanked by two a-helices (22, 24). However, there are a few

distinguishing features, most notably an additional a-helix
termed the extended SH2 subdomain (ESS) located N-terminal to

the conserved SH2 sequence. The ESS interacts with residues either

side of the SOCS-pTyr-binding (BC) loop, stabilizing the

interaction with pTyr (20, 25). In addition, the CIS and SOCS3-

SH2 domains contain an unstructured PEST motif insertion (rich in

proline, glutamic acid, serine and threonine) that at least in SOCS3,

appears to regulate protein stability (20).

SOCS1 and SOCS3 have a unique ability to directly inhibit JAK

enzymatic activity. This was first demonstrated by Endo and

colleagues for SOCS1 (15), with the activity subsequently shown to

be mediated by a short “kinase inhibitory region” or “KIR” that

preceded the ESS and SH2 domain (19, 25). Structural and

biophysical characterization of the SOCS: JAK complexes revealed

a direct interaction between the SOCS1/3-ESS and BC loop and a

GQM motif present in JAK1, JAK2 and TYK2 (but not JAK3) that

enabled the SOCS-KIR to act as a pseudosubstrate, partially blocking

the substrate binding groove on JAK and subsequent JAK enzymatic

activity (5, 26) (Figure 1C). The SOCS1-SH2 domain is thought to

interact with the phosphorylated JAK activation loop (25), and at

least under some conditions, SH2 interaction with phosphorylated

JAK is required for inhibition of kinase activity (27). However, given

the structural constraints it seems unlikely that SOCS1 can

simultaneously interact with a single JAK molecule via both the

substrate binding groove and the activation loop (5), thus raising

some interesting questions about the stoichiometry of the SOCS1:

JAK complexes that are yet to be resolved.

The SOCS box contains two motifs, the BC box and Cul5 box

that interact respectively, with the adaptor proteins Elongin B

and C, and the E3 ubiquitin ligase scaffold protein Cullin-5.

Together with Ring Box 2 (RBX2), this forms an E3 ligase
Frontiers in Immunology 03
complex that mediates the ubiquitination and proteasomal

degradation of SH2-bound targets (28–30). The SOCS proteins

therefore function as substrate receptors for a Cullin-5 RING

ligase (CRL5) complex. However, Cullin-5 interaction with the

SOCS1 and SOCS3-SOCS boxes is relatively weak compared to

other SOCS family members (100 and 10-fold lower affinity,

respectively) (31), suggesting that SOCS1 and SOCS3

predominantly act as negative regulators through their ability

to directly inhibit JAK catalytic activity (5).

Finally, SOCS1 has been reported to have a nuclear localization

signal (NLS) sequence that bridges the SH2 domain and SOCS box,

consistent with various reports that place SOCS1 in the nucleus

(32–34). However, how nuclear localization impacts SOCS1

regulation of cytokine signaling remains unclear.
1.3 Suppressor Of Cytokine Signaling 1

SOCS1 is a critical negative regulator of signaling in response to

type I, II and III IFN and IL-2, IL-4, IL-7, IL-12, IL-13, IL-15, and IL-

21 (35–43). SOCS1 is constitutively expressed in the thymus where it

plays a vital role in T cell development and homeostasis (44–46).

However, under infectious challenge or during inflammatory disease,

SOCS1 expression is induced in response to various cytokines,

including those known to be regulated by SOCS1, enabling it to act

in a classic negative feedback loop (Table 1).

The importance of SOCS1 in limiting spontaneous inflammation is

evident from mouse models, where homozygous deletion of the Socs1

gene (Socs1-/-) results in perinatal lethality around 3-weeks of age, due

to fatty degeneration and necrosis of the liver, and immune infiltration

of multiple organs (46, 72). The multi-organ inflammation and

lethality results from hyperresponsiveness to inflammatory cytokines

and can be rescued by compound deletion of Ifng or treatment with

neutralising anti-IFNg antibodies (38, 45, 73). Mice lacking both Socs1

and Ifng eventually develop a fatal inflammatory disease at around 6-

months of age, indicating the involvement of other cytokine pathways

(74). Socs1-/- lethality is similarly rescued by deletion of Rag2 (no T, B

or NK cells), Stat6 (IL-4) or components of type I IFN signaling,

IFNAR1 and TYK2 (35, 45, 47, 75). Lethality is also partially rescued by

deletion of Stat4 (IL-12), with mice succumbing to inflammatory

disease at 1–2 months of age (36).

In addition to an enhanced response to IFNg, the pathology in

Socs1-/- neonates is associated with elevated serum levels of IFNg,
most likely due to excessive production by T cells in response to IL-

1, IL-2 and IL-12 (36, 45, 75, 76). The inflammatory disease is no

doubt compounded by a deficiency in peripheral Foxp3+ regulatory

and gd T cells in the Socs1-/- mice (77, 78). Additionally, SOCS1 has

been shown to limit dendritic cell (DC) maturation and antigen-

presentation through inhibition of IFNg and IL-4 (79, 80).

The KIR and SH2 binding to pTyr are both required for SOCS1

to inhibit signaling; mice bearing single point mutations in either

domain (KIR:F59A; SH2:R105A) phenocopy full Socs1 deletion,

dying shortly after birth (27). In contrast, mice lacking the SOCS1-

SOCS box survive, although they develop a multi-organ

inflammatory disease with age (81). This is consistent with weak

Cullin-5 interaction with the SOCS1-SOCS box (31), and further
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evidence that SOCS1 does not rely on its E3 ubiquitin ligase activity

to inhibit cytokine signaling.

The apparent selective regulation of IFN, IL-12 and IL-2 family

signaling by SOCS1 is intriguing. SOCS1 directly inhibits JAK1, JAK2
Frontiers in Immunology 04
and TYK2 activity through the KIR, and the SOCS1-SH2 domain has

been proposed to interact with the phosphorylated activation loops of

all four JAK catalytic domains (5, 25). Given that various

combinations of JAK1, JAK2 and TYK2 are associated with most
TABLE 1 SOCS1 induction in response to various cytokines.

Cytokine JAKS
Cell type SOCS1

detection*
Reference

Human Rodent

JAK/STAT cytokines that induce SOCS1 and are regulated by SOCS1#

IFNa/b
JAK1
TYK2

Huh-7, A-357, HT-144 cells;
epidermal melanocytes

BMDMs (35, 37, 47–49)

IFNl
JAK1
TYK2

Huh-7, A-549 cells (37, 48, 50)

IFNg
JAK1
JAK2

Huh-7 cells BM; BMDMs; MEFs; colonic epithelial cells
(13, 35, 38, 39,
48, 49)

IL-2
JAK1
JAK3

T cells T cells (41, 42, 51)

IL-4
JAK1
JAK3

Osteoarthritic chondrocytes;
A-549, U-937 cells

BMDMs; T cells; MEFs; colonic epithelial cells;
CT.4S cells

(14, 39, 52–56)

IL-7
JAK1
JAK3

CD8+ T cells; B cells CD8+ T cells; B cells; T cells (42, 44, 57, 58)

IL-12
JAK2
TYK2

T cells; BMDCs (36, 59)

IL-13
JAK1
TYK2

U-937 cells TGMBE-02–3 cells; MEFs; BM; lung (13, 43, 52, 56)

IL-15
JAK1
JAK3

CD8+ T cells; T cells (40–42)

IL-21
JAK1
JAK3

CD8+ T cells; DCs CD8+ T cells (60–62)

JAK/STAT cytokines that induce SOCS1 but are not known to be regulated by SOCS1

EPO JAK2 BM; 32D, HCD-57 cells (13, 15)

G-CSF JAK2 NFS-60 cells (14)

GM-CSF JAK2 BM (13)

GH JAK2 3T3-F442A cells (63)

IL-3 JAK2 BM (13)

IL-6
JAK1
JAK2

CD4+ T cells; BMDMs; liver; MH60.BSF2 and
M1 cells

(13–15, 64)

IL-23
JAK2
TYK2

T cells (65)

IL-27
JAK1
JAK2

CD8+ and CD4+ T cells (66–68)

LIF
JAK1
JAK2

M1 cells (14)

PRL JAK2 T-47D cells Liver (69)

TSH
JAK1
JAK2

Endometrial stromal cells FRTL-5 cells (70, 71)
* indicates detection of SOCS1 mRNA or protein .

# as evidenced by SOCS1-deficient cells.
MEFs, mouse embryonic fibroblasts; BM, bone marrow; BMDMs, bone marrow-derived macrophages; DCs, dendritic cells.
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cytokine receptors (either singly or in combination), it is unclear how

SOCS1 selectively regulates IFN, IL-12 and IL-2 family signaling,

although this may simply reflect greater induction of SOCS1 protein

by these cytokines (Table 1). To date, no receptor pTyr residues have

been identified as high affinity SOCS1-SH2 binders, despite pTyr

interaction being required for SOCS1 inhibition of signaling (5, 27).

In contrast, SOCS3 binds with high affinity to phosphorylated

tyrosines within the gp130, IL-12, leptin and G-CSF receptors (82–

87), providing a clear mechanism underlying the selective SOCS3

regulation of the corresponding cytokine pathways.

In addition to being induced by JAK/STAT signaling, SOCS1

expression is down-regulated by a well-characterised microRNA, miR-

155. MiR-155 is derived from a non-coding transcript referred to as the

B cell integration cluster and is upregulated in various immune cells in

response to inflammatory stimuli and infection, withmultiple targets in

addition to SOCS1 [reviewed in (88, 89)]. An elegant study by Lu and

colleagues (90) mutated the miR-155 binding site in the Socs1 mRNA

3’UTR, partially recapitulating the effects of miR-155 deletion to reduce

disease severity in the autoimmune encephalomyelitis (EAE) mouse

model of multiple sclerosis, and limit the expansion of NK cells in

response to murine cytomegalovirus (MCMV) infection (90).

2 SOCS1 in human disease

2.1 SOCS1 in autoimmunity/
inflammatory disease

Cytokines and inflammatory mediators are strongly implicated

in the pathogenesis of autoimmune diseases. For example, type I
Frontiers in Immunology 05
and type II IFN (91, 92), and IL-12 (93) are associated with systemic

lupus erythematosus (SLE), and the IL-12-driven transcription

factor STAT4 is a dominant genetic risk allele (93, 94).

Exacerbated IFNg and IL-12 responses are also known to drive

chronic joint inflammation in rheumatoid arthritis (95–97).

Importantly, SOCS1 inhibits the cellular response to these key

inflammatory mediators of SLE and RA.

Inborn errors of immunity arising in SOCS1 have been reported

in patients presenting with a range of clinical phenotypes, including

immune dysregulation with multi-system autoimmunity,

autoimmune diseases such as SLE and chronic autoimmune

cytopenia, and malignancy (98–104). The majority of reported

inborn errors of immunity in SOCS1 are private (not reported in

the general population), heterozygous, autosomal dominant and

loss-of-function variants (98–100, 102, 103) (Figure 2). The lack of

homozygosity implies the SOCS1 gene is indispensable, consistent

with the lethal phenotype of Socs1-/- mice (46, 72). Given the

majority of variants result in loss of protein, it implies the dose of

SOCS1 is important, accounting for the autosomal dominance and

consistent with the inflammatory disease in aging Socs1+/- mice

(105). Two rare SOCS1missense variants have also been reported in

cis (P50L, A76G), however, they appeared to have little impact on

SOCS1 function (104).

Patient mutations within the SOCS1-KIR (Y64>stop, T68A with a

frameshift resulting in a stop codon: fs>stop) and the SH2 domain

(M161Afs>stop, P123R, Y154H) result in loss of SOCS1 expression.

The two unrelated patients that harbored the Y64>stop variant

presented with Hyper IgE-like syndrome with eczema (P1) and

eosinophilic allergic alveolitis (P2) (98). The patient carrying the
A

B

FIGURE 2

Inborn Errors of Immunity of SOCS1. (A) SOCS1 variants mapped to domain architecture. * = stop codon; fs, frameshift; SH2, Src-Homology 2; KIR,
Kinase Inhibitory Region; ESS, Extended SH2 Sequence; NLS, Nuclear Localization Sequence. (B) SOCS1 missense variants mapped to predicted
structure of SOCS1 (AlphaFold 2.0 database).
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T68>fs variant presented with severe dermatitis, recurrent skin

infections and psoriatic arthritis (P3) (99). P4 and P5 carried the

M161A frameshift variant (M161Afs>stop) and were from unrelated

families. P4 presented with common variable immunodeficiency

(CVID)-like phenotype (98) and P5 presented with Evans syndrome

(100). Four patients within the same family were heterozygous for

Y154H and presented with a range of autoimmune diseases including

SLE (P6), immune thrombocytopenia (ITP; P7), psoriasis (P8 and P9)

and spondyloarthritis, autoimmune hepatitis and pancreatitis (P9)

(100). Two patients within the same family were heterozygous for

P123R and presented with severe ITP (P10) and ITP thyroiditis

polyarthritis (P11) (100). The remaining five patients (P12–17)

carried SOCS1 variants that clustered within the N-terminal domain

(A9Pfs>stop, R22W, A37Rfs>stop) (100, 102). These patients suffered

from various autoimmune diseases, including Evans syndrome, coeliac

disease, psoriasis, SLE, and multisystem inflammatory syndrome in

children (MIS-C). While the KIR and SH2 missense variants likely

disrupted the SOCS1 structure (thus resulting in loss of SOCS1

expression), the R22W variant may be the first evidence that the N-

terminal region of SOCS1 is required for SOCS1 inhibitory

activity (Figure 2).

For diseases such as SLE and eosinophilia, where the key cytokines

driving pathology are known [type I IFN (106); IL-2 family cytokines

(107), respectively], it is clear how loss of SOCS1 results in

pathogenesis. Similarly, the dermatitis seen in P3 only responded to

treatment with dual IL4Ra and IL17A blockade (99), making an

obvious link to SOCS1 regulation of the IL-4 pathway. However,

diseases such as CVID and Evans syndrome have unknown causes

and the patient’s pathology arises from dysregulation of multiple

immune pathways, as do other inborn errors of immunity, such as

STAT1 gain-of-function variants. In addition, some family members

harboring SOCS1 variants were asymptomatic, indicating SOCS1

haploinsufficiency does not have complete clinical penetrance.

Despite this, SOCS1 haploinsufficiency has complete cellular

penetrance. Cells derived from all individuals with loss-of-function

SOCS1 variants consistently had augmented IFNg, IL-2 and IL-4

signaling responses, with increased STAT1, STAT5 and STAT6

phosphorylation, respectively (98–103). Consequently, the etiology of

SOCS1 haploinsufficiency still remains unclear (100). Current

treatment of SOCS1 haploinsufficient patients largely relies on

immunosuppressive drugs such as corticosteroids or JAK-inhibitors

to lower systemic inflammation (98–103), however, given the potential

side-effects associated with long-term treatment, more targeted

approaches are required.
2.2 SOCS1 in cancer

It is evident that SOCS1 inhibition of cytokine signaling is required

to maintain immune homeostasis and resolve inflammatory signaling.

Given the importance of inflammation and the immune response in

cancer initiation and development (108), and the contribution of

hyperactive JAKs to myeloproliferative disorders and lymphoid

cancers (109), it is not surprising that a growing body of work has

highlighted a role for SOCS1 in cancer.
Frontiers in Immunology 06
2.3 SOCS1 is linked to tumor suppression

In many cases, silencing of the SOCS1 gene and/or reduced

mRNA or protein levels, is associated with cancer versus normal

tissue (110–112). Hypermethylation of the SOCS1 gene has been

reported in multiple cancers and has been linked to cell growth in

hepatocellular, pancreatic, oesophageal and gastric cancer (113–

116). For instance, in hepatocellular carcinoma, hypermethylation

of the SOCS1 promoter region was observed in 65% of patient

samples, with restoration of SOCS1 levels inhibiting cell growth in

vitro (113, 117). In addition to gene silencing, high levels of

microRNAs such as miR-19a/b or miR-155 correlated with low

SOCS1 expression in cancer cell lines and primary tumors (118–

122). Although miRNAs have many targets, Jiang et al. (120),

demonstrated that SOCS1 siRNA recapitulated the oncogenic

properties of miR-155 in breast cancer, while restoration of

SOCS1 attenuated the impact of miR-155.

Several somatic SOCS1 mutations have been associated with B

cell lymphomas, such as Diffuse large B cell lymphoma (DBCL) and

Hodgkin lymphoma (123–125). Detrimental mutations were

associated with the germinal centre B (GCB) cell-like subtype of

DBCL (123), consistent with IL-4-JAK-STAT6 signaling in this

subtype (126) being regulated by SOCS1. In addition, a patient with

an inborn error of immunity in SOCS1 (A9P>fs) also presented with

Hodgkin lymphoma (as well as psoriasis and Coeliac disease) (100).

A polymorphism in the SOCS1 promoter region (-1478

CA>del) has been reported to increase SOCS1 expression in

atopic asthma (127), and has been associated with breast and

gastric cancer, as well as with a poorer outcome in colon cancer

(128–131). The effect of this polymorphism remains unclear,

although it does not appear to be linked to tumor suppression.

Although some of the growth inhibitory effects of SOCS1 in

cancer can be attributed to regulation of JAK/STAT signaling,

SOCS1 has also been reported to target other pathways, including

via MET receptor tyrosine kinase, p21, p53 and NF-kB (132–139).

Consistent with its nuclear localization, SOCS1 interaction with the

p53 tumor suppressor has been proposed to promote p53 activation

and cellular senescence (136, 137). In addition, SOCS1-mediated

ubiquitination and degradation of the NF-kB p65 subunit limits

NF-kB-driven transcription (138, 139). Hence reduced SOCS1

levels would potentially limit p53 activity and potentiate NF-kB-

driven cell growth.

The concept of SOCS1 as a tumor suppressor is reviewed in

more detail by Ilangumaran and colleagues (this research topic)

(140). The remainder of this review will focus on SOCS1 regulation

of anti-tumor immunity.
2.4 The IFNg-SOCS1 axis and immune
checkpoint blockade

Type II IFN (IFNg) and to a lesser extent the type I IFNs, drive a
transcriptional program in cancer cells that results in apoptotic cell

death, in addition to influencing anti-tumor immunity. This

includes secretion of chemoattractants, activation of cytotoxic T
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cells and enhancement of antigen presentation (141–148).

However, IFNg also drives expression of molecules on cancer cells

such as programmed death-ligand (PD-L)1 and PD-L2 that inhibit

T cell function, contributing to immune evasion (149). The impact

of these opposing effects is likely to depend on the strength and

persistence of signaling, as well as the cancer context and tumor

microenvironment (TME).

Antibody therapies that target the immune checkpoints PD-L1/

PD1 and CTLA4 have revolutionized cancer treatment (immune

checkpoint blockade; ICB) (150). However, many patients remain

refractory to treatment or develop resistance (151). The importance

of the IFNg pathway (and its regulation by SOCS1) was established

by a series of seminal studies that used genetic screens and analysis

of patient samples to show that defects in IFNg pathway

components (Ifngr1, Ifngr2, Jak1, Jak2, Stat1, Irf1) or

amplification of the negative regulators Socs1 and PIAS4,

conferred resistance to ICB (152–157).

Consistent with this, depletion of Socs1 in a lung cancer cell line

that was resistant to ICB, restored the IFNg response and sensitized

tumours to anti-PD1 therapy (158). In another study, Dhainaut and

colleagues (159) used spatial transcriptomics coupled with

functional genomics to understand the impact of individual genes

within tumor lesions. Although loss of Socs1 increased CD4+ and

CD8+ T cell infiltration into the tumor lesions, it also promoted

tumor growth, likely via IFNg-driven expression of PD-L1

inhibiting T cell function. Critically, anti-PD-L1 blockade

preferentially depleted Socs1 deficient lesions (159).

A study by Song et al. (160), linked cancer-specific defects in

microRNA processing to reduced miR-155 levels, with a

corresponding increase in SOCS1 that suppressed IFNg responses

and increased resistance to T cell killing. This was associated with

decreased PD-L1, antigen presentation and secretion of the T cell-

attractant chemokines CXCL9 and CXCL10 (160). In a second study,

high miR-155 expression in tumors correlated with improved anti-

tumor immune profiles and outcomes in breast cancer patients. This

was connected to miR-155 suppression of SOCS1 enhancing IFN-

driven CXCL9, CXCL10 and CXCL11 production and immune

infiltration, sensitizing to ICB (161). More recently, House and

colleagues (162) identified IRF-I as a key negative regulator of

CXCL9 production in cancer and myeloid cells through induction

of SOCS1 and subsequent inhibition of IFNg signaling.
These studies highlighted a link between reduced SOCS1 and (i)

increased expression of immune checkpoints, thus sensitizing

tumors to ICB, and (ii) IFN-driven chemokine production that

increased immune cell infiltration into the TME. Furthermore, they

suggest that upregulation of PD-L1 in response to reduced SOCS1

levels could potentially improve patient responses to ICB.
2.5 Impact of SOCS1 in immune control
of cancer

While global genetic deletion revealed the critical role of SOCS1

in immune cell development (42, 44, 45, 163), the gross defects in

neonatal mice confounded the study of mature immune cell

function, particularly in the context of tumor immunity.
Frontiers in Immunology 07
Subsequent studies have revealed a key inhibitory role for SOCS1

in multiple immune subsets that coordinate to mount an effective

anti-tumor immune response.

A genome wide CRISPR screen identified SOCS1 as a negative

regulator of proliferation and cytotoxicity in primary human T cells

(164). Socs1 was later identified as a non-redundant inhibitor of

antigen-experienced CD4+ T cell proliferation and effector function

in mice (165). Inactivation of Socs1 in CD4+ T cells maintained

proliferation, while inactivation in CD8+ T cells enhanced survival

and effector function; adoptive transfer of Socs1-deficient CD4+ and

CD8+ cells together giving greater therapeutic benefit. Similar results

were obtained in human CD19-chimeric antigen receptor (CAR)-T

cells, highlighting the unique roles of SOCS1 in CD4+ vs CD8+ T

cells, and the synergistic potential of targeting SOCS1 in adoptive

CAR-T cell immunotherapy (165). A second genetic screen, this time

in CD8+ cells, identified Socs1 as a key checkpoint that not only

restricted CD8+ T cell expansion, but also infiltration of CD8+ cells

into the TME (166). The authors went on to evaluate SOCS1 deletion

in primary human T cells and tumor infiltrating lymphocytes,

demonstrating enhanced IL-2-driven STAT5 and IL-12-STAT4

activation, associated with increased IFNg production and reduced

tumor growth in an immunodeficient mouse model (166).

SOCS1 expression in DCs restricted antigen presentation and

the magnitude of the resulting adaptive immune response, with

reduction of SOCS1 in DCs promoting T cell-mediated anti-tumor

immunity (167–170). Socs1-/-DCs induced a stronger T helper (TH)

1 response, associated with increased DC production of IFNg (168).
Conditional deletion of Socs1 in myeloid cells resulted in a

significantly reduced B16F10 tumor burden and suppressed DSS/

DHM-induced colon cancer growth. In co-cultures, DCs derived

from these mice induced higher IFNg production from CD4+ T cells

and enhanced CD8+ T cell cytotoxic activity (171). These studies

highlight a cell-intrinsic role for SOCS1 in macrophages and DCs

that restricts myeloid potentiation of the anti-tumor T cell response.

SOCS1 clearly has specific roles in CD4+ and CD8+ T cells, DCs

and macrophages that limit anti-tumor immunity, in addition to a

tumor intrinsic role that also impacts immune cell recognition and

killing. Taken together, this positions SOCS1 as a potentially

powerful negative regulator of the anti-tumor immune

response (Figure 3).
3 Discussion

Cytokines such as the IFNs are an important aspect of our

immune defence and are critical for the elimination of infectious

pathogens and transformed or cancerous cells. As the key negative

regulator of many of these pathways, SOCS1 is a bona-fide

intracellular immune checkpoint, with loss of SOCS1 resulting in

unrestrained cytokine responses associated with autoimmunity and

other inflammatory diseases. Correspondingly, elevation of SOCS1

levels in both cancer and immune cells, limits the effectiveness of

cytokines that drive anti-tumor immunity. Both scenarios present

attractive opportunities for therapeutic intervention.

SOCS1 deficiency has been implicated in the pathogenesis of

lupus, uveitis, and asthma, highlighting the role of SOCS1 in
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regulating immune homeostasis (52, 77, 172–176). Identifying

individuals with inflammatory disease associated with genetic

inactivation of SOCS1 may help stratify patients for treatment

with JAK inhibitors. SOCS1 has the potential to dampen

signaling from all IFNs, in addition to IL-2 family cytokines and

IL-12. This represents an overlapping spectrum of activities

compared to the current JAK inhibitors which include JAK-

specific and pan-inhibitors (177). Strategies that increase SOCS1

levels or mimic its activity to reduce cytokine signaling may have

utility as an alternative to or in combination with JAK inhibitors

and would have a broader spectrum of activity than biologics

targeting single receptor chains or cytokines.

Cell penetrating-SOCS1 peptidomimetics that mimic the

activity of the SOCS1 kinase inhibitory region (KIR) have

successfully been used to treat lupus-like disease, uveitis, and

experimental autoimmune encephalitis (model of multiple

sclerosis) in rodent models (178, 179). Additionally, cell

penetrating forms of recombinant SOCS1 protein have been

shown to suppress cytokine signaling (180). These studies

highlight the potential of enhancing SOCS1 levels and/or

developing drugs that mimic SOCS1 activity in the treatment of

autoimmune disease. Alternative approaches to increase SOCS1

levels, such as antagomirs that target miR-155, may also have some

utility given the recent advances in RNA delivery systems (181).

SOCS1 has been reported to have both positive and negative

effects in the context of cancer control. However, although reduced

SOCS1 expression correlated with poor prognosis in a variety of

solid cancers, in many instances the relationship between SOCS1

levels and cancer etiology remains unclear. In addition, a complex

mix of driver and co-operating mutations together with the

localised inflammatory milieux may result in varying SOCS1

levels. This is often further complicated by an inability to

distinguish between intrinsic tumor expression of SOCS1 and

expression in the surrounding cellular environment. The growing
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application of single cell sequencing and spatial omics should

advance our understanding of how SOCS1 expression impacts

disease progression in specific cancer and cellular contexts.

CRISPR-Cas9 gene editing in whole genome screening has been

a powerful discovery-tool in many fields, as illustrated by the studies

discussed in this review. One of the striking findings to emerge, in

addition to the importance of IFNg signaling in maintaining the

response to ICB, is the potential synergy to be gained by reducing

SOCS1 in tumors in combination with ICB. SOCS1 is also a critical

checkpoint in immune cells, limiting aspects of immune cell

development as well as effector cell function. Interestingly, tumor-

specific, and immune-cell reduction of SOCS1 both lead to

increased chemokine secretion and lymphocyte recruitment and

infiltration into the TME. Reducing SOCS1 levels to sustain IFNg
signaling may therefore be a useful therapeutic approach to

reinvigorate lymphocyte function in an immunosuppressive TME.

However, it is challenging to target an intracellular protein,

particularly one that is part of a closely related family and relies on a

common modality of binding to pTyr for its mechanism of action.

One interesting example of modulating SOCS1 levels, is the lipid

nanoparticle (LNP) delivery of SOCS1-targeting small interfering

RNA (siRNA) to bone marrow-derived DCs. Vaccination with

OVA-specific DCs containing Socs1 siRNA prior to challenge

with OVA-bearing B16F10 melanoma cells, successfully

suppressed tumor growth through increased cytokine secretion

and antigen presentation (182).

The most obvious and perhaps feasible application for reduced

SOCS1 levels is the field of adoptive T cell therapy. Adoptive T cell

therapies genetically modify a patient’s T cells to express receptors

for tumor antigens (CAR-T cells), prior to expansion and infusion

back into the patient (183). CAR-T cells have shown impressive

clinical efficacy in haematological malignancies, with six FDA-

approved CARs now in the clinic. However, CAR-T cells are

much less effective in solid tumors, most likely due to an
FIGURE 3

The role of SOCS1 in regulating tumor immunity. Downregulation of expression or loss of SOCS1 function has been observed in certain cancer
subtypes (left panel). SOCS1 can confer resistance to immune checkpoint blockade via inhibition of IFNg signaling and down-regulation of immune
checkpoints PD-L1/2 (center panel). In addition, SOCS1 limits anti-tumor immunity through various immune cell types (right panel). Figure created
with BioRender.com.
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immunosuppressive TME (184–189). An alternative approach

involves expansion of a patient’s TILs prior to adoptive transfer,

with the first TIL-therapy recently approved by the FDA for

melanoma (lifileucel; Amtagvi, Iovance Biotherapeutics) (190).

The studies discussed here highlight the potential for inactivation

of SOCS1 in CD8+ and/or CD4+ CAR-T cells or TILs, to overcome

T cell exhaustion and improve proliferation, survival, and effector

function in adoptive T cell immunotherapy. Going forward it will be

critical to evaluate potential exacerbation of adverse effects, such as

cytokine release syndrome, as a result of SOCS1 deletion (191).
4 Concluding remarks

In summary, SOCS1 is an important immune checkpoint and

an attractive target in both autoimmunity and cancer. Its intrinsic

roles in both tumor and immune cells make it a central player that

restricts IFNg-driven killing and facilitates escape from PD1/

CTLA4 blockade. The challenge will be to find innovative ways to

target SOCS1 in the different disease contexts. We look forward to

watching the next chapter unfold with interest.
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