
Article https://doi.org/10.1038/s41467-024-51326-5

Community use of oral antibiotics
transiently reprofiles the intestinal
microbiome in young Bangladeshi children

Andrew Baldi1,2 , Sabine Braat 1,3,4, Mohammed Imrul Hasan1,2,5,
Cavan Bennett 1,2, Marilou Barrios 6, Naomi Jones1, Gemma Moir-Meyer1,2,
Imadh Abdul Azeez 1,2, Stephen Wilcox6, Mohammad Saiful Alam Bhuiyan5,
RicardoAtaide1,4, DanielleClucas1,2,7, LeonardC.Harrison 1,2, ShamsElArifeen5,
Rory Bowden 2,6, Beverley-Ann Biggs4,8, Aaron Jex1,2,9 &
Sant-Rayn Pasricha 1,2,7,10

Antibiotics may alter the gut microbiome, and this is one of themechanisms by
which antimicrobial resistance may be promoted. Suboptimal antimicrobial
stewardship in Asia has been linked to antimicrobial resistance. We aim to
examine the relationship between oral antibiotic use and composition and
antimicrobial resistance in the gut microbiome in 1093 Bangladeshi infants. We
leverage a trial of 8-month-old infants in rural Bangladesh: 61% of children were
cumulatively exposed to antibiotics (most commonly cephalosporins and
macrolides) over the 12-month study period, including 47% in the first 3months
of the study, usually for fever or respiratory infection. 16S rRNA amplicon
sequencing in 11-month-old infants reveals that alpha diversity of the intestinal
microbiome is reduced in children who received antibiotics within the previous
7 days; these samples also exhibit enrichment for Enterococcus and Escherichia/
Shigella genera. No effect is seen in children who received antibiotics earlier.
Using shotgun metagenomics, overall abundance of antimicrobial resistance
genes declines over time. Enrichment for an Enterococcus-related antimicrobial
resistance gene is observed in children receiving antibiotics within the previous
7 days, but not earlier. Presence of antimicrobial resistance genes is correlated
to microbiome composition. In Bangladeshi children, community use of anti-
biotics transiently reprofiles the gut microbiome.

Antimicrobial resistance is a leading global health threat, rendering
vital antibiotic medicines ineffective against life-threatening
infections1. A major proposed driver of antibiotic resistance in low-
and middle-income countries is poor antimicrobial stewardship fos-
tering high rates of inappropriate use of antibiotics1,2. Antibiotics are
among the most prescribed medications. Over 73 billion doses of
antibiotics were used across 71 countries in 20103,4. Use is growing
fastest in low- and middle-income countries, where on average 52% of

patients attending health care are prescribed antibiotics5. Inappropri-
ate or subtherapeutic use of antibiotics may drive antimicrobial
resistance via selection for bacteria with natural resistance to anti-
biotics, includingmutant clones containing resistance genes, or which
have acquired resistance via horizontal gene transfer6.

Asia is a region where limited antimicrobial stewardship may
especially contribute to an environment facilitating the emergence of
antimicrobial resistance7. For example, antibiotic medications may be
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available ‘over the counter’ without prescription, and patients may
purchase medications for themselves or their children without first
establishing a diagnosis or even visiting a health practitioner or
facility8. In Bangladesh, ‘drug shops’, which may be unlicensed and
staffed by unqualified personnel who provide medical advice, are
commonly accessed to procure antibiotics9. Exposure of children to
antibiotics is high. Multinational cohort studies across South Asian,
Latin American and sub-Saharan African countries have measured
community use of antibiotics by young children under two years of
age. Usage is highest in children living in South Asia, where children in
Bangladesh received 10.9 courses of antibiotics per year and almost all
children received antibiotics within the first six months of life10.

Systematic reviews indicate that antibiotics used in primary care
for respiratory or urinary infections may foster antimicrobial
resistance11. In Bangladesh, studies evaluating clinical isolates have
identified pathogenic bacteria such as Salmonella typhi, Escherichia
coli, and Staphylococcus aureus resistant to commonly used, cost-
effective antibiotics, with rates of resistance among the highest in the
world12,13. For example, a systematic analysis of the global burden of
antimicrobial resistance indicated that in Bangladesh, E. coli resistant
to third-generation cephalosporins and/or fluoroquinolones repre-
sented 60-70% and ≥80% of isolates respectively, while the prevalence
of methicillin resistance in S. aureus is 40-50%14. Most studies evalu-
ating the effects of antibiotics on microbial composition and anti-
microbial resistance have used clinical isolates, were set in inpatient or
high-acuity clinical settings, and used bacterial resistance functional
testing in vitro. More broadly, complex interactions between the
environment (including water, sanitation and hygiene conditions, and
livestock and wildlife) may influence antimicrobial resistance15,16.

Therefore, a critical question is whether and how antibiotic use in
the community in low-income settings, where exposure to infections
andother environmental drivers is intense, directly influencesmicrobial
composition and antimicrobial resistance, particularly in children. We
thus sought to determine whether, in a rural South Asian setting, anti-
biotic exposure through the community reprofiles the gut microbiome
and influences the carriageof antimicrobial resistancegenes in children.

To achieve this aim, we leverage a prospective cohort study of
children aged 8 months nested within a large field randomized con-
trolled trial that aimed to evaluate whether iron interventions influ-
ence child development set in rural Bangladesh tomeasure patterns of
antimicrobial use over a 12-month period17. We apply unbiased geno-
mic techniques to evaluate the effects of community use of oral anti-
biotics on the composition and antimicrobial resistance profiles of the
gut microbiome.

Results
We recruited 8-month-old infants to the BRISC (Benefits and Risks of
Iron InterventionS in Children) trial in Rupganj Upazila (a rural area
about 50kmfromDhaka) inBangladesh17 and followed for 12months.Of
these 3300 children recruited to the main trial, the final 1093 recruited
to the trial (betweenSeptember 2018 andFebruary 2019)were invited to
participate in this microbiome sub study. The baseline (at 8 months of
age) characteristics of these children (923ofwhomprovided at least one
stool sample) are summarized in Table 1. In this cohort, at baseline, the
median age additional foodswere added tobreastfeedingwas6months;
19.4% of infants were from families with food insecurity, and 23.6% of
children exhibited stunting and 7.4% were underweight.

Participants were visited weekly during the 13-week intervention
period (iron, multiple micronutrient powders – MNPs – and placebo)
and then monthly for 9 months (Fig. 1A). Stool was collected at base-
line, after 13 weeks intervention (midline), and again after a further
9 months (endline). 923 and 319 samples from baseline, 796 and
319 samples frommidline, and 578 and 315 samples from endline were
processed for 16S rRNA amplicon sequencing and shotgun metage-
nomics, respectively (Fig. 1B).

Antibiotic use was assessed at each home visit: a field worker
directly enquired about antibiotic consumption, and asked to see the
container to confirm the medication for coding. Across the sub study
cohort, over the 3-month interventionperiod, 47%of children received

Table 1 | Participant baseline characteristics

Total
n = 1093 (%)

Treatment arm

Iron 364/1093 (33.3)

MNPs 368/1093 (33.7)

Placebo 361/1093 (33.0)

Compliance 70% or higher 820/1093 (75.0)

Sex

Female 539/1093 (49.3)

Male 554/1093 (50.7)

Union

Bhulta 349/1093 (31.9)

Golakandail 375/1093 (34.3)

Rupganj 369/1093 (33.8)

Maternal education

No education 38/1093 (3.5)

1–8 years 563/1093 (51.5)

9–12 years 452/1093 (41.4)

>12 years 40/1093 (3.7)

Paternal education

No education 83/1093 (7.6)

1–8 years 578/1093 (52.9)

9–12 years 374/1093 (34.2)

>12 years 58/1093 (5.3)

Maternal occupation

Unemployed 1061/1093 (97.1)

Unskilled job 10/1093 (0.9)

Skilled job 22/1093 (2.0)

Paternal occupation

Unemployed 11/1092 (1.0)

Unskilled job 158/1092 (14.5)

Skilled job 874/1092 (80.0)

Other 49/1092 (4.5)

Wealth index quintile

Quintile 1 (relative poorest) 203/1093 (18.6)

Quintile 2 199/1093 (18.2)

Quintile 3 (relative middle) 237/1093 (21.7)

Quintile 4 221/1093 (20.2)

Quintile 5 (relative wealthiest) 233/1093 (21.3)

Household Food Secure statusa 868/1085 (80.0)

Ageextra food inaddition tobreastfed (months) 6.0 (5.0–6.0)

Child Growth

Stuntedb 258/1091 (23.6)

Underweightb 85/1091 (7.8)

Wastingb 10/1091 (0.9)

Data are presented as mean (SD) or median (IQR) for continuous measures, and n/total (%) for
categorical measures.
MNPs multiple micronutrient powders.
Percentages may not total 100 because of rounding.
aFood securewas defined ‘no’or ‘rarely‘ to question 1 and ‘no’ to questions 2–9 on theHousehold
Food Insecurity Access Scale.
bZ-scoreswerecalculatingusing the2006WorldHealthOrganizationChildGrowthStandards.50

Stunting was defined as a length-for-age z-score <−2. Underweight was defined as a weight-for-
age z-score <−2. Wasting was defined as a weight-for-height z-score <−2.
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at least one antibiotic; over the entire 12 months this figure was 61%
(Fig. 1C). These antibiotics mostly comprised cephalosporins, macro-
lides, nitroimidazoles (all metronidazole), penicillins (e.g. amoxicillin),
quinolones (all ciprofloxacin), and co-trimoxazole (Fig. 1D). The most
reported symptoms associated with the children’s antibiotic use were
fever and respiratory symptoms (Fig. 1E).

We first used 16S rRNA amplicon sequencing to measure the
effects of antibiotic usage on stool microbiome alpha diversity (indi-
cating the distribution and heterogeneity of taxonomic abundances,
measured by the Shannon and inverse Simpson indices). Firstly, we
established that as expected, alpha diversity increased between 8 and
20 months (Supplementary Fig. 1)18. Next, we explored the effects of
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antibiotics on stool alpha diversity at themidline timepoint (~11months
of age), the timepoint for which we had highest resolution of informa-
tion on preceding antibiotic consumption (i.e., last 7-days for every
week). Overall, use of antibiotics within the previous 13 weeks was not
associated with changes in alpha diversity based on there being no
differences in SimpsonandShannon indices compared to thosewithout
any use of antibiotics (Supplementary Fig. 2A). We next disaggregated
the analyses by timepoint of exposure to antibiotics. Alphadiversitywas

lower in samples from infants who had received an antibiotic in the
precedingweek compared to thosewhohadnot (P <0.001 for Shannon
index and 0.011 for inverse Simpson index). However, there were no
significant differences in alpha diversity in samples from infants
receiving antibiotics in Weeks 9-12 or in Weeks 1–4 of the intervention
period compared with children who had not received any antibiotics in
Weeks 9–12 (for Weeks 9–12 analysis) or who had no antibiotic use for
the whole intervention period (for Weeks 1–4 analysis) (Fig. 2A–C).

Fig. 1 | Study design and antibiotic use. ABRISC trial schema showing assessment
and sampling time points. Vertical lines represent scheduled study visits. B Flow
diagram outlining stool samples for 16S rRNA and shotgun metagenomic sequen-
cing. C Cumulative incidence of parent-reported antibiotic use among sub study
participants as recordedweekly (Weeks 1–13) andmonthly (Months 1–9) thereafter.
D Reported antibiotic use during the intervention period by class (where metro-
nidazole, ciprofloxacin, and co-trimoxazole were recorded as standalone medica-
tion as they were the only medication recorded in their respective class). Sum of

percentages exceeds 100 due to instances of multiple antibiotics being docu-
mented at single visits. E Prevalence of fever and infective symptoms reported
during the intervention period (where multiple symptoms could be recorded in a
single weekly visit). A, B created with BioRender.com released under a Creative
Commons Attribution-NonCommercial-NoDerivs 4.0 International license (https://
creativecommons.org/licenses/by-nc-nd/4.0/deed.en). Source data for C–E are
provided in the Source Data file.
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Fig. 2 | Alpha diversity andmicrobiome differential abundance using 16S rRNA
amplicon sequencing data. A–C Violin plots illustrating taxonomic alpha diversity
in relation to antibiotic use in Weeks 1–4 (81 with antibiotic use from a total of 671)
(A), Weeks 9-12 (158/771) (B) and Week 13 (44/727) (C) (16S rRNA data). Each dot
represents an individual sample, grouped by defined antibiotic use category (yes/
no). Group differences were calculated using pair-wise ANOVA for each diversity
measure. Center lines denote median value, with rectangles showing 25–75th
percentiles. The violin outlines the distribution of the data, with wider sections

representing a higher probability that samples in the dataset will have the corre-
sponding value and narrower sections representing a lower probability.
D–F Volcano plots illustrating differential abundance of genera in relation to
antibiotic use in Weeks 1–4 (81/671) (D), Weeks 9–12 (158/771) (E), and Week 13
(44/727) (F) (16S rRNA data). Each figure shows log2-fold change on the x-axis and
the -log10(FDR-adjusted P-value) on the y-axis. The horizontal red line indicates an
adjusted P-value 0.05 (calculated using the Benjamini–Hochberg method). Source
data are provided in the Source Data file.

Article https://doi.org/10.1038/s41467-024-51326-5

Nature Communications |         (2024) 15:6980 4

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


We next sought to establish the effects of antibiotics on intestinal
microbiome composition.

Differential abundance analyses of the 16S rRNA amplicon analysis
revealed enrichment for Enterococcus and Escherichia/Shigella genera in
samples from children receiving antibiotics within 7 days of collection
(log2FC 2.076, SD 0.439, FDR-adjusted P <0.001 for Enterococcus and
log2FC 1.154, SD 0.330, FDR-adjusted P=0.012 for Escherichia/Shigella),
but this was not seen with earlier antibiotic use (Fig. 2D–F). We used
shotgun metagenomic analysis in a subset of sub study participants to
achieve a higher resolution of classification and to identify antimicrobial
resistance genes. We determined differential abundance of species, and
mapped reads to the Comprehensive Antibiotic Resistance Database
(CARD) reference markers to identify abundance of antimicrobial
resistance (AMR) genes (ARGs)19. We first evaluated overall AMR gene
abundance in samples from all three time points (8, 11, and 20months).
There was a significant decline in overall AMR gene abundance between
8 and 20months of age (mean gene abundance at 8months 4356Reads
Per Kilobase per Millionmapped reads [RPKM], standard deviation [SD]
3215 compared to 3208, SD 2596 at 20 months, P<0.0001) (Fig. 3).

Using shotgunmetagenomics, we observed an increased relative
abundance of Enterococcus faecium in children who used antibiotics
in the preceding week (log2FC 0.761, SD 0.156, FDR-adjusted
P < 0.001). This group showed higher abundance of ARO:3002556
compared to those who had not used an antibiotic in that week
(log2FC 0.995, SD 0.269, FDR-adjusted P = 0.040). ARO:3002556
corresponds to the Enterococcus faecium chromosomally encoded
aac(6’)-Ii aminoglycoside acetyltransferase gene, which confers
aminoglycoside resistance (card.mcmaster.ca/ontology/38956/)20.
Antibiotic use overall (Supplementary Fig. 2B-C), or at earlier time-
points (in Weeks 9–12 or Weeks 1–4 of the intervention period) was

not associatedwith any differentially abundant species or AMR genes
compared to no antibiotic use inWeeks 9-12 (forWeeks 9-12 analysis)
or no antibiotic use for the whole intervention period (for Weeks 1–4
analysis) (Fig. 4A-F). To explore whether the effect of antibiotic use
on AMR gene abundance was influenced by study intervention arm
(i.e., iron/MNPs or placebo), we conducted an additional analysis of
interaction. This indicated no evidence of an interaction between
iron interventions and effect of antibiotics on AMR (Supplementary
Fig. 3A). There was also no evidence of an interaction between iron
interventions and the effect of antibiotics on microbiome composi-
tion (Supplementary Fig. 3B).

Finally, we sought to evaluate whether the abundance of AMRwas
driven by microbiome composition. Using shotgun metagenomic
data, we examined the association between abundance of particular
genera of interest and overall AMR gene abundance at both the mid-
line and endline timepoints (i.e. at age ~11 months and ~20months). At
the 11-month timepoint, Escherichia showed a highly positive correla-
tion (Spearman r =0.86, P <0.001) with overall AMR gene abundance.
In contrast, Enterococcus exhibited a weaker correlation (Spearman
r =0.16, P = 0.009), although this association appeared to strengthen
in children who had received an antibiotic in the last 7 days: Spearman
r =0.44, P =0.066) (Fig. 5A). At the 20-month timepoint, using endline
samples, total AMR gene abundance and Escherichia relative abun-
dance were moderately correlated (Spearman r =0.67, P < 0.001),
while AMRcorrelationwith Enterococcuswas also observed (Spearman
r =0.23, P <0.001) (Fig. 5B). A sensitivity analysis following removal of
two midline samples and one endline sample with Escherichia relative
abundance >90% did not change our results. We also observed a
reduction in overall abundance of Escherichia and Enterococcus with
age (Supplementary Fig. 4A-B).

Discussion
In this prospective cohort study of rural Bangladeshi infants mon-
itored with intensive home visits to assess medication use, cumulative
exposure to oral antibiotics was high. In this setting, children receiving
antibiotics within the previous 7 days had intestinal microbiomes
enriched for Enterococcus species. However, these changes were not
seen in children who had received antibiotics earlier than 7 days prior
to collection of the stool sample. Among participants overall, anti-
microbial resistance gene carriage fell between ages 8 and 20 months
and was correlated with the composition of the microbiome.

Our findings align with previous prospective studies in adult
volunteers in high-income settings that showed that oral antibiotics
transiently impact gut bacterial load and richness, with duration
influenced by antibiotic-class (most transient for the quinolone and
cephalosporin, but with recovery within a month for azithromycin)21.
In infants and children receiving oral antibiotics, several studies have
shown acute reductions in alpha diversity and/or specific taxonomic
changes including reduced Bifidobacterium abundance, though the
duration of these changes was not assessed with medium term follow-
up (e.g., over weeks)22,23.

We reasoned that there could be two inter-related explanations
for AMR gene abundance: composition and antibiotic use, which may
both also be influenced by age. For this reason, we examined rela-
tionships between antimicrobial gene abundance and composition at
two time points at which we would expect substantial differences in
the development of and exposures influencing the microbiome.

Our results indicate that overall, carriage of antimicrobial resis-
tance genes in this cohort of children decreases with age, perhaps
relating tomaternal transfer of resistant flora that is gradually replaced
over time. We identified positive correlations between abundance of
both Enterococcus and Escherichia and the abundance of antimicrobial
genes and midline and endline timepoints. Enterococcus species exhi-
bit intrinsic reduced susceptibility to some antibiotics and can acquire
resistance to many other commonly used antibiotics in this setting24.

Fig. 3 | Total antimicrobial resistance gene abundance by age. Box plot illus-
trating total antimicrobial resistance gene abundance by age showing statistically
significant reductions in total AMR gene abundance between 8 and 20 months of
age, and between 11 and 20 months of age (P <0.001 for both comparisons), and
not between 8 and 11 months (P =0.6). (Shotgun metagenomic data). n = 316 at
8 months, 315 at 11 months and 310 at 20 months. AMR gene abundance was
measured in readsperkilobasepermillion sample reads (RPKM).Groupdifferences
were calculated using pair-wise ANOVA. Center lines denote median value, with
boxes showing 25–75th percentiles. Vertical whisker lines encompass ×1.5 inter-
quartile range from above the upper and below the lower quartiles). Source data
are provided in the Source Data file.
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For example, Enterococcus faecium harbors constitutive antimicrobial
resistance genes such as aac(6’)-Ii, and E. coli contains beta-lactamases
encoded by genes such as AmpC25. In both cases we observed reduc-
tions in gut carriage of these species over the 12 month follow-up
periodof the study. Collectively, thesefindings suggest that changes in
gut flora over time may be a driver of the decrease in abundance of
antimicrobial resistance in children in this population.

Our data indicate that use of oral antibiotics in the community
may transiently suppress other flora (i.e., reducing alpha diversity) and
enrich for these relatively resistant species along with corresponding
constitutively encoded antimicrobial resistance genes. Similar findings
have been previously reported for example in small cohorts of Eur-
opean infants26.

A key question is whether recurrent community dosing of anti-
biotics may eventually select for resistance. Other studies have iden-
tified limited impact of antibiotic exposure in children on carriage of
antimicrobial resistance genes, particularly evaluating the role of azi-
thromycin. A sub study of a trial of mass biannual administration of
azithromycin (a macrolide) that successfully reduced childhood

mortality in Africa revealed that in the Nigerian cohort, the antibiotic
did not influence overall microbial structure but macrolide resistance
genes were more abundant in children living in intervention commu-
nities (although transient increases in resistance to other classes could
not be capturedby the studydesign)27. Likewise, trials of administering
azithromycin during childbirth in The Gambia revealed an elevated
prevalence of neonatal carriage of azithromycin-resistant Staphylo-
coccus aureus28 for a period lasting at least 4 weeks but less than
12 months29. Notably, the mechanisms of resistance in these studies
included the potential horizontal transfer of plasmids encoding resis-
tancegenes even to participants not receiving azithromycin. In amulti-
country randomized controlled trial of azithromycin versus placebo
given to infants and children with acute watery diarrhea, resistance to
azithromycin in E. coli isolates from stool and Streptococcus pneumo-
niae from nasopharyngeal samples did not differ between groups 90
and 180 days after receiving the intervention. There were also no dif-
ferences in azithromycin resistance in the equivalent samples and
bacteria in household contacts of the study population30. Our study
provides data on the effects from other classes of antibiotics
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Fig. 4 | Microbiome and antimicrobial resistance gene differential abundance
using shotgun metagenomic sequencing data. A–C Volcano plots illustrating
differential abundance of species in relation to antibiotic use inWeeks 1–4 (38 with
antibiotic use from a total of 259 included samples) (A), Weeks 9–12 (79/308) (B),
and Week 13 (18/294) (C) (Shotgun metagenomic data). D–F Volcano plots illus-
trating differential abundance of AMR genes in relation to antibiotic use in Weeks

1–4 (38/259) (D), Weeks 9-12 (79/308) (E), and Week 13 (18/294) (F) (Shotgun
metagenomic data). Each figure shows log2-fold change on the x-axis and the
-log10(FDR-adjusted P-value) on the y-axis. The horizontal red line marks the level
equivalent to an adjusted P-value 0.05 (calculated using the Benjamini–Hochberg
method). AMR gene abundance was measured in reads per kilobase per million
sample reads (RPKM). Source data are provided in the Source Data file.
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commonlyused in this community setting. In this complex low-income
setting, other factors may influence antimicrobial resistance where
bacterial infections are common, diagnostic tools limited, care-seeking
is variable, and sanitation is lacking leading to high environmental
pathogen load and resistance gene sharing15,16.

Our study is the first to utilize unbiased genomic approaches to
define the relationship between community, outpatient use of anti-
biotics in the local low-income, Asian setting and relate this to the
composition and antimicrobial resistance gene profile in young chil-
dren. Our study confirmed the high usage of antibiotics in children
observed in other studies in South Asia31,32, We leveraged a clinical trial
with intensive home visits for data collection (including photography

of antibiotics to confirm their labeling) and adedicated stool collection
team, and utilized unbiased amplicon and whole-genome approaches
to determine the impact of community use of antibiotics on the
diversity, composition and antimicrobial resistome profile of the
intestinal microbiome in rural Bangladeshi children. This study design
is uniquely equipped to provide new information on the impact of
community use of antibiotics in this rural, low-income setting, which is
a critical global health question.

Our study is likely underpowered for the effects of individual
antibiotic classes, and therefore we refrained from conducting class-
specific analyses. Antibiotic use – including dose and duration – as
reported by the guardian was recorded through home visits, affecting

A

B

Fig. 5 | Correlation between antimicrobial resistance gene abundance and
microbiome composition. A Scatterplots illustrating correlation between total
antimicrobial resistance gene abundance and relative abundance of five selected
genera at midline. Data points, Spearman correlation coefficients and two-sided P-
values in light purple represent all midline samples with data for both variables and
those in dark purple represent samples from participants who received an anti-
biotic in the preceding 7 days (18 out of 316 available midline samples) (Shotgun
metagenomic data). At this timepoint, Escherichia showed a highly positive corre-
lation (Spearman r =0.86, P <0.001) with overall AMR gene abundance. Enter-
ococcus exhibitedaweaker correlation (Spearman r =0.16,P =0.009), although this
association appeared to strengthen in children who had received an antibiotic in

the last 7 days: Spearman r =0.44, P =0.066).B Scatterplots illustrating correlation
between total antimicrobial resistance gene abundance and relative abundance of
five selected genera at endline. The green data points, Spearman correlation
coefficients and two-sided P-values represent all available endline samples (312
available samples) (Shotgunmetagenomic data). At this timepoint, total AMR gene
abundance and Escherichia relative abundance were moderately correlated
(Spearman r =0.67, P <0.001). AMR correlation with Enterococcus was also
observed (Spearman r =0.23, P <0.001) AMR gene abundance was measured in
reads per kilobase per million sample reads (RPKM). Source data are provided in
the Source Data file.
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the enumeration of antibiotic exposure. However, antibiotics were
inspected and verified by field workers during these home visits. Sam-
ples of themedicationswere not tested for quality and concentration of
antibiotic as this was beyond the scope of the immediate study.

Moreover, our study addressed only the intestinal microbiome;
reprofiling and development of antimicrobial resistance may have
been more profound and may have been sustained for a longer dura-
tion at other sites such as the nasopharynx29. Additionally, some chil-
dren may have already received antibiotics prior to enrollment in the
BRISC trial, which may have influenced baseline data. It is unlikely that
our data indicate reverse causality, i.e. the changes in gut flora are the
reason for antibiotic use, given thatmost children received antibiotics
for fever and respiratory (runny nose, cough) symptoms,with only 21%
reporting antecedent diarrheal symptoms. Two large studies that have
evaluated the prevalence of diarrhea-causing pathogens in infections
in children in LMICs – including Bangladesh – report a range of bac-
teria, viruses, and parasites responsible33,34. Importantly, Enterococcus
was not highlighted as a bacterial cause of diarrhea in these findings,
and it generally does not cause diarrheal infection35.

In this real-world study conducted in a high antibiotic-usage
context in south Asia, community use of antibiotics by rural Bangla-
deshi infants did not cause sustained reprofiling of the gut micro-
biome. Our findings do not directly implicate suboptimal clinical
antibiotic stewardship and extensive community useof oral antibiotics
in the development of antimicrobial resistance in this setting. Under
the One Health approach, it is crucial to examine the impact of other
sources of excessive antibiotic use, such as their use in the care of
livestock, poultry, and fish, as well as hospital settings16,36. Evaluating
the collective effects of diverse sources of antibiotic exposure is
essential for a more thorough understanding of antimicrobial resis-
tance dynamics in this region.

Methods
We undertook a sub study within the BRISC (Benefits and Risks of Iron
InterventionS in Children) (trial registration: ACTRN12617000660381,
WHO UTN U111-1196-1125) trial in rural Bangladesh17. The trial protocol,
including stool collection and microbiome analyses, was approved by
ethics committees at the International Centre for Diarrhoeal Disease
Research, Bangladesh (icddr,b) and Melbourne Health, Melbourne,
Australia; and overseen by an independent Data Safety and Monitoring
Board. Parents or guardians of participants provided written consent
prior to enrollment and travel costs for study visits were reimbursed.
The full protocol is availablewith themainBRISCoutcomepublication17.

BRISC recruited 3300 children aged eight months living in Rup-
ganj Upazila, Bangladesh (a rural area about 50km from Dhaka) and
randomized them 1:1:1 to three months of either daily iron syrup (and
placebo multiple micronutrient powders, MNPs); iron, zinc, ascorbic
acid, vitamin A and folate containing MNPs (+ placebo iron syrup) or
placebo (placebo syrup and placebo MNP). To align with overall trial
timelines,we sought to recruit the final 1093 children of the BRISC trial
to the microbiome sub study for 16S rRNA amplicon analysis of stool.
Samples for shotgunmetagenomic sequencing were chosen randomly
from the sub study cohort, with priority given to samples from parti-
cipants who had a baseline and midline (+/- endline) sample available.

Statistics and reproducibility
As this was a retrospective, cross-sectional analysis of the impact of
antibiotic use on themicrobiome, sample size was not statistically pre-
determined. However, the relatively large sample size for 16S rRNA
amplicon analysis, combined with the high sequencing depth from
shotgun metagenomics, makes this one of the largest microbiome
studies undertaken in the field.

Investigators were blinded to group allocation throughout both
data collection and analysis. Samples were also sequenced in random
order (i.e., PCR plates and sequencing runs included samples from

different timepoints) to minimize any batch effects. Samples that
yielded <500 reads (16S rRNA amplicon sequencing) and/or that failed
the sequencing process were excluded from the analysis. Antibiotic
use and reported infections were not exclusion criteria.

Stool collection and transport
Guardians of all participants of the sub study were educated on stool
collection, provided nappies and specimen containers, and asked to
collect the stool passedwithin 3 hours of the visit. If stoolswerepassed
after the visit, dedicated staff were sent to retrieve the samples. Sam-
ples were stored on ice and transported to the field laboratorywithin a
further 3 hours, where samples were aliquoted and DNA/RNA Shield
(Zymo Research) added prior to freezing to −20 °C. Specimens were
then transported on dry ice to a −80 °C freezer at the International
Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b) facility in
Dhaka, Bangladesh, and subsequently shippedondry ice to TheWalter
and Eliza Hall Institute of Medical Research (WEHI), Australia.

Participant data relating to symptoms
Symptoms relating to infectionwere reported by themother/guardian
as part of home visits by field study staff during intervention period
(weekly, recall in the last 7 days) and follow-up period (monthly, recall
in the last month). If the participant had no data collected at a parti-
cular week, it was assumed that the participant did not have any
symptoms.

Participant data relating to antibiotic use
Antibioticmedication usewas also reportedby themother/guardian in
the same home visits, and the antibiotic was visually verified by the
study worker. We used data from the weekly visits to classify timing of
antibiotic use in relation to the midline sampling time point, estab-
lishing three definitions: antibiotic use in the week preceding stool
sampling, compared to no antibiotic use in that week; antibiotic use in
any of Weeks 9-12, compared to no antibiotic use in Weeks 9-12, with
any participant who also recorded Week 13 antibiotic use removed
from the analysis; and antibiotic use in any of Weeks 1–4 only, com-
pared to no antibiotic use in the intervention period, with any parti-
cipant who recorded antibiotic use in Weeks 1–4 and in a subsequent
week or weeks removed from the analysis. If the participant had no
data collected at a particular week, it was assumed that the participant
did not take antibiotic medication.

DNA extraction for microbiome analysis
Aliquots of samples were added to bead tubes (PowerBead Pro) along
with lysis buffer and were homogenized on a TissueLyser LT (Qiagen,
Venlo, Netherlands) for 10minutes at maximum speed. DNA was then
extracted with the DNeasy PowerSoil Pro Kit (Qiagen, Venlo,
Netherlands).

16S rRNA amplicon sequencing
An initial PCR reaction used universal primers (Integrated DNA Tech-
nologies) targeting the V4 hypervariable region of the 16S rRNA gene
to amplify this region (Supplementary Material). A second PCR reac-
tion joined the common overhang sequences introduced in the pre-
vious PCR reaction to dual-index barcode sequences (forward and
reverse) for sample identification after sequencing. This method was
developed by WEHI genomics core facility and has been used suc-
cessfully for stool microbiome 16S rRNA amplicon sequencing using
these PCR primers for the V4 region37. Each PCR plate contained at
least one positive control (a healthy donor stool that underwent DNA
extraction in parallel with sub study samples), one negative DNA
extraction control and several PCR negative controls (blanks). Librar-
ies including negative and positive controls were sequenced using the
MiSeq instrument (Illumina, San Diego, USA) using a 300 bp paired-
end protocol with 600 cycles, at the WEHI genomics core facility.
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Shotgun metagenomic sequencing
Shotgun metagenomic sequencing was performed on a subset of
samples (as well as controls) using the QIAseq FX DNA Library Kit
(Qiagen, Venlo, Netherlands), with input DNA and reagents used at
0.5x the specified volumes. First, input DNA was enzymatically frag-
mented for eight minutes to achieve a fragment size of 450 base pairs.
This was followedby adapter ligation and 8 cycles of PCR amplification
of library DNA. Library concentration was quantified byQubit™ dsDNA
Assay kit (Thermo Fisher Cat#Q32851) and library size was determined
using D1000 ScreenTape (Agilent Cat# 5067-5582) and visualized in
TapeStation 4200 (Agilent Cat# G2991BA). Equimolar amounts of
libraries were pooled and sequenced using NovaSeq (Illumina, San
Diego, USA).

Bioinformatic and statistical analysis
16S rRNA amplicon FASTQ files were processed using the DADA2
package in RStudio38. Data generated from this process were then
imported into phyloseq39. Samples with <500 reads and amplicon
sequence variants (ASVs) with zero reads were removed, and ASVs
were agglomerated at the genus level prior to analysis. Alpha diversity
was performed using the microbiomeSeq package in RStudio using
Shannon and inverse Simpson indices40. Group differences were cal-
culated using pair-wise ANOVA for each diversity measure. Differential
abundance at the genus level was evaluated from the 16S rRNA
amplicon data using ANCOMBC with default settings and adjusted P-
value using the Benjamini-Hochberg method to control for the false
discovery rate at a level of 5%41.

Shotgun metagenomic samples were processed using the bioBa-
kery workflows tool, consisting of the default quality control steps
from KneadData and taxonomic profiling using MetaPhlAn42. Taxo-
nomic differential abundance in relation to participant variables was
performed at the species level using MaAsLin2 with a minimum pre-
valence cut-off of 10% (i.e. a species had to be present in at least 10% of
samples to be included in the analysis)43. Relative abundance data
underwent centered log ratio normalization/transformation in MaA-
sLin2, with data for differentially abundant species including coeffi-
cient (approximating log2-fold change), standard deviation,
unadjusted and adjusted P-values (using Benjamini-Hochberg method
with a significance cut-off of 0.05)44.

Separately, the ShortBRED pipeline was used first to develop
markers from version 3.2.8 (2023) of the Comprehensive Antibiotic
Resistance Database (CARD)19 and then to determine the relative
abundance of these markers in the KneadData outputs45. The CARD
database defines the Antibiotic Resistance Ontology (ARO) and mar-
kers were developed for the AROs relating to determinants of anti-
biotic resistance. These results were then used in a separateMaAsLin2
with the same settings as above to evaluate differential abundance at
the ARO level in relation to participant variables. We reported reads
per kilobase of reference sequence per million sample reads (RPKM),
which adjusts for both sample sequencing depth and marker/gene
length, and thus normalizes the number of sequence copies to a
standard, enabling comparison between conditions. RPKM is an
established approach for presenting microbiome composition and
AMR data46–48.

The relationship between genus relative abundance and total ARO
reads overall and by antibiotic use was explored using Spearman’s
correlation analysis. Spearman’s correlation coefficients and unad-
justed P-values were calculated using ggpubr49.

Heterogeneity in the effect of antibiotic use in the preceding
7 days on differential abundance of AMR genes and microbiome
composition between BRISC trial armswas explored by fitting amodel
including antibiotic use, treatment group (i.e., iron/MNPs andplacebo)
and the interaction between antibiotic use and treatment group in a
separate MaAsLin2 analysis with the same settings as above applied

and extracting the log2-fold change, unadjusted and adjusted P-values
of the interaction term.

All P-values are two-sided.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequencing data used in this study have been deposited in the
NCBI Sequence Read Archive (SRA) database under BioProject acces-
sion PRJNA1081952 [https://www.ncbi.nlm.nih.gov/sra]. Source data
are provided with this paper.

Code availability
Codeused toprocess sequencingfiles (in R for 16S rRNAfiles andusing
Python for shotgun metagenomic files), perform statistical analysis
and generate figures (in R) is based on the respective packages cited in
themanuscript. Customcodewas not used. However, code is available
from the authors by request.
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