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Abstract 

Differential expression analysis of RNA-seq is one of the most commonly performed bioinformatics analyses. Transcript-level quantifications are 
inherently more uncertain than gene-le v el read counts because of ambiguous assignment of sequence reads to transcripts. While sequence 
reads can usually be assigned unambiguously to a gene, reads are very often compatible with multiple transcripts for that gene, particularly for 
genes with many isoforms. Software tools designed for gene-level differential expression do not perform optimally on transcript counts because 
the read-to-transcript ambiguity (RTA) disrupts the mean-variance relationship normally observed for gene level RNA-seq data and interferes 
with the efficiency of the empirical B a y es dispersion estimation procedures. The pseudoaligners kallisto and Salmon provide bootstrap samples 
from which quantification uncert aint y can be assessed. We show that the o v erdispersion arising from RTA can be elegantly estimated by 
fitting a quasi-Poisson model to the bootstrap counts for each transcript. The technical o v erdispersion arising from RTA can then be divided 
out of the transcript counts, leading to scaled counts that can be input for analysis by established gene-level software tools with full statistical 
efficiency. Comprehensive simulations and test data show that an edgeR analysis of the scaled counts is more powerful and efficient than 
previous differential transcript expression pipelines while providing correct control of the false discovery rate. Simulations explore a wide range 
of scenarios including the effects of paired vs single-end reads, different read lengths and different numbers of replicates. 
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ntroduction 

ver the past fifteen years, RNA sequencing (RNA-seq) has
roved to be a tremendously popular and powerful tech-
ology for profiling the transcriptomes of biological sam-
les ( 1 ). Analysis of RNA-seq data often focuses on the de-
ection of differential expression between biological condi-
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isoforms (transcripts) that are differentially expressed ( 3 ).
With reduced sequencing costs and the recent development of
lightweight alignment algorithms ( 4 ,5 ), there is growing inter-
est in the assessment of differential expression at the transcript
level. 

Gene-level differential expression analyses have typically
assumed a negative binomial (NB) distribution for the number
of sequence reads assigned to each gene ( 6–9 ). The NB distri-
bution can be viewed as a mathematical mixture of Poisson
distributions, with a gamma distribution as the mixing dis-
tribution. In this representation, the gamma distribution rep-
resents the biological variation in expression levels between
RNA samples and the Poisson distribution represents mea-
surement error for individual samples ( 9 ). Quasi-NB models
have also been used in order to provide more rigorous false
discovery rate control ( 10 ,11 ). 

Gene-level read counts analysed by software tools such as
edgeR ( 12 ), DESeq2 ( 13 ) or voom ( 14 ) may be integers from
overlap counters like featureCounts ( 15 ) or HTSeq ( 16 ) or
fractional estimated counts from transcript quantifiers such as
RSEM ( 17 ), kallisto ( 4 ) or Salmon ( 5 ). The edgeR package in
particular implements a continuous generalization of the NB
distribution so that fractional counts may be input without
rounding or loss of information. 

Transcript quantifications are inherently more uncertain
than gene-level read counts because of ambiguous assignment
of RNA fragments to isoforms ( 18 ). Whereas different genes
typically occupy non-overlapping regions of the genome, dif-
ferent transcripts for the same gene typically share one or
more exons in common. While sequence reads can usually
be assigned unambiguously to a gene, reads are very often
compatible with multiple transcripts for that gene, particu-
larly for genes with many isoforms. This phenomenon has
variously been called assignment ambiguity, mapping am-
biguity, quantification uncertainty or inferential uncertainty
( 19–21 ). In this article we will call it read to transcript
ambiguity (RTA) to avoid confusion with other sources of
uncertainty. 

Software tools designed for gene-level differential expres-
sion do not perform optimally on transcript counts because
RTA disrupts the mean-variance relationship normally ob-
served for gene level RNA-seq data and therefore interferes
with the efficiency of the empirical Bayes dispersion estima-
tion procedures. The purpose of the current article is to show
that RTA can be elegantly modeled using an overdispersed
Poisson distribution for each transcript, thus generalizing the
measurement error part of the traditional NB model. The tech-
nical overdispersion arising from RTA can then be divided out
of the transcript counts, leading to scaled counts that can be
input for analysis by established gene-level software tools with
full statistical efficiency. 

The lightweight quantification tools kallisto ( 4 ) and Salmon
( 5 ) perform pseudo-alignment or quasi-alignment of RNA-
seq reads to the transcriptome, classifying reads into equiva-
lence classes according to compatibility with annotated tran-
scripts followed by probabilistic assignment of sequence reads
to transcripts. kallisto assigns reads and estimates transcript
abundances from the read-transcript compatibilities. Salmon
further subdivides each equivalence class into subclasses (four
by default) based on the conditional probability of obtain-
ing each sequenced fragment from the transcripts, taking
into account sequencing biases and the fragment length dis-
tribution ( 22 ). Both lightweight strategies are computation- 
ally faster than any previous alignment or quantification ap- 
proach for RNA-seq data ( 18 ). The efficiency of the equiva- 
lence class representation allows technical bootstrap samples 
to be drawn rapidly for each RNA sample, providing a way 
to estimate the sampling distribution of the transcript-specific 
quantifications. 

The statistical tools sleuth ( 20 ) and Swish ( 21 ) have been 

proposed to test for differential transcript expression (DTE) 
using output from kallisto or Salmon while leveraging the 
bootstrap samples to estimate the uncertainty associated with 

RTA. Swish uses Wilcoxon tests ( 23 ) computed on median- 
ratio scaled counts from each bootstrap sample and averaged 

over the bootstrap resamples. Bootstrap counts are scaled to 

adjust for sample-specific transcript length and sequencing 
depth via median-ratio size factors. Swish can test for DTE 

between two conditions of interest for single or multi-batch 

RNA-seq experiments via stratification. Swish can also per- 
form DTE analyses for paired samples from a single group 

via signed-rank test statistics or for paired samples between 

two conditions via Wilcoxon tests computed on the log-fold 

change of pairs. sleuth on the other hand tests for DTE us- 
ing an approach similar to voom with the addition of a mea- 
surement error model. Counts are normalized using sample- 
specific median-ratio size factors ( 7 ) followed by a started log- 
transformation to ensure positivity and normality. The mea- 
surement error model decomposes the total variance into a 
biological variance component, interpreted as arising from 

between-sample variation, and an inferential variance com- 
ponent resulting from sample-specific alignment and quan- 
tification uncertainty. The biological variance component is 
estimated using empirical Bayes moderation as for voom 

and the inferential variance component is estimated from 

kallisto ’s bootstrap samples. DTE is assessed under a lin- 
ear model framework using either likelihood ratio or Wald 

tests. 
Our approach instead generalizes the successful NB model 

for gene-level read counts to account for RTA. The tradi- 
tional Poisson model for sequencing variability is replaced 

by a quasi-Poisson model fitted to the bootstrap counts for 
each transcript. The quasi-Poisson dispersion estimates the 
variance-inflation induced by RTA and can be used to scale 
down the transcript counts so that the resulting library sizes 
reflect their true precision. The scaled counts can be shown 

to follow the traditional NB mean–variance relationship so 

that standard methods designed for the differential expres- 
sion analyses at the gene-level can be applied without further 
modification. 

Our DTE approach is implemented in the Bioconduc- 
tor package edgeR . The edgeR functions catchSalmon and 

catchKallisto import transcript-counts and associated boot- 
strap resamples from Salmon and kallisto , respectively, and 

estimate the RTA-induced overdispersions. Downstream DTE 

analyses can then be conducted on scaled-transcript counts 
within the established edgeR framework exactly as for gene- 
level analyses. Our approach is shown to be both power- 
ful and efficient while correctly controlling the false discov- 
ery rate using extensive simulations designed with the aid of 
the Rsubread Bioconductor package ( 24 ). Our method is fur- 
ther demonstrated on a case study of human lung adenocarci- 
noma cell lines using both short-read Illumina and long-read 

Nanopore RNA-seq data. 
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aterials and methods 

imulated datasets 

eference RNA-seq dataset 
 subset of genes and their transcripts, from which sequence

eads were simulated, was selected from the mouse Gen-
ode transcript annotation M27 using a real RNA-seq ex-
eriment as a reference (NCBI Gene Expression Omnibus
eries GSE60450). Specifically, we selected protein-coding
nd lncRNA transcripts from expressed protein-coding and
ncRNA genes of the mouse autosome and sex chromosomes.
enes with expected counts-per-million > 1 in at least 6 of the
2 RNA-seq samples were considered to be expressed, which
esulted in a reference list of 13 176 genes and 41 372 asso-
iated transcripts. See Supplementary Data Section 1.1.1 for
urther details. 

imulation of RNA-seq sequence reads 
e used the Bioconductor package Rsubread and its function

imReads to simulate sequence reads in FASTQ file format
or the selected reference list of transcripts in a number of sce-
arios ( 24 ). Scenarios varied with respect to the library size
either balanced with 50 Mi. reads, or unbalanced with alter-
ating 25 Mi. and 100 Mi. reads over samples), the sequence
ead length and type (paired-end or single-end reads with 50,
5, 100, 125 or 150 base pairs (bp) long), the maximum num-
er of expressed transcripts per gene (2, 3, 4, 5 or all reference
ranscripts), and the number of biological replicates per group
3, 5 or 10). For each scenario, 20 simulated experiments with
NA-seq libraries from 2 groups were generated. 
The baseline relative expression level and the biological

ariation of selected transcripts were simulated under simi-
ar assumptions to the simulation study presented in ( 14 ). Ex-
ected counts and associated dispersions were used to gen-
rate transcript-level expression following a gamma distri-
ution, which in turn was transformed into transcripts-per-
illion (TPM) and used as input in simReads . The number
f reads generated by simReads from each transcript varies
ccording to a multinomial distribution with probability de-
ermined by the transcript TPM and effective length. These
imulation steps ensured that the number of reads arising
rom each transcript follows a NB distribution across repli-
ates with dispersion equal to the reciprocal of the gamma
istribution shape parameter ( 9 ). A random subset of 3000
ranscripts had their baseline relative expression adjusted with
 2-fold-change to establish differential expression between
roups with up- and down-regulated transcripts. For every
cenario, simulations without any real differential expression
etween groups (null simulations) were also generated to as-
ess methods’ type I error rate control. See Supplementary
ata Section 1.1.2 for more details. 

uantification of RNA-seq experiments 
imulated RNA-seq reads were quantified with Salmon and
allisto with index generated from the complete mouse Gen-
ode transcriptome annotation M27. For Salmon , we used
 decoy-aware mapping-based indexed transcriptome gener-
ted from the mouse mm39 reference genome with k-mers
f length 31. The mean and the standard deviation of the
ragment length distribution were given as input to Salmon
nd kallisto during quantification of single-end read exper-
ments. A total of 100 bootstrap resamples were generated
or every sample. To assess the performance of the sleuth
method with Salmon quantification, we transformed Salmon
output results to abundance.h5 files using the R package
wasabi (https: // github.com / COMBINE-lab / wasabi), which
was then used as input for sleuth . See Supplementary Data
Section 1.1.3 for more details. 

Assessment of differential transcript expression 

We evaluated the performance of edgeR with count scaling
( edgeR-Scaled ) and other popular methods with respect to
their power to detect DTE, false discovery rate (FDR) con-
trol, type I error rate control, and computational speed. Meth-
ods benchmarked in our study were edgeR with raw counts
( edgeR-Raw ), sleuth with likelihood ratio test ( sleuth-LRT ),
sleuth with Wald test ( sleuth-Wald ), and Swish (implemented
in the Bioconductor package fishpond ). For edgeR-Raw and
edgeR-Scaled , low-expression transcripts were filtered by fil-
terByExpr , library sizes were normalized by normLibSizes ,
then differential expression was assessed by quasi-likelihood
F-tests with default options. For sleuth and Swish , default fil-
tering and pipeline options implemented in their respective
packages were used throughout our simulations. In all analy-
ses, transcripts were considered to be differentially expressed
(DE) under an FDR control of 0.05. See Supplementary Data
Section 1.1.4 for more details. 

Human lung adenocarcinoma cell lines 

Illumina short-read paired-end RNA-seq libraries were ob-
tained from NCBI Gene Expression Omnibus (GEO) series
GSE172421. Three biological replicate samples were used
to examine the transcriptomic profile of human adenocarci-
noma cell lines NCI-H1975 and HCC827. Paired-end reads
were quantified with Salmon with option –validateMappings
turned on and using the decoy-aware transcriptome index
generated from the human Gencode annotation version 33
and hg38 build of the human genome. A total of 100 boot-
straps resamples were generated for every sample. The edgeR
function catchSalmon was used to import Salmon ’s quantifi-
cation and estimate the RTA overdispersion parameter. 

To explore how RTA depends on read length and read-
pairing, we also obtained Oxford Nanopore Technologies
(ONT) long-read data from GEO series GSE172421 and Il-
lumina short-read single-end RNA-seq data from GEO series
GSE86337 for the same adenocarcinoma cell lines. The short-
read single-end libraries were quantified as for the paired-
end libraries. The ONT libraries were aligned to the Gencode
hg38 transcriptome version 33 using minimap2 ( 25 ) with op-
tions -ax map-ont –sam-hit-only and secondary alignments
excluded, then quantified with Salmon in alignment-based
mode ( 26 ). 

For all three technologies, transcript counts were scaled,
non-expressed transcripts were filtered by filterByExpr , genes
other than protein-coding and lncRNA were removed, library
sizes were normalized by normLibSizes and differential ex-
pression was assessed with quasi-likelihood F-tests. 

Variance model for transcript counts 

For an RNA-seq experiment consisting of n samples and tran-
scriptome annotation containing T transcripts, let y ti denote
the fractional number of sequence reads probabilistically as-
signed to transcript t in sample i . Let N i denote the total num-
ber of sequenced reads (library size) for sample i and πti denote
the (unobserved) proportion of cDNA fragments originating
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from transcript t in sample i . Then, conditional on the true
expression level that one would obtain if measuring the tran-
script expression unambiguously and exhaustively, we have 

E(y ti | πti ) = μti = N i πti . 

In gene-level expression estimation, it is reasonable to as-
sume that the sampling process of cDNA fragments followed
by sequencing, alignment, and counting of RNA-seq reads re-
sults in technical Poisson variation of gene-wise read counts
over technical replicates ( 27 ). However, at the transcript-level,
RTA associated with assignment of reads to overlapping tran-
scripts leads to extra-to-Poisson variation of transcript-wise
read counts. We note that the extra-Poisson variation for tran-
script i depends on the degree of overlap that this transcript
has with other transcripts, i.e., on annotation topology that is
transcript-specific but sample-independent. We also note that,
mathematically, the mean and variance of y ti must both re-
main directly proportional to N i πti for genes that do not show
differential transcript usage (i.e., if all transcripts have similar
fold-changes between conditions). These considerations lead
us to assume the quasi-Poisson variance model 

var (y ti | πti ) = σ 2 
t μti , 

with σ 2 
t > 1 . Extensive simulations show that this variance

model remains broadly correct even in the presence of differ-
ential transcript usage ( Supplementary Figure S121 ). Here σ 2

t 
is the Poisson quasi-dispersion, which captures the technical
overdispersion produced by RTA for this transcript. We will
henceforth call σ 2 

t the RTA overdispersion parameter. 
We account for the variation of expression levels of each 

transcript over biological replicates by assuming that the un- 
derlying proportions π ti are random, have mean π0 ,ti , and 

have approximately constant coefficient of variation 

√ 

φt ,
such that var (πti ) = π2 

0 ,ti φt . Using the law of total variance, we 
denote E(y ti ) = μti = N i π0 ,ti and obtain the variance model for 
transcript counts 

var (y ti ) = σ 2 
t μti + φt μ

2 
ti . 

Count scaling 

From an inferential perspective, the proposed variance model 
is challenging to work with because the purely technical 
transcript-specific parameter σ 2 

t is neither additive with re- 
spect to the parameters that can be estimated from replicate 
samples ( μti and φt ) nor multiplicative to the variance func- 
tion. Hence, the RTA overdispersion parameter cannot be di- 
rectly incorporated into a linear model framework as model 
weights. Here, we make use of bootstrap samples to estimate 
the RTA overdispersion parameter σ 2 

t with high accuracy and 

adopt a count scaling approach to model transcript counts. 
For transcript t , let z ti denote the already fractional count 

y ti scaled with respect to the RTA overdispersion σ 2 
t , such that 

z ti = y ti /σ 2 
t . Then, we have that E(z ti ) = νti = μti /σ

2 
t , and 

var (z ti ) = νti + φt ν
2 
ti . 

The scaling transformation preserves fold-changes and the 
variance of the resulting scaled count z ti is a quadratic and 

strictly increasing function of the mean νti , with the same 
mean-variance relationship as for a NB model. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1167#supplementary-data
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Figure 2. BCV plots of transcript-le v el counts from RNA-seq data. Panels ( A ) and ( B ) show results from the Illumina short paired-end reads RNA-seq 
experiment of the lung adenocarcinoma cell lines before and after count scaling, respectively. Panels ( C ) and ( D ) show results from a simulated mouse 
RNA-seq experiment before and after count scaling, respectively. Simulated data was generated with 100 bp paired-end reads, unbalanced library sizes, 
five samples per group, and all reference transcripts expressed. For both real and simulated data, experiments were quantified with Salmon . 
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stimation of RTA overdispersion 

he bootstrap resampling process, as performed by
ightweight aligners prior to the probabilistic assignment
f reads to transcripts, takes place at the level of equivalence
lasses, which by definition are sets of transcripts to which
eads map unambiguously, and therefore should result in
oisson variation. We argue that transcript-level bootstrap
ounts can then be used to quantify the uncertainty associ-
ted with the subsequent probabilistic assignment of reads to
ranscript and estimate the RTA overdispersion parameters.
pecifically, for a total of B bootstrap samples, any extra
ariability observed over bootstrap counts u ti 1 , …, u tiB from
ranscript t and sample i must be due to the quantification
ncertainty. 
Under the quasi-Poisson model, we consider the Pearson

esidual statistic and propose the following moment estimator
or the RTA overdispersion parameter 

ˆ σ 2 
t = 

1 

d t 

n ∑ 

i =1 

B ∑ 

b=1 

(
u tib − ˆ λti 

)2 

ˆ λti 
, 

ith d t = n ( B − 1) and 

ˆ λti = 

∑ B 
b=1 u tib /B . 

We propose an empirical Bayes approach to moderate
he ˆ σ 2 

t estimates. Specifically, let Q 2 (F d med ,d 0 ) denote the me-
ian value of an F distribution with d med and d 0 degrees
f freedom, with d med denoting the observed median degree
f freedom d t from expressed transcripts, and d 0 = 3 de-
oting a prior degree of freedom. In addition, let Q 2 ( ̂  σ 2 

t )
denote the observed median RTA overdispersion estimate
of expressed transcripts. We assume a prior RTA overdis-
persion ˆ σ 2 

0 = max ( 1 , Q 2 ( ̂  σ 2 
t ) /Q 2 ( F d med ,d 0 )) shared among all

transcripts. Then, the transcript-specific empirical Bayes mod-
erated estimator of the RTA overdispersion can be written as

˜ σ 2 
t = max 

( 

1 , 
d 0 ̂  σ

2 
0 + d t ̂  σ 2 

t 

d 0 + d t 

) 

. 

We note that the level of shrinkage applied on ˆ σ 2 
t towards

our proposed moderated statistic ˜ σ 2 
t is minor, since most tran-

scripts are expressed to a certain degree in most RNA-seq sam-
ples and the degrees of freedom d t associated with the estima-
tor ˆ σ 2 

t is often 2 to 3 orders of magnitude larger than d 0 . 

Usage and implementation 

The degrees of freedom d 0 + d t used to estimate σ 2 
t are

typically large, for example, d t = 990 for a transcript ex-
pressed in 10 RNA-seq samples with 100 bootstrap samples
each. The estimator ˜ σ 2 

t is therefore very precise and can be
considered to be a known constant for most purposes. Our
proposed method therefore is simply to scale the counts us-
ing the estimated dispersions, z ti = y ti / ̃  σ 2 

t , and to input the
scaled counts to a standard differential expression pipeline
designed for NB distributed counts such as edgeR or limma-
voom ( 14 ). edgeR implements a continuous generalization
of the NB distribution, and limma-voom accepts continuous
data, so that the scaled counts do not need to be rounded to
integers. 
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Figure 3. Stacked barplots showing the average number of true (gray) and false (red) positive DE transcripts at nominal 5% FDR in different simulation 
scenarios. The observed FDR is shown as a percentage over each bar. Panels ( A ) and ( C ) show results with balanced library sizes. Panels ( B ) and ( D ) 
show results with unbalanced library sizes. Panels (A) and (B) show results with three samples per group. Panels (C) and (D) show results with 5 samples 
per group. Results are averaged over 20 simulations with 100 bp paired-end read data quantified with Salmon with all reference transcripts expressed. 
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The calculation of the empirical Bayes moderated RTA
overdispersion statistic ˜ σ 2 

t is implemented in the edgeR func-
tions catchSalmon and catchKallisto . The functions return the
matrix of transcript counts together with the associated RTA
overdispersions. 

Results 

RTA overdispersion increases with transcript 
overlap 

We first explored RTA overdispersions for the paired-end lung
adenocarcinoma cell line data. We observed a strong increas-
ing trend with the number of transcripts per gene (Figure 1 ).
For single-transcript genes, only 11% of their 813 expressed
transcripts had overdispersion greater than 1.11, whereas for
multi-transcript genes, this was so for 90% of their 26 553
expressed transcripts. For comparative purposes, we also es-
timated overdispersions from ONT long-read libraries of the
same human adenocarcinoma cell lines. For long-reads, the
overdispersions were close to zero regardless of the number
of transcripts per gene (Figure 1 ), showing that sufficiently
long reads can be assigned to transcripts uniquely, thus elim-
inating any ambiguity. We also confirmed that overdisper-
sion is minimal for read counts summarized at the gene level
( Supplementary Figure S122 and Supplementary Table S11 ).
Count scaling can be interpreted as reducing the effective
number of reads for that transcript. For expressed genes with
10 or more annotated transcripts (4687 genes), the average
overdispersion of their expressed transcripts is 6.75, so the
counts will be reduced nearly 7-fold to reflect the precision
associated with their expression estimates. For such tran- 
scripts, one would need a 7 times higher sequencing depth 

for a transcript-level analysis with short-reads to achieve the 
same statistical power as for the corresponding gene-level 
analysis. 

Count scaling results in effective counts that better 
reflect their true precision 

The effect of the count scaling approach can be visually ap- 
preciated via BCV plots. The square-root of the NB dispersion 

φt represents the coefficient of variation of the true expression 

values between biological replicates, termed the biological co- 
efficient of variation (BCV) ( 9 ). The BCV plot displays esti- 
mated BCVs against transcript abundances in log 2 counts per 
million. 

For RNA-seq data summarized at the gene-level, NB dis- 
persions tend to be higher for genes with low counts with a 
trend that decreases smoothly with abundance while asymp- 
toting to a constant value for genes with large counts ( 11 ).
At the transcript-level, the RTA is highly transcript-specific,
and estimated dispersions based on raw counts may be ar- 
tificially higher for transcripts associated with high RTA. As 
a result, the estimated dispersions of such ambiguous tran- 
scripts may deviate from the standard decreasing smooth dis- 
persion trend. Under the presented quasi-Poisson model, ef- 
fective counts computed via count scaling should lead to es- 
timated dispersions and BCV plots that are free of RTA ef- 
fects and, in principle, should resemble those from gene-level 
analyses. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1167#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1167#supplementary-data
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Figur e 4. P anels ( A )–( D ) sho w the a v erage number of f alse disco v eries as a function of the number of chosen transcripts in different simulation 
scenarios. In (A) and (C), scenario with balanced library sizes. In (B) and (D), scenario with unbalanced library sizes. In (A) and (B), scenario with three 
samples per group. In (C) and (D), scenario with five samples per group. Results from the simulations with 100 bp paired-end read data quantified with 
Salmon with all reference transcripts expressed, averaged over 20 simulations. 
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Figure 2 presents BCV plots from the lung adenocarcinoma
ell lines dataset, as well as from one of our mouse simulated
atasets, generated before and after count scaling. BCV plots
ere generated with the edgeR function plotBCV . For both

eal and simulated datasets, the BCV plots computed with
aw counts exhibit strong transcript-specific RTA effects, with
rtificially high estimated NB dispersions for ambiguous tran-
cripts. Upon count scaling, effective counts better reflect their
rue precision with estimated dispersions that are truly repre-
entative of the biological variation of the RNA-seq experi-
ent. Most importantly, BCV plots from scaled counts sug-

est that standard DE methods designed for NB distributed
ounts, such as edgeR and limma-voom , can be directly
pplied. 

ount scaling provides powerful and efficient 
ifferential transcript expression analyses 

e assessed the performance of methods with respect to
ower to detect DTE between groups and ability to control
he FDR. Figure 3 shows the observed number of true positive
nd false positive DE transcripts for all benchmarked methods
nder a nominal FDR control of 0.05, for 100 bp paired-end
ead simulations. We observed that edgeR with count scal-
ng was able to detect the largest number of DE transcripts
mong all methods while controlling the FDR under the nom-
nal value, regardless of the number of replicate samples per
roups and library size. Under scenarios with three samples
per group, edgeR with raw counts and sleuth-LRT provided
only minimal power to detect DTE. In contrast, Swish exhib-
ited reasonable power to detect DE transcripts in such sce-
narios but at the expense of an increased observed FDR. All
methods showed a substantially increase in power to detect
DE transcripts as more samples per group were considered.
In scenarios with 10 samples per group, Swish outperformed
both sleuth-LRT and sleuth-Wald in terms of statistical power
( Supplementary Tables S1 –S10 ). Yet, edgeR with count scal-
ing still ranked as the most powerful DTE method in such
scenarios. 

To further compare methods regarding FDR control, we
assessed the number of false discoveries in the set of top-
ranked most significant transcripts from each method (Fig-
ure 4 ). Overall, edgeR with count scaling provided the small-
est number of false discoveries among all methods for any
number of top-ranked transcripts. For all configurations of
library sizes and number of samples per group, Swish con-
sistently presented more false positive transcripts than any
other method for any given number of top-ranked transcripts.
Yet, with paired-end read experiments, we note that all meth-
ods successfully controlled the FDR under the nominal level
in scenarios with 5 or 10 samples per group. In scenarios
with single-end read experiments quantified with kallisto and
high number of samples per group, we note that both edgeR
with count scaling and Swish , the two most powerful DTE
methods, presented FDR levels slightly over the nominal level
0.05, with values that ranged between 0.05 and 0.08, on

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1167#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1167#supplementary-data
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Figur e 5. P anels ( A )–( D ) sho w the observ ed type 1 error rate calculated as the a v erage proportion of transcripts with unadjusted P -v alues < 0.05 in 
different null simulation scenarios (without differential expression). Dashed line indicates the expected proportion of P -values < 0.05 under the null 
hypothesis of no differential expression. In (A) and (C), scenario with balanced library sizes. In (B) and (D), scenario with unbalanced library sizes. In (A) 
and (B), scenario with three samples per group. In (C) and (D), scenario with five samples per group. Results from the null simulations with 100 bp 
paired-end read data quantified with Salmon with all reference transcripts expressed, averaged over 20 simulations. 
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average. We have not observed the same lack of FDR control
in single-end experiments quantified with Salmon in equiva-
lent scenarios ( Supplementary Tables S1 –S10 ). 

For all benchmarked methods, we observed that experi-
ments simulated with paired-end reads led to uniformly more
powerful DTE analyses than single-end read experiments for
any read length specification. Overall, methods exhibited an
increase in power to detect DE transcripts as more transcripts
from the reference set were left unexpressed. Starting from
the quantification output of either Salmon or kallisto , edgeR
with count scaling was the fastest method in comparison,
while performing the entire DTE analysis pipeline of 10 sam-
ple RNA-seq experiments, with 100 bootstrap resamples each,
in approximately 15 seconds, on average ( Supplementary 
Figures S1 –S40 ). 

Count scaling controls the type I error rate 

We evaluated the ability of benchmarked methods to control
the type I error rate in null simulations that were generated
without any differential expression between groups. Under the
hypothesis of no differential expression between groups, P -
values are expected to be uniformly distributed between the 0
and 1. Figure 5 shows the proportion of significant P -values
under a nominal significance level of 0.05 in various simula-
tion scenarios. We observed that all methods exhibited con- 
trol of the type I error rate with the proportion of false posi- 
tive calls over all transcripts being below or near the nominal 
level. 

Among all methods and simulation scenarios, Swish ex- 
hibited the most uniform distribution of P -values with its 
observed type I error rate being the closest to the nominal 
level. Figure 6 presents density histograms of raw P -values 
from all methods for the null simulation scenario with un- 
balanced library sizes and five samples per group. Overall,
sleuth-LRT and sleuth-Wald presented P -value distributions 
that were substantially skewed towards 1, on average. In com- 
parison to raw counts, the presented count scaling approach 

for transcript-level analyses with edgeR led to P -value dis- 
tributions that were approximately uniform throughout our 
simulations. Similar results were found in simulations gener- 
ated with single-end reads, different read lengths, and fewer 
number of expressed transcripts per gene ( Supplementary 
Figures S41 –S120 ). 

Longer paired-end reads decrease RTA and provide 

more powerful DTE analyses 

In simulated RNA-seq experiments, we assessed the extent 
to which the sequence read specification influenced the RTA 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1167#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1167#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1167#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1167#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1167#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1167#supplementary-data
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verdispersion of transcripts. To this end, we compared the
verage estimated RTA overdispersion parameter in single-
nd paired-end read RNA-seq experiments simulated under a
ange of different read lengths. We further evaluated the re-
ulting power and FDR of edgeR with count scaling when
etecting DE transcripts. Table 1 shows the results. Overall,
TA overdispersion increases as read length decreases and is

ubstantially larger for single-end vs paired-end reads. Exper-
ments with 50 bp single-end reads had average RTA overdis-
ersion nearly 60% greater than for the corresponding exper-

ments with 150 bp paired-end reads. Such an increase trans-
ates to a substantial loss of information in the analysis of
single-end read RNA-seq experiments at the transcript-level,
which is a result of the reduced precision associated with the
estimation of transcript expression with single-end sequence
reads. In DTE analyses, we observed a corresponding reduc-
tion in statistical power that varied between 5% and 2% for
shorter and longer read lengths, respectively, with single-end
read data. 

In practice, we expect the performance gain for paired-
end over single-end read data to be slightly greater than that
shown in Table 1 . In our simulations, the fragment length pa-
rameters for Salmon and kallisto were set to the true mean
and standard deviation of the simulated fragment lengths.



PAGE 10 OF 13 Nucleic Acids Research , 2024, Vol. 52, No. 3, e13 

Table 1. Overdispersion, power and FDR as a function of sample size, read pairing and sequence length 

Single-end reads Paired-end reads 

Samples per 
group Read length (bp) 

Increase in 
overdispersion 
(percentage) Po w er FDR 

Increase in 
overdispersion 
(percentage) Po w er FDR 

Three 50 59.9 0.353 0.034 9.3 0.378 0.035 
75 44.6 0.357 0.033 4.3 0.389 0.035 
100 33.5 0.369 0.033 1.4 0.387 0.035 
125 22.7 0.381 0.037 0.1 0.397 0.034 
150 14.0 0.386 0.035 0.0 0.395 0.035 

Five 50 60.3 0.660 0.038 9.3 0.708 0.039 
75 44.6 0.670 0.036 4.4 0.719 0.039 
100 33.7 0.680 0.038 1.6 0.716 0.038 
125 22.7 0.699 0.040 0.1 0.726 0.039 
150 14.1 0.707 0.039 0.0 0.725 0.037 

Results are for Salmon and edgeR-Scaled for the simulation scenario with unbalanced library sizes and all reference transcripts expressed, averaged over 
20 simulations for each combination of sample size and sequence configuration. For each simulated dataset, the RTA overdispersions are averaged over all 
transcripts. The table shows the percentage increase in average overdispersion relative to 150 bp paired-end reads for the same sample size. 
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However, in practice, the fragment length distribution cannot
be determined from single-end RNA-seq reads. To explore the
sensitivity of the results to the fragment length settings, we re-
peated the quantification of the single-end read experiments
with the fragment length mean and standard deviation set to
the Salmon default values of 250 and 25, respectively. While
preserving the same relative ranking of DTE methods, leav-
ing the default values for the mean and standard deviation of
the fragment length distribution in Salmon resulted in a slight
decrease in performance for all methods, with a reduction of
statistical power that varied between 1% and 3% for sequence
reads of length 150 and 50 bp, respectively. 

Differential transcript expression in human 

adenocarcinoma cell lines 

The transcriptomic profile of human lung cancers has been ex-
tensively discussed in the literature. In lung adenocarcinoma,
it has been observed the existence of differential transcript ex-
pression for certain genes, such as the KRAS and the CD274
genes for which the expression levels of a number of their
splicing isoforms appeared to be associated with disease initia-
tion and progression ( 28 ,29 ). Here, we performed a transcript-
level analysis of the Illumina short paired-end read RNA-
seq experiments from the human adenocarcinoma cell lines,
which comprises 6 samples of NCI-H1975 and HCC827 cell
lines with three biological replicate samples per cell line (Fig-
ure 7 A). Libraries were sequenced with an Illumina NextSeq
500 sequencing system, producing 28–134 million 80 bp read-
pairs per sample. 

We applied edgeR with the presented count scaling ap-
proach and quasi-likelihood F-tests and detected a total of
18 699 DE transcripts between NCI-H1975 and HCC827
cell lines (9079 up-regulated and 9620 down-regulated tran-
scripts in the HCC827 cell line; Figure 7 B). Of particular in-
terest was the detection of DE transcripts of the KRAS and
CD274 genes, namely the protein-coding transcripts KRAS-
201 (1.17 log fold-change, adjusted P -value 6.685 × 10 

−4 )
and CD274-202 ( −0.490 log fold-change, adjusted P -value
5.485 × 10 

−3 ). In addition, we performed a gene-level anal-
ysis of the same RNA-seq experiment and identified 403 DE
genes between cell lines for which at least one of their tran-
scripts was also DE but in the opposite direction (nominal
FDR at 0.05 in both gene- and transcript-level analyses). This
set of DE genes with contrasting transcript expression signa- 
tures included a total of 12 genes associated with the KEGG 

cancer and non-small cancer pathways, such as genes AKT1 ,
BCL2L1 , EGLN3 , MET and RAF1 that have been extensively 
discussed and considered as potential therapy targets in lung 
carcinomas (Figure 7 C, Supplementary Table S12 ) ( 30–32 ). 

Our gene-level analysis also revealed a total of 841 non- 
significant DE genes for which at least one of their tran- 
scripts was significantly expressed between cell lines. Out 
of such non-significant genes, we have identified 24 genes 
associated with the KEGG cancer and non-small cell lung 
cancer pathways (Figure 7 D). Such a list includes established 

prognostic markers for several types of cancers such as the 
proto-oncogene MYC and the pro-apoptotic gene PMAIP1 

( 33 ). Our analysis also revealed multiple DE transcripts of the 
RUNX1 gene between cell lines, which its down-regulation 

has been associated with aggressive lung adenocarcinomas 
( 34 ). Moreover, we observed a case of isoform switching 
expression for gene RUNX1 with a protein-coding tran- 
script being expressed in the opposite direction between cell 
lines in contrast to its competing transcripts ( RUNX1-202 ; 
Figure 7 D). Other non-significant cancer-associated genes 
with significant isoform switch expression include IFNAR1 ,
SMAD3 , and LAMA3 . The discovery of differential ex- 
pression of transcripts associated with non-significant, al- 
beit important cancer-related, genes between NCI-H1975 and 

HCC827 cell lines highlights the potential benefits of an anal- 
ysis of RNA-seq data at the transcript-level. 

Using ONT long-read data from the same RNA-seq experi- 
ment, we applied the standard edgeR pipeline at the transcript- 
level with quasi-likelihood F-tests on raw counts and detected 

a total of 27 817 DE transcripts between NCI-H1975 and 

HCC827 cell lines (14 146 up-regulated and 13 671 down- 
regulated transcripts in the HCC827 cell line). Given the al- 
most negligible RTA associated with the quantification of 
ONT long-reads (Figure 1 ), the total number of DE tran- 
scripts found between cell lines using long-reads may serve as 
a benchmarking target for short-read DTE analyses. In fact,
using Illumina short paired-end reads, edgeR with count scal- 
ing detected 42.3% of all DE transcripts found with long- 
reads, a percentage larger than that of sleuth-LRT (38.8%),
sleuth-Wald (36.7%) and Swish (28.2%). Finally, to assess 
the benefits of performing a DTE analysis with paired-end 

over single-end read data, we performed an analysis at the 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1167#supplementary-data
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Figur e 7. P anels ( A )–( D ) sho w the main results from the RNA-seq DTE analy sis of the human lung adenocarcinoma cell lines (Illumina short-read 
paired-end data). In (a), multidimensional scaling plot of NCI-H1975 and HCC827 samples. In (B), mean-difference plot highlighting differentially 
expressed transcripts between NCI-H1975 and HCC827 cell lines. In (C), log-fold-change plot of a set of cancer-related DE genes (on the left of dashed 
lines) and their associated expressed transcripts (on the right of dashed lines). Genes and transcripts are highlighted in red, if differentially up-regulated, 
in blue, if differentially down-regulated, and in black, if non-significant. In (D), heatmap of DE transcripts between NCI-H1975 and HCC827 cell lines from 

non-significant genes associated with KEGG cancer and non-small cell lung cancer pathw a y s. Scaled log2 counts per million are displa y ed as expression 
le v els in the heatmap. Nominal FDR of 0.05 in both gene- and transcript-le v el analy ses. 
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transcript-level using single-end read libraries from the same
cell lines (GSE86337). Using edgeR with count scaling, we
found a total of 10 468 DE transcripts between NCI-H1975
and HCC827 cell lines (5067 up-regulated and 5401 down-
regulated transcripts in HCC827), which suggests a slightly
under powered analysis in comparison to paired-end read data
( Supplementary Figures S123 and S124 ). Such results high-
light the benefits of performing transcript-level analyses with
paired-end over single-end read RNA-seq data and agree with
the findings presented in our simulation study. 

Discussion 

Here, we present a simple, powerful and effective approach
to account for the RTA overdispersion resulting from tran-
script quantification in differential analysis of RNA-seq data
at the transcript-level. Our comprehensive simulation study
demonstrates that the presented count scaling approach pro-
vides uniformly more powerful DTE analyses than current
methods, while harnessing the flexible generalized linear
model framework and the efficient implementation of statisti-
cal methods available in the edgeR Bioconductor package. We
show that edgeR with count scaling properly controls the FDR
in all evaluated scenarios, including those with small num-
ber of replicates, short single-end read data, and highly unbal-
anced library sizes. In null simulations, we further show that
the presented approach provides proper type I error rate con-
trol. Our case study of the human adenocarcinoma cell lines
uncovered several DE transcripts, including transcripts asso-
ciated to key cancer-related genes that did not appear to be
differentially expressed between cell lines in a gene-level anal-
ysis. edgeR implements a continuous generalization of the NB
distribution, so the scaled counts can be used directly without
rounding to integers, meaning that no information is lost for
low counts. 

Recommendations for transcript-level analyses of RNA-seq
data are also presented. In contrast to gene-level analyses, for
which single-end data may be sufficient, our simulation study
shows that paired-end sequence reads lead to uniformly bet-
ter power to assess DTE. When designing RNA-seq experi-
ments for which the analysis is intended to be carried out at
the transcript-level, we recommend paired-end sequence read
libraries with 50 bp or greater read length and with at least
50 million read-pairs per sample. Our edgeR-Scaled method
works for any number of replicates, but the improvement in
statistical power from three replicates per group to five repli-
cates per group was notable in our simulations. 

We note that a single dispersion and fold-change setting was
used for all sample size scenarios in order to emphasize the in-
crease in power delivered by larger sample sizes. In practice,
real datasets with large sample sizes are often observational
human studies with a high level of biological variability. In ad-
dition, researchers might choose to generate fewer bootstrap
resamples per sample in large sample size situations than in
our simulation. We have not explored these possible settings
but such factors might produce lower statistical power than in
our simulation. Our simulations were set to be typical of de-
signed experiments with model organisms such as genetically
identical mice or cell lines. Studies with more variable units
such as human subjects may exhibit higher BCVs and require
large sample sizes. 

Our simulations assumed the true transcript expression lev-
els to be gamma distributed between replicates. To confirm
that our conclusions are not sensitive to this distributional as- 
sumption, we repeated the simulations with log-normal dis- 
tributed expression values instead of gamma and obtained 

similar results (data not shown). 
Finally, we note that the accuracy of the RTA overdispersion 

estimates, as well as the accuracy of the estimated transcript- 
specific read counts as output by quantification tools Salmon 

and kallisto , heavily depends on the completeness assump- 
tion of the transcriptome annotation used during the RNA-seq 

quantification. The extent to which the presence of novel un- 
annotated transcripts in the sample affects the quantification 

of transcripts and, in turn, the estimation of the RTA overdis- 
persion has not been explored in this work. 

Code availability 

The catchSalmon and catchKallisto functions are available in 

the edgeR Bioconductor ( 35 ) package at https://bioconductor. 
org/ packages/ edgeR . Both functions implement the method- 
ology presented in this article and estimate the transcript- 
specific RTA overdispersion resulting from the transcript-level 
RNA-seq quantification step. When performing DTE analyses 
with edgeR with count scaling, users should divide transcript- 
level RNA-seq counts by the associated RTA overdispersion 

estimates. Data and code to reproduce the results presented 

in this article are available at https:// github.com/ plbaldoni/ 
TranscriptDE-code . 

The versions of software used in the paper are: Com- 
plexHeatmap : 2.14.0 ( 36 ), edgeR : 3.40.2, fishpond ( Swish 

method): 2.4.1, kallisto : 0.46.1, minimap2 : 2.17, R : 4.2.1,
Rsubread : 2.12.0, sleuth : 0.30.0, Salmon : 1.9.0, wasabi : 1.0.1,
tximeta : 1.16.1. 

Data availability 

The RNA-seq experiments analyzed here are available 
fromthe NCBI Gene Expression Omnibus with the accession- 
numbers GSE60450, GSE86337 and GSE172421. 

Supplementary data 

Supplementary Data are available at NAR Online. 

A c kno wledg ements 

This work was supported by the Chan Zuckerberg Initia- 
tive (EOSS4 grant number 2021-237445), Australian Na- 
tional Health and Medical Research Council (NHMRC) IRI- 
ISS and Victorian State Government Operational Infrastruc- 
ture Support. G.K.S. was supported by NHMRC Fellowship 

1058892, Y.C. by Medical Research Future Fund Investigator 
Grant 1176199 and M.E.R. by NHMRC Investigator Grant 
2017257. 

Funding 

National Health and Medical Research Council [1058892,
1176199, 2017257]; Chan Zuckerberg Initiative [2021- 
237445]. Funding for open access charge: WEHI. 

Conflict of interest statement 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1167#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1167#supplementary-data
https://bioconductor.org/packages/edgeR
https://github.com/plbaldoni/TranscriptDE-code
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1167#supplementary-data


Nucleic Acids Research , 2024, Vol. 52, No. 3, e13 PAGE 13 OF 13 

R

 

 

1

1

1
 

1

1

1

1

1

1

1

 

R
©
T
d

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/52/3/e13/7460324 by guest on 25 July 2024
eferences 

1. Wang, Z. , Gerstein, M. and Snyder, M. (2009) RNA-Seq: a 
revolutionary tool for transcriptomics. Nat. Rev. Genet., 10 , 
57–63.

2. Oshlack, A. , Robinson, M.D. and Young, M.D. (2010) From 

RNA-seq reads to differential expression results. Genome Biol., 
11 , 220.

3. Van den Berge, K. , Hembach, K.M. , Soneson, C. , T iberi, S. , 
Clement, L. , Love, M.I. , Patro, R. and Robinson, M.D. (2019) RNA 

sequencing data: hitchhiker’s guide to expression analysis. Annu. 
Rev. Biom. Data Sci., 2 , 139–173.

4. Bray, N.L. , Pimentel, H. , Melsted, P. and Pachter, L. (2016) 
Near-optimal probabilistic RNA-seq quantification. Nat. 
Biotechnol., 34 , 525.

5. Patro, R. , Duggal, G. , Love, M.I. , Irizarry, R.A. and Kingsford, C. 
(2017) Salmon provides fast and bias-aware quantification of 
transcript expression. Nat. Methods , 14 , 417.

6. Robinson, M.D. and Smyth, G.K. (2007) Moderated statistical tests 
for assessing differences in tag abundance. Bioinformatics , 23 , 
2881–2887.

7. Anders, S. and Huber, W. (2010) Differential expression analysis for
sequence count data. Genome Biol. , 11 , R106. 

8. Di, Y. , Schafer, D.W. , Cumbie, J.S. and Chang, J.H. (2011) The NBP 
negative binomial model for assessing differential gene expression 
from RNA-Seq. Stat. Applic. Genet. Mol. Biol., 10 , Issue 1, Article 
24.

9. McCarthy, D.J. , Chen, Y. and Smyth, G.K. (2012) Differential 
expression analysis of multifactor RNA-Seq experiments with 
respect to biological variation. Nucleic Acids Res. , 40 , 4288–4297.

0. Lund, S.P. , Nettleton, D. , McCarthy, D.J. and Smyth, G.K. (2012) 
Detecting differential expression in RNA-sequence data using 
quasi-likelihood with shrunken dispersion estimates. Stat.Applic. 
Genet. Mol. Biol., 11 , Issue 5, Article 8.

1. Chen, Y. , Lun, A.T.L. and Smyth, G.K. (2016) From reads to genes 
to pathways: differential expression analysis of RNA-seq 
experiments using Rsubread and the edgeR quasi-likelihood 
pipeline. F1000Research , 5 , 1438.

2. Robinson, M.D. , McCarthy, D.J. and Smyth, G.K. (2010) edgeR: a 
Bioconductor package for differential expression analysis of digital
gene expression data. Bioinformatics , 26 , 139–140.

3. Love, M.I. , Huber, W. and Anders, S. (2014) Moderated estimation 
of fold change and dispersion for RNA-seq data with DESeq2. 
Genome Biol., 15 , 550.

4. Law, C.W. , Chen, Y. , Shi, W. and Smyth, G.K. (2014) Voom: 
precision weights unlock linear model analysis tools for RNA-seq 
read counts. Genome Biol. , 15 , R29. 

5. Liao, Y. , Smyth, G.K. and Shi, W. (2014) featureCounts: an efficient 
general-purpose read summarization program. Bioinformatics , 30 , 
923–930.

6. Anders, S. , Pyl, P.T. and Huber, W. (2015) HTSeq—a Python 
framework to work with high-throughput sequencing data. 
Bioinformatics , 31 , 166–169.

7. Li, B. and Dewey, C.N. (2011) RSEM: accurate transcript 
quantification from RNA-Seq data with or without a reference 
genome. BMC Bioinformatics , 12 , 323.

8. Soneson, C. , Love, M.I. and Robinson, M.D. (2015) Differential 
analyses for RNA-seq: transcript-level estimates improve 
gene-level inferences. F1000Research , 4 , 1521.

9. Trapnell, C. , Hendrickson, D.G. , Sauvageau, M. , Goff, L. , Rinn, J.L. 
and Pachter,L. (2013) Differential analysis of gene regulation at 
transcript resolution with RNA-seq. Nat. Biotechnol., 31 , 46.
eceived: April 1, 2023. Revised: November 12, 2023. Editorial Decision: November 19, 2023. Accep
The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 

his is an Open Access article distributed under the terms of the Creative Commons Attribution Lice
istribution, and reproduction in any medium, provided the original work is properly cited. 
20. Pimentel, H. , Bray, N.L. , Puente, S. , Melsted, P. and Pachter, L. (2017)
Differential analysis of RNA-seq incorporating quantification 
uncertainty. Nat. Methods , 14 , 687.

21. Zhu, A. , Srivastava, A. , Ibrahim, J.G. , Patro, R. and Love, M.I. (2019) 
Nonparametric expression analysis using inferential replicate 
counts. Nucleic Acids Res. , 47 , e105. 

22. Zakeri, M. , Srivastava, A. , Almodaresi, F. and Patro, R. (2017) 
Improved data-driven likelihood factorizations for transcript 
abundance estimation. Bioinformatics , 33 , i142–i151.

23. Wilcoxon,F. (1945) Individual comparisons by ranking methods. 
Biometrics Bull., 1 , 80–83.

24. Liao, Y. , Smyth, G.K. and Shi, W. (2019) The R package Rsubread is 
easier , faster , cheaper and better for alignment and quantification 
of RNA sequencing reads. Nucleic Acids Res. , 47 , e47. 

25. Li,H. (2018) Minimap2: pairwise alignment for nucleotide 
sequences. Bioinformatics , 34 , 3094–3100.

26. Dong, X. , Du, M.R.M. , Gouil, Q. , T ian, L. , Jabbari, J.S. , Bowden, R. , 
Baldoni, P.L. , Chen, Y. , Smyth, G.K. , Amarasinghe, S.L. , et al. (2023) 
Benchmarking long-read RNA-sequencing analysis tools using in 
silico mixtures. Nat. Methods , 20 , 1810–1821.

27. Marioni, J.C. , Mason, C.E. , Mane, S.M. , Stephens, M. and Gilad, Y. 
(2008) RNA-seq: An assessment of technical reproducibility and 
comparison with gene expression arrays. Genome Res., 18 , 
1509–1517.

28. Yang, I.S. and Kim, S. (2018) Isoform specific gene expression 
analysis of KRAS in the prognosis of lung adenocarcinoma 
patients. BMC Bioinformatics , 19 , 40.

29. Qu, S. , Jiao, Z. , Lu, G. , Yao, B. , Wang, T. , Rong, W. , Xu, J. , Fan, T. , 
Sun, X. , Yang, R. , et al. (2021) PD-L1 lncrna splice isoform 

promotes lung adenocarcinoma progression via enhancing c-myc 
activity. Genome Biol., 22 , 104.

30. Kanehisa, M. , Goto, S. , Hattori, M. , Aoki-Kinoshita, K.F. , Itoh, M. , 
Kawashima, S. , Katayama, T. , Araki, M. and Hirakawa, M. (2006) 
From genomics to chemical genomics: new developments in 
KEGG. Nucleic Acids Res , 34 , D354–D357.

31. Jin, Y. , Pan, Y. , Zheng, S. , Liu, Y. , Xu, J. , Peng, Y. , Zhang, Z. , Wang, Y. , 
Xiong, Y. , Xu, L. , et al. (2022) Inactivation of EGLN3 hydroxylase 
facilitates Erk3 degradation via autophagy and impedes lung 
cancer growth. Oncogene , 41 , 1752–1766.

32. Shen, Q. , Li, J. , Mai, J. , Zhang, Z. , Fisher, A. , Wu, X. , Li, Z. , 
Ramirez, M.R. , Chen, S. and Shen, H. (2018) Sensitizing non-small 
cell lung cancer to BCL-xL-targeted apoptosis. Cell Death Dis., 9 , 
986.

33. Kelly, G.L. , Grabow, S. , Glaser, S.P. , Fitzsimmons, L. , Aubrey, B.J. , 
Okamoto, T. , Valente, L.J. , Robati, M. , Tai, L. , Fairlie Douglas 
Fairlie, W. , et al. (2014) Targeting of MCL-1 kills MYC-driven 
mouse and human lymphomas even when they bear mutations in 
p53. Genes Dev., 28 , 58–70.

34. Ramsey, J. , Butnor, K. , Peng, Z. , Leclair, T. , van der Velden, J. , 
Stein, G. , Lian, J. and Kinsey, C.M. (2018) Loss of RUNX1 is 
associated with aggressive lung adenocarcinomas. J. Cell. Physiol., 
233 , 3487–3497.

35. Huber, W. , Carey, V.J. , Gentleman, R. , Anders, S. , Carlson, M. , 
Carvalho, B.S. , Bravo, H.C. , Davis, S. , Gatto, L. , Girke, T. , et al. 
(2015) Orchestrating high-throughput genomic analysis with 
Bioconductor. Nat. Methods , 12 , 115–121.

36. Gu, Z. , Eils, R. and Schlesner, M. (2016) Complex heatmaps reveal 
patterns and correlations in multidimensional genomic data. 
Bioinformatics , 32 , 2847–2849.
ted: November 21, 2023 

nse (http: // creativecommons.org / licenses / by / 4.0 / ), which permits unrestricted reuse, 


	Graphical abstract
	Introduction
	Materials and methods
	Results
	Discussion
	Code availability
	Data availability
	Supplementary data
	Acknowledgements
	Funding
	Conflict of interest statement
	References

