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Peripheral immune cell abundance
differences link blood mitochondrial DNA
copy number and Parkinson’s disease
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Mitochondrial dysfunctionplays an important role inParkinson’sdisease (PD),withmitochondrial DNA
copy number (mtDNA-CN) emerging as a potential marker for mitochondrial health. We investigated
the links between blood mtDNA-CN and PD severity and risk using the Accelerating Medicines
Partnership program for Parkinson’s Disease dataset, replicating our results in the UK Biobank. Our
findings reveal that reduced blood mtDNA-CN levels are associated with heightened PD risk and
increased severity of motor symptoms and olfactory dysfunction. We estimated blood cell
composition using complete blood cell profile when available or RNA-sequencing data as a surrogate.
After adjusting for blood cell composition, the associations between mtDNA-CN and PD risk and
clinical symptomsbecamenon-significant. BidirectionalMendelian randomization analysis also found
no evidence of a direct causal relationship between blood mtDNA-CN and PD susceptibility. Hence
peripheral inflammatory immune responses rather than mitochondrial dysfunction underpin these
previously identified associations in PD.

Parkinson’s disease (PD) is the second most common neurodegenerative
disorder worldwide. According to the World Health Organization, 8.5
million individuals livewithPDglobally in 2019. PDis reported to result in a
loss of 5.8 million disability-adjusted life years, with a reported increase of
81% in morbidity since 2000. PD is characterized by the progressive
degeneration of dopaminergic neurons in the substantia nigra region of the
brain, resulting in a deficiency of the neurotransmitter dopamine and
causing motor symptoms like tremors, bradykinesia, and rigidity, as well as
contributing to non-motor symptoms such as sleep disturbances, anosmia,
and cognitive impairment1. Notably, mitochondrial dysfunction is recog-
nized as a significant contributor to the pathogenesis of PD2. Mitochondria
serve as the cellular powerhouses responsible for generating adenosine 5′
triphosphate (ATP) by oxidative phosphorylation. In PD, dysfunctional
mitochondria can lead to impaired energy production, oxidative stress, and
molecular damage, which are believed to contribute to the death of dopa-
minergic neurons and disease progression3.

The diagnosis of PD primarily relies on clinical assessment of motor
symptoms, which can result in delays in diagnosis or even misdiagnosis.

Early detection of PD is crucial because current pharmacological treatments
are more effective when initiated in the early stages of the disease. Addi-
tionally, lifestyle changes such as increased physical activity have greater
efficacy during the early stages of the disease, as individuals typically
experience milder motor symptoms and can engage in more physical
exercises without risking falls4. Therefore, there is a need for reliable and
non-invasive biomarkers capable of assessing mitochondrial health, thus
facilitating the early diagnosis of PD.

Mitochondrial DNA copy number (mtDNA-CN), referring to the
quantity of mitochondrial DNA (mtDNA) molecules present in cells, is a
readilymeasurable indicator ofmitochondrial function.mtDNA-CNcanbe
measured using laboratory techniques like quantitative real-time poly-
merase chain reaction (qPCR) as well as high throughput methods such as
genotyping arrays, whole genome sequencing (WGS), and whole exome
sequencing (WES)5. Employing the qPCR technique on a cohort of 363
peripheral blood samples and 151 substantia nigra pars compacta tissue
samples, Pyle and colleagues observed a significant reduction in mtDNA-
CN in both peripheral blood and substantia nigra of individuals with PD
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when compared to matched controls6. Several studies which estimated
mtDNA-CN using sequencing data from the UK Biobank (UKB)7 have
discovered statistically significant associations between blood mtDNA-CN
and common diseases, including PD8–10. Despite multiple reported links
between mtDNA-CN and PD, to our knowledge, no study has investigated
this relationship in large-scale, PD-specific cohorts with deeper, PD-specific
clinical assessments, which the UKB lacks.

Longchamps et al. evaluated the existing mtDNA-CN estimation
techniques anddetermined thatmtDNA-CNderived fromWGS is themost
reliable choice for capturing association signals5. Existing WGS-derived
mtDNA-CN estimators calculate the ratio of themean coverage ofmtDNA
to themean coverage of nuclearDNA(nucDNA), assuming that short reads
are uniformly distributed in their alignment throughout the whole
genome8,9,11. However, coverage bias, which stems from factors like GC
content and homology, can introduce unwanted variation in the mean
coverage of both mtDNA and nucDNA12,13. With the rapid increase in the
availability ofWGS data, more accurate and efficient methods are required.

In this study, we introduce a mtDNA-CN estimator, named mitoCN,
designed to quantifymtDNA-CN fromWGS data while accounting for GC
bias and homology adjustments. Using data from the cohorts available
through the Accelerating Medicine Partnership program for Parkinson’s
Disease (AMP PD) portal, we investigated the association between blood
mtDNA-CN and PD risk, as well as motor and non-motor clinical assess-
ments. We found that lower blood mtDNA-CN is associated with a higher
PD risk and more severe motor symptoms and olfactory impairment.
Additionally, we revealed that these associations are predominantly due to
changes in blood markers of immune system function. To validate our
findings, we replicated our analysis using the WGS data of ~500,000 par-
ticipants from the UKB.

Results
mtDNA-CN estimation
In the discovery study, we utilized the AMP PD v3 dataset, released on
November 15, 2022. AMP PD consolidates data from eight unified cohorts:
BioFIND, Harvard Biomarkers Study (HBS), Lewy body dementia case-
control cohort (LBD), LRRK2 Cohort Consortium (LCC), Parkinson’s
disease Biomarkers Program (PDBP), Parkinson’s Progression Markers
Initiative (PPMI), Study of Isradipine as a Disease-modifying Agent in
Subjects With Early Parkinson Disease, Phase 3 (STEADY-PD3), and the
StudyofUrateElevation inParkinson’sDisease, Phase 3 (SURE-PD3).AMP
PD provides comprehensive clinical data for all participants, along with
WGS data for 10,418 jointly genotyped samples as well as transcriptomics
data for 3274 participants, including 8461 whole blood bulk RNA samples.
Given our focus on PD in this study and the unavailability of sequence

alignment data for the LCC cohort, we excluded the LBD and LCC cohorts
from the analysis.AMPPD is housedonTerra, a cloud computingplatform.

We developed mitoCN (https://github.com/bahlolab/mitoCN), a
method designed to estimate mtDNA-CN fromWGS data that adjusts for
GC bias and homology bias (“Methods”).We assessed the concordance and
percentage change between mtDNA-CN estimates produced by mitoCN
and a recently published method called mtSwirl9 (“Methods”), which cal-
culates mtDNA-CN using the ratio of the mean coverage of mtDNA to the
mean coverage of nucDNA. Our analysis revealed high concordance in
mtDNA-CN estimates between mitoCN and mtSwirl (R2 = 0.999,
p < 0.0001, Supplementary Fig. S1A). Compared to mitoCN, the average
percent change with mtSwirl for whole blood samples was −0.4%, closely
approximating zero (Supplementary Fig. S1B). The range of the percent
change extends from −21.7% to 15.2%. mtSwirl demonstrated slightly
improved mtDNA coverage among African and East Asian groups by
constructing self-reference sequences for each sample (Supplementary Fig.
S1C). The percent change in mtDNA-CN was 0.84% (range: −2.79% to
3.62%) for Africans and 0.03% (range: −3.59% to 2.84%) for East Asians.
While mtSwirl is designed for calling both mtDNA variants and copy
number by constructing self-reference sequences, mitoCN focuses solely on
mtDNA-CN estimation using aligned reads, offering faster computational
speeds compared to mtSwirl. For example, it requires around 10min of
CPU time for a 30× genome. Given the emphasis of our study on mtDNA-
CN estimation, we opted for mitoCN for our analysis.

Even though DNA source information for WGS samples was con-
sistently recorded as “whole blood” in AMP PD, we identified two distinct
distributions in the mtDNA-CN estimates (Supplementary Fig. S2A). This
observation suggests that DNA samples were extracted from two types of
blood samples. Given these independent distributions, it is necessary to
analyze the data from these two DNA sources separately. Therefore, we
classified the samples into two clusters using a Gaussian mixture model14

(Supplementary Fig. S2B). Platelets play a significant role in the discrepancy
of the mtDNA-CN distributions, as they exclusively contain mtDNA
without nucDNA15. A previous study showed that the estimation of
mtDNA-CN from whole blood samples is twice as high as that from
leukocytes16. Consequently, we interpreted cluster 1 as comprising platelet-
depleted blood samples, such as leukocytes or peripheral blood mono-
nuclear cells (PBMCs), and cluster 2 as containing platelet-abundant blood
samples, such as those derived from whole blood or buffy coat samples.
Cohorts differed markedly in their contributions to these two clusters with
the PDBP cohort having 84.2% of samples from cluster 1 (also referred to as
“platelet-depleted blood samples”) with the remaining samples allocated to
cluster 2 (also referred to as “platelet-abundant blood samples”). In contrast,
cohort PPMI had 39.7% samples from cluster 1 (Table 1).

Table 1 | Description of the AMP PD datasets and mtDNA-CN clustering results

Study Samples Female (%) Diagnosis at baseline Known PD mutation carriers WB bulk RNA-seq Age: mean (SD)

Case Control Other

Cluster 1: platelet-depleted blood samples

BioFIND 172 71 (41%) 99 70 3 48 (28%) 167 67 (6.9)

PDBP 1263 558 (44%) 728 432 103 389 (31%) 1232 64 (10.1)

PPMI 718 258 (36%) 465 224 29 286 (40%) 647 62 (10.7)

Cluster 2: platelet-abundant blood samples

HBS 1173 580 (49%) 639 531 3 350 (30%) 0 67 (10.2)

PDBP 237 104 (44%) 130 69 38 72 (30%) 148 65 (9.7)

PPMI 1089 576 (53%) 467 540 82 946 (87%) 799 61 (11.7)

STEADY-PD3 329 100 (30%) 329 0 0 101 (31%) 0 62 (9.2)

SURE-PD 259 127 (49%) 259 0 0 90 (35%) 0 63 (9.6)

Total 5240 2374 (45%) 3116 1866 258 2282 (44%) 2993 64 (10.6)

WB whole blood, SD standard deviation, Other other diagnosis, including prodromal PD, Alzheimer’s disease, Lewy body dementia, and others.
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Investigating associations between blood mtDNA-CN and PD
Previous studies have consistently reported that bloodmtDNA-CN tends to
be lower in males compared to females and declines with age5,17. We were
able to confirm these previous findings with mtDNA-CN through indivi-
dual cohort analyses and meta-analyses (“Methods”, Supplementary Figs.
S3, 4).

To investigate the association between bloodmtDNA-CN and the risk
of PD, we first performed cohort analysis by fitting robust linear models
using the “rlm()” function in the MASS R package, with PD diagnosis at
baseline, while adjusting for age, sex, and ancestry using the first five
principal components (PCs) (“Methods”, Supplementary Table S1). Sig-
nificant associations were observed in the PDBP cohort (p = 0.008) within
cluster 1, and in the HBS (p = 0.01) and PPMI (p < 0.0001) cohorts within
cluster 2, indicating that individuals diagnosed with PD have lower
mtDNA-CN compared to healthy controls. The STEADY-PD3 and SURE-
PD cohorts only included PD cases and were therefore not included in this
analysis. Subsequently, using the summary statistics from the cohort ana-
lysis, we performed ameta-analysis for each cluster (“Methods”, Fig. 1).We
observed a significant association in cluster 1 (beta:−0.03, 95% confidence
interval [CI]: [−0.05, −0.01], p = 0.006), but not in cluster 2, owing to the
heterogeneity among the cohorts (Cochran’s Q = 7.99, p = 0.02). Upon
excluding the PDBP cohort from cluster 2, there was no evidence of het-
erogeneity between the PPMI and HBS cohorts (Cochran’s Q = 0.41,
p = 0.52), and the association becomes significant (beta =−0.10, 95% CI:
[−0.13, −0.07], p < 0.0001). Overall, our findings demonstrate that lower
blood mtDNA-CN is associated with a higher risk of PD, regardless of the
likely origin of the cell type of the samples (“platelet abundant” or “platelet
non-abundant”).

We explored the associations of mtDNA-CN with the severity of PD
using several clinical assessments provided by AMP PD, including the
MovementDisorder Society-SponsoredRevision of theUnifiedParkinson’s
Disease Rating Scale part III (MDS-UPDRS III) for clinical motor exam-
ination, activities of daily living (ADL), olfactory impairment as assessed by
the University of Pennsylvania Smell Identification Test (UPSIT), and
cognitive performance measured by the Montreal Cognitive Assessment

(MoCA).Our analysis revealed significant associations ofmtDNA-CNwith
MDS-UPDRS III (cluster 1: beta =−0.003, p < 0.0001; cluster 2: beta =
−0.003, p < 0.0001), ADL (cluster 1: beta = 0.002, p = 0.02; cluster 2:
beta = 0.002, p < 0.0001), and UPSIT (cluster 1: beta = 0.002, p < 0.0001;
cluster 2: beta = 0.005, p < 0.0001) scores across both clusters (Supple-
mentary Figs. S5–7). However, we observed no significant association
between mtDNA-CN and MoCA score, except within the PPMI cohort
(Supplementary Fig. S8). Notably, the olfactory bulb has been identified as
one of thefirst regions of insult inPD18, and theUPSIT scorehas been linked
to the severity of PD. In summary, these findings indicate that decreased
blood mtDNA-CN levels are associated with increased severity of motor
symptoms and olfactory dysfunction, but not with cognitive decline.

Blood bulk mtDNA-CN is known to be influenced by blood compo-
sition, as reported in previous studies16,19. Gupta et al.9 suggested that pre-
viously reported associations between lowbloodmtDNA-CNand increased
risk of common diseases are secondary to changes in blood composition.
Therefore, it is important to determine whether the observed associations
could also be attributed to changes in cell composition. To address this, we
require a complete cell count profile from the blood samples used for DNA
extraction. Unfortunately, blood cell measurements are not available in the
AMP PD dataset. To overcome this limitation, we estimated cell type pro-
portions from thewhole bloodbulkRNA-sequencing (RNA-seq)datausing
CIBERSORTx20,21 and the LM22 signature matrix22, a well-established
reference for PBMCs (“Methods”). For this analysis, we utilized a subset of
the PPMI cohort, which includes the most comprehensive clinical data and
whole blood bulk RNA-seq data collected at baseline (N = 785). Using
stepwise regression model selection, we included six blood cell proportions
for blood composition correction, namely naïve B cells, naïve CD4 T cells,
restingmemoryCD4Tcells, restingmast cells, neutrophils, andwhite blood
cells. Importantly, all the selected blood variables are markers of immune
system function. The adjusted mtDNA-CN measure was defined as the
residual of the log-scaled rawmtDNA-CNwith cell composition correction
(“Methods”).

Subsequently, we examined the associations of PD-related variables
with both raw and adjusted mtDNA-CN (“Methods”, Table 2). Lower raw
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Fig. 1 |Meta-analysis of association tests betweenmtDNA-CN and PDdiagnosis.
For cluster 1, the meta-analysis results indicate that individuals diagnosed with
PD have lower mtDNA-CN compared to healthy controls (beta =−0.03,
p = 0.006). However, the association is not significant in cluster 2, mainly due to
the heterogeneity induced by the PDBP cohort. Upon excluding the PDBP cohort,

there is no evidence of heterogeneity between the PPMI and HBS cohorts
(Q = 0.41, p = 0.52), and the association becomes significant (beta =−0.10,
p < 0.0001). The error bars represent the 95% confidence intervals around the
point estimates of the effect sizes.
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mtDNA-CN is associated with a higher risk of PD, increased severity in
motor experiences of daily living (MDS-UPDRS II), motor examination
(MDS-UPDRS III), cognitive decline (MoCA), and olfactory impairment
(UPSIT). Correction for blood cell composition attenuated themtDNA-CN
PD effect size estimates; however, the associations for PD risk and olfactory
impairment remained significant aftermultiple testing corrections.Notably,
the UPSIT score demonstrates the most significant association with both
raw and adjustedmtDNA-CN (t = 4.76, p < 0.0001, and t = 3.56, p = 0.005),
respectively. In conclusion, changes in blood composition, reflecting the
peripheral immunedysfunction in individualswith PD, partially explain the
association between mtDNA-CN and PD. The remaining signal may arise
from the limitation of the CIBERSORTx estimates.

We then examined the relationship between PD risk and blood
markers indicative of immune system function, including lymphocyte
percentage, neutrophil percentage, and neutrophil-to-lymphocyte ratio
(NLR). Lymphocyte percentage was calculated by summing T cells, B
cells, and natural killer (NK) cells. Multivariable robust linear models
were used, modeling blood markers on PD variable+ age+ sex+
population (PC1-5). All three blood markers were significantly asso-
ciated with both risk and severity of PD, as assessed by MDS UPDRS I-
III, ADL, and UPSIT scores (Supplementary Table S2), even after false
discovery rate (FDR) multiple testing correction. Individuals currently
taking PD medications were excluded from the cohort during baseline
screening. Therefore, the observed associations were not influenced by
dopamine replacement therapy.

To further explore whether PD medications influence the blood
marker of immune system function, we analyzed the data from the PDBP
cohort, which includes individuals on PD medications at baseline. Seven
hundred and forty-eight individuals diagnosed with PD had baseline whole
blood bulk RNA-seq data and medication history, indicating whether the
participants were taking levodopa, dopamine agonists, or other unspecific
PD medications at the time their blood samples were collected. We used a
multivariable robust linear model as follows: blood marker ~ on levo-
dopa+ on dopamine agonists+ on other PD medications+ age+ sex+
PC1-5. Our analysis indicates that dopamine agonists are associated with
increased levels of peripheral inflammation,whereas levodopa andotherPD
medications do not appear to influence these markers (Supplementary
Table S3). Nevertheless, the effects of these medications do not alter the
relationship between blood markers and PD severity. For instance, we
assessed the association between the NLR and the MDS UPDRS III,
observing an association (beta = 0.003, p = 0.01) that persists even after
adjusting for medication effects (beta = 0.003, p = 0.009).

Using the GWAS summary statistics for both raw and adjusted blood
mtDNA-CN fromref. 9, we constructed the polygenic risk scores (PRSs) per
individual in AMP PD (Supplementary Table S4). Subsequently, we
assessed the relationships between the actual mtDNA-CN estimates and
these PRSs. Despite observing significantly positive correlations between
blood mtDNA-CN estimates and PRSs in most cohorts, the correlation
coefficients were found to be modest (Supplementary Table S5). This
modest correlation can be attributed to the fact that mtDNA-CN is influ-
enced by both genetic and environmental factors, with a SNP-based herit-
ability of ~4%9. Additionally, the PRSs exhibit no correlation withmtDNA-
CN estimates from brain samples (Supplementary Table S5). Furthermore,
our investigation into the associations between mtDNA-CN PRSs and PD
did not reveal any significant associations with PD (raw mtDNA-CN PRS:
p = 0.37, adjusted mtDNA-CN PRS: p = 0.65, see Supplementary Fig. S9).

Investigating causal relationships between blood mtDNA-
CN and PD
We performed bidirectional two-sample Mendelian randomization (MR)
analyses using GWAS summary statistics to assess the causal relationship
between the risk of PD and blood mtDNA-CN estimated from different
sequencing data, WGS, genotyping arrays, and a combination of WES and
genotyping array data (Supplementary Table S4). The inverse variance-
weighted (IVW)method analysis showedweak evidence for potential causal
effects between mtDNA-CN and PD (Fig. 2). The weighted median,
weighted mode, and MR Egger regression approaches yielded similar esti-
mates (Supplementary Table S6). In summary, our findings suggest no
direct causal relationship between blood mtDNA-CN and the risk of PD.

The robustness of our findings was confirmed through sensitivity
analysis (“Methods”). Cochran’sQ testwas utilized to identify heterogeneity
(Supplementary Table S7). Given the detection of heterogeneity, we applied
the random-effect (RE) IVWMRapproach, ensuring the applicability of our
results.Moreover, all intercepts assessedwith theMREggermethod resulted
in no significant p-values (Supplementary Table S7), indicating that our
results were not influenced by horizontal pleiotropy. In most cases, leave-
one-out analyses did not identify SNPs that influenced the final estimates,
and the funnel plots did not provide significant evidence of bias when
evaluating potential biases in the genetic instrumental variables (IVs)
(Supplementary Figs. S10–17).

UK Biobank replication study
In the replication study,weutilizedWGSdata from~500,000participants in
the UKB. This included data from the initial release of around 200,000

Table 2 | Association test results of raw and adjusted mtDNA-CN with PD variables

PD variable sample size raw mtDNA-CN adjusted mtDNA-CN

beta t p p.adj beta t p p.adj

Diagnosis 726 −0.108 −4.54 <0.0001 <0.0001 −0.072 −3.05 0.002 0.02

MDS UPDRS I 785 0.002 1.02 0.31 0.49 0.003 1.48 0.14 0.33

MDS UPDRS II 785 −0.007 −3.80 0.0002 0.0006 −0.004 −2.25 0.03 0.09

MDS UPDRS III 785 −0.004 −4.65 <0.0001 <0.0001 −0.002 −2.55 0.01 0.05

MDS UPDRS IV 214 0.011 1.64 0.10 0.20 0.007 1.11 0.27 0.41

MoCA 784 0.011 3.13 0.002 0.005 0.006 1.72 0.09 0.24

RBD 781 0.002 0.60 0.55 0.59 0.000 −0.09 0.93 0.93

ESS 514 −0.003 −1.00 0.32 0.49 −0.004 −1.21 0.23 0.40

UPSIT 768 0.006 4.76 <0.0001 <0.0001 0.005 3.56 0.0004 0.005

ADL 756 0.002 2.17 0.03 0.07 0.001 0.60 0.55 0.70

MRI 364 0.022 0.79 0.43 0.56 0.033 1.20 0.23 0.40

The table shows the PD-related variables, sample sizes, effect sizes, t values, p values, and false discovery rate (FDR) adjustedp values for the output ofmultivariable regressionmodels, modeling raw and
adjusted mtDNA-CN on PD variable+ age+ sex+ population, respectively.
MDSUPDRSMovement Disorder Society-Sponsored Revision of theUnifiedParkinson’s DiseaseRating Scale,MoCAMontreal Cognitive Assessment,RBD rapid eyemovement sleep behavior disorder,
ESS Epworth Sleepiness Scale, UPSIT University of Pennsylvania Smell Identification Test, ADL activities of daily living,MRImagnetic resonance imaging.
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participants in late 2021, as well as data from the subsequent release of the
remaining ~300,000 participants in late 2023. Participants were included
only if they had complete data for all variables used in this analysis. We
identified related individuals within third-degree relatedness (kinship
coefficient > 0.0625). To maximize the inclusion of PD cases, we excluded
related individuals while ensuring the retention of asmany cases as possible.
In total, the analysis encompassed 367,322 samples (Table 3).

The UKB provides a complete blood cell profile for the participants as
measured with the Beckman Coulter LH750 instruments. We selected 21
blood measurements from the Category Blood Count (Category 100081),
excludingnucleated redblood cell and reticulocytemeasurementsdue to the
absence of DNA in these cell types. Additionally, basophil measurements
were excluded due to their low contributions to the total cell profile (<1%).
Through stepwise regression model selection, the final statistical model
incorporated nine blood measurements: white blood cell count, platelet
count, plateletcrit (PCT), mean platelet volume, platelet distribution width,
lymphocyte percentage, monocyte percentage, neutrophil percentage, and
eosinophil percentage. Adjusted mtDNA-CN was determined using the
residuals of the final model.

To assess the association of raw and adjusted blood mtDNA-CN with
PD diagnosis, we applied robust linear models, modeling raw and adjusted
mtDNA-CN on PD+ sex+ age+ batch (2021 or 2023 release)+
population (via first five ancestry PCs), respectively. Significant associations
were observed in the raw mtDNA-CN (beta: −0.02, 95% CI: [−0.012,
−0.028], p < 0.0001,Table 4), indicating that individuals diagnosedwith PD
have lower mtDNA-CN compared to those without PD. However, fol-
lowing blood variable correction, no significant association was detected
between mtDNA-CN and PD diagnosis (beta: −0.003, 95% CI: [0.004,
−0.01], p = 0.38, Table 4), suggesting that the observed associations can

largely be attributed to changes in blood composition. The associations
between different blood variables and PD diagnosis are presented in Sup-
plementary Table S8. Following correction for multiple testing, we detected
significant associations between PD risk and platelet count, PCT, as well as
the count and percentage of lymphocytes, monocytes, neutrophils, and
eosinophils, alongside the NLR. Notably, among these associations, NLR
exhibits the largest effect with a t value of 12.37 and p < 0.0001.We explored
the correlation between NLR and C-reactive protein (CRP, Data-Field
30710), an acute-phase protein that increases in response to inflammation.
Using the robust Winsorized correlation test, we identified a positive cor-
relation betweenNLR andCRP (R = 0.12, p < 0.001), further supporting the
role of NLR as an indicator of peripheral inflammatory immune responses.
Additionally, we observed a negative correlation between NLR and bulk
blood mtDNA-CN (R =−0.30, p < 0.001). After adjusting for blood com-
position, the correlation is close to zero (R = 0.02, p < 0.001), suggesting that
the initial observed relationship is likelymediated by blood cell composition
rather than a direct biological link between NLR and mtDNA-CN.

In a previous study, Müller-Nedebock et al. showed increased blood
mtDNA-CN in self-reported African ancestry individuals with PD (72 PD
cases)23. To investigate whether the associations between immune cell
abundance and PD risk differ in this group from those in the broadermulti-
ancestry cohort, we analyzed data from genetically confirmed African
ancestry individuals within the AMP PD andUKB datasets, using the same
methods applied to the entire cohorts. However, due to the limited number
of PD cases in African ancestry group (21 in AMP PD, 28 in UKB), we
observedno significant differences in immune cell distributions betweenPD
cases and controls (see SupplementaryNotes and Supplementary Table S9).
The effect size directions ofmost of the blood variables were consistent with
those in the multi-ancestry analysis, except for platelet count (African:
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Fig. 2 | Mendelian randomization using the IVW method estimated the causal
effects between blood-derived mtDNA-CN and PD susceptibility. a causal effect
frommtDNA-CN estimates using different techniques to PD risk; b causal effects of
PD on mtDNA-CN. The third column provides the number of SNPs selected as

instrumental variables in the analysis. The forest plots visually represent the effect
size, beta, along with the confidence interval. The error bars represent the 95%
confidence intervals around the point estimates of the effect sizes.

Table 3 | Description of the UKB dataset

UKB Sample size Female (%) PD cases Mean age (SD)

Batch 1 (2021 release) 151,514 82,436 (54.4%) 1529 57 (8.1)

Batch 2 (2023 release) 215,808 114,517 (53.1%) 2268 57 (8.1)

Total 367,322 196,953 (53.6%) 3797 57 (8.1)

The table displays sample sizes, female percentages, the number of PD cases, and the mean and standard deviation of age in the two batches of whole-genome sequencing data released by the UK
Biobank.
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beta = 18.774, p = 0.5, multi-ancestry: beta =−3.132, p = 0.0006) and PCT
(African: beta = 0.015, p = 0.5, multi-ancestry: beta =−0.003, p = < 0.0001).
Discrepancies in platelet measures might explain the conflicting results
reported by Müller-Nedebock et al. compared to other studies on PD.
Further investigations with larger cohorts are required to clarify the influ-
ence of platelets on PD across different ancestries.

Discussion
While studies have previously utilized UKB data to investigate the asso-
ciation between mtDNA-CN and common disorders, including PD, none
have utilized large-scale PD-specific data with comprehensive clinical
assessments. By leveraging WGS data across multiple cohorts from the
AMP PD resource, we report associations between blood bulkmtDNA-CN
and both the risk and severity of PD. However, by correcting for both
estimated and measured blood cell composition, we show that these asso-
ciations can be predominantly attributed to blood markers of immune
system function. Importantly, we demonstrate no causal relationship
between blood mtDNA-CN and PD susceptibility using bidirectional two-
sample MR.

While we did not find evidence of mitochondrial dysfunction through
blood mtDNA-CN, our findings suggest that peripheral inflammatory
immune responses may significantly contribute to the pathogenesis of PD.
Previous studies have indicated that a lower lymphocyte count is associated
with an increased risk of PD, drivenby reductions inhelper-CD4+Tcell and
B-cell counts24–27. Additionally, several studies have suggested that higher
neutrophil and lower lymphocyte counts are linked to an increased risk of
PD and higher Unified Parkinson’s Disease Rating Scale (UPDRS) motor
scores28,29. The NLR reflects the dynamic relationship between innate
(neutrophils) and adaptive cellular immune response (lymphocytes) during
illness and various pathological states30.

There is evidence showing that mitochondria regulate inflammatory
responses and are involved in cell death pathways31,32. Our study demon-
strated that the previously reported associations between blood mtDNA-
CN andPD aremediated by blood cell composition. However, this does not
imply that blood mtDNA-CN directly reflects the mitochondrial role in
peripheral inflammatory immune responses. A recent study9 suggested that
blood mtDNA-CN does not indicate mitochondrial function in the innate
immune response, as evidenced by their finding of no direct causal rela-
tionship between adjusted blood mtDNA-CN and neutrophil counts. This
finding does not conclusively dismiss mtDNA-CN as a potential marker of
mitochondrial dysfunction. It remains critical to directly assess the rela-
tionship betweenmtDNA-CNandmitochondrial function using assays like
the Seahorse XFCellMito Stress Test. Due to the absence of specific data on
mitochondrial dysfunction in both theAMPPDandUKBdatasets, wewere
unable to directly evaluate the relationship between bloodmtDNA-CN and
mitochondrial dysfunction using additional indicators, such as markers of
energymetabolism ormitochondrial respiratory function. Further research
is essential in this area.

We recognized challenges in performing mtDNA-CN analysis, parti-
cularly regarding missing or incorrect DNA source information. The
number of mitochondria varies across different tissues and cell types due to
varying energy requirements and biological functions. For instance, tissues

with higher energy demands such as the brain and liver exhibit higher
mtDNA-CN. Additionally, platelets contain exclusively mtDNA but no
nucDNA, resulting in higher mtDNA-CN levels in whole blood samples
compared to PBMCs. Consequently, mtDNA-CN serves as a useful tool for
identifyingDNA cell type sources.When conductingmtDNA-CN analysis,
it is crucial to ensure that the sequencing data are generated from the same
DNA source or, at the very least account for this in the statistical modeling.
The gnomAD resource has also identified this issue and chose to only
include samples with mtDNA-CN falling within an arbitrary range of
50–50033 for homogeneity, however, this may lead to decreased statistical
power. In our study, we included all samples and addressed this issue by
clustering the samples based on DNA sources using the Gaussian mixture
model. Previous studies5,34 have demonstrated that DNA extraction meth-
ods influence the reproducibility of qPCR-based mtDNA-CN estimates,
showing that mtDNA-CN from cell lysate is significantly less variable
compared to those obtained using traditional phenol-chloroform-isoamyl
alcohol and silica-based column methods. While we have attempted to
account for variance due to different techniques across recruitment centers,
the lack of specific DNA extraction information prevented a thorough
assessment of this factor in our study. This further underscores the
importance of documenting DNA extraction procedures in mtDNA-CN
research. Additionally, further investigations are required to evaluate the
impact of newer DNA extraction technologies, such as the magnetic bead-
based method used in the UKB, on mtDNA-CN estimation.

We also developed an mtDNA-CN analysis method which corrected
for sequencing bias such as GC bias. We benchmarked this method but
found that it did not significantly enhance the association findings. Mito-
chondria have a very narrow range ofGCcontent variation,which spans the
optimal read capture part of the GC distribution, at least in humans, and we
suggest that this is why thismethod did not result in a statistically significant
improvement in association findings.

Another challenge of mtDNA-CN analysis is the lack of cell compo-
sition data from the same DNA source samples. Gupta et al. demonstrated
that blood cell composition influences blood bulk mtDNA-CN9, a phe-
nomenon that extends to other tissues. For example, mtDNA-CN varies
across different brain regions due to both distinct cellular composition and
function. This may partially explain why Pyle et al. observed the association
between mtDNA-CN and PD only in the substantia nigra but not in the
frontal cortex6. We demonstrated that it is feasible to use cell composition
data in cohort analysis employing two approaches: (i) using RNA-seq to
estimate cell proportions, which is valid under the assumption that RNA
and DNA were extracted from the same sample, and (ii) using direct
measurements of blood cell type composition using a standard platform.

Of note Yang et al. estimated cell type composition in RNA-seq using
xCell35, but this method produces enrichment scores rather than percen-
tages, rendering it unsuitable for cell composition correction to be used in
mtDNA-CN analysis. Instead, we estimated cell-type proportions using
CIBERSORTx20 and validated its performance using a test dataset with
ground truth cell proportions.

Our findings underscore the importance of analyzing cohorts with cell
composition data. It is imperative to ensure that these data are collected at
the same time as when performing DNA extraction for the purpose of

Table 4 | Association test results of raw and adjusted blood mtDNA-CN with PD risk in the UKB cohort

Variables raw mtDNA-CN adjusted mtDNA-CN

beta se t p beta se t p

Sex −0.043 0.001 −53.89 <0.0001 0.002 0.001 3.41 0.001

Age −0.003 0 −55.34 <0.0001 −0.002 0 −42.91 <0.0001

Batch 0.018 0.001 22.39 <0.0001 0.016 0.001 21.96 <0.0001

Diagnosis −0.020 0.004 −5.07 <0.0001 −0.003 0.003 −0.87 0.38

The table shows the effect sizes, standard errors, t values, and p values for the output of multivariable regressionmodels, modeling raw and adjustedmtDNA-CN on PD+ age+ sex+ batch+ population,
respectively. Baselines: sex—female; batch—batch1 (2021 release); diagnosis—control.
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mtDNA-CN analysis. as cell composition appears to be the main driver of
PD associations with mtDNA-CN in this study and cell composition fur-
thermore changes over time. We hypothesize that this will also have con-
founded previously published studies where no such corrections were
performed, usually because the additional data required were missing. This
suggests that all studies that intend toworkwithmtDNAshould endeavor to
generate and provide cell composition, using the same sample, with the
preferred approach being to use the Beckman Coulter method.

Both cell composition correction methods rely on mathematical
methods to estimate DNA sources and cell compositions. The RNA-seq-
based method is likely to be the less accurate method. CIBERSORTx, the
deconvolutionmethodwe employed, like all signature gene-basedmethods,
relies heavily on reference gene expression data, which may not fully
represent the complexity of all possible cell types and states. Also, itmay not
always distinguish between closely related cell subtypes with similar gene
expression profiles and artificially deflate variation in estimates. This lack of
resolution can limit the biological insights gained from the RNA-seq
deconvolution results. This could explain why there is still a significant
association between mtDNA-CN and PD after cell composition correction
in the discovery study but not in the replication study.

In summary, our findings indicate that blood mtDNA-CN is not a
biomarker of mitochondrial dysfunction for PD but confounds a potential
immune signature which we were able to identify instead and which merits
further investigation.We arrived at our conclusions using two of the largest
datasets in the world, leveraging very recent findings9.

Methods
Data cohorts
The AMP PD (https://amp-pd.org/) is a collaborative research initiative
aimed at advancing the understanding and treatment of PD. The dataset
comprises diverse and extensive information from individuals with PD,
including clinical, genetic, and biomarker data. Participants contribute
detailed clinical histories, demographic information, and undergo various
assessments, such as cognitive and motor function evaluations. Genetic
data, obtained throughWGS, provide insights into the genetic foundations
of PD,while biomarker data, including neuroimaging and biofluid analyses,
offer valuable insights into disease progression. Macrogen and the Uni-
formed Services University of Health Sciences conducted all sequencing
using the IlluminaHiSeqXTen sequencer.Datawere aligned to theGRCh38
reference genome. Access to the AMP PD tier two data, including genetic
information, was obtained through the application process. All the
individual-level analyses were performed on the Terra platform.

The UKB is a major biomedical database that aggregates data from
~500,000 participants aged 40–69 in the United Kingdom36. This extensive
dataset encompasses comprehensive information on genetic, clinical, and
lifestyle details. In this study, individuals with PD were identified from
hospital episode diagnosis, primary care records, and death registries (fields
41234, 42040, and 40023), using all coding that mapped to ICD10 G20
(Parkinson’s disease) in theUKB’s codemapping tables (Resource592). The
first round ofWGS, released in late 2021 (Batch 1), involved selecting about
200,000 samples using a pseudorandom approach to ensure cohort repre-
sentativeness, with 1728 participants diagnosed with PD. In late 2023, the
second round of WGS (Batch 2) was released for the remaining
~300,000 samples, including 2562 participantswith PD.DNAsamples were
extracted from buffy coat obtained from participants37. Samples underwent
sequencing using Illumina NovaSeq6000 technology by two sequencing
providers, deCODEGenetics and theWellcomeTrust Sanger Institute.Data
were aligned toGRCh38 before undergoing contamination and data quality
control. Access to all UKB data was granted on June 18th, 2019, application
#36610. mtDNA-CN estimation was carried out on the UKB Research
Analysis Platform, DNAnexus. This study was approved by theWalter and
Eliza Hall Institute of Medical Research (WEHI), Human Research Ethics
Committee (HREC reference 17/09LR and 22/19). All components of this
study were conducted in accordance with the principles embodied within
the Declaration of Helsinki.

mitoCN
The existing mtDNA-CN estimators using WGS data, including mtSwirl,
assume that reads are uniformly distributed in their alignment to the
reference genome and utilize the following formula9,11,

mtDNA copy number ¼ mtDNA mean coverage
nucDNA mean coverage

× 2 ð1Þ

In this study, we introducemitoCN, amethod for estimatingmtDNA-
CNusing alignment depth fromWGSdatawhile adjusting for coverage bias
stemming from homology regions and GC content. mitoCN requires
aligned short-read sequencing data in BAM or CRAM format. Aligned
reads are filtered out if they have low mapping quality (<30) or SAM
alignment flag 3844, which includes: (1) unmapped reads, (2) reads not
designated as primary alignment, (3) reads failing platform/vendor quality
checks, (4) PCR or optical duplicates, and (5) supplementary alignment.
Subsequently, it segments reads into 100-base read bins. To adjust
homology bias, we exclusively consider “unique” regions with mapp-
ability = 100%. To account forGCbias, we initially selected 100 bp read bins
with the same GC content range in mtDNA, from 30% to 60%, and then
grouped them into 6 clusters with 5% intervals. Hence, we assume that read
counts in disjoint read segments are independent and follow the distribu-
tions described below:

M Bð Þ � Poisson μNp �; βi
� � ð2Þ

A Bð Þ � Poisson 2Np � βi
� � ð3Þ

where, B denotes a 100 bp genomic interval (read bin), and we denote the
numberof reads aligning intobinBonmtDNAasM(B) and for autosomeas
A(B). The parameter μ represents the mitochondrial DNA copy number
(mtDNA-CN),Np denotes the average coverage per read bin, which equals
the ratio of the total number of reads to the total number of read bins, and βi
represents the GC bias parameter in each GC group i ¼ 1; 2; . . . ; 6ð Þ
(Supplementary Notes).

Additionally, to enhance computational efficiency, we employed
mosdepth (version 0.2.9) for coverage calculation, a tool that operates nearly
twice as fast as the next fastest option, samtools38,39. Moreover, employing
the same methodology used for estimating mtDNA-CN, mitoCN enables
the assessment of copynumbers for sexchromosomes (chromosomesXand
Y). Aberrations in sex chromosome copy numbers, such as XXY and XYY,
are not uncommon in the general population and have been linked to
specific disorders, such as Klinefelter syndrome and Jacobs syndrome40,41.

To compare mitoCN with mtSwirl9 (https://github.com/rahulg603/
mtSwirl), we applied mtSwirl (v2.5_MongoSwirl_Single) to the AMP PD
datasets on the Terra platform. It was observed that the mtSwirl output file
(https://github.com/rahulg603/mtSwirl/issues) lacked results for both
mtDNA-CN and mean nucDNA coverage. In response, we forked the
repository and added commands to compute the mean nucDNA coverage,
using samtools idxstats, samtools flagstat, and GATK
CollectQualityYieldMetrics39. Subsequently, we determined mtDNA-CN
using the formula: 2 ×meanmtDNAcoverage/meannucDNAcoverage.To
compare the estimates from mtSwirl and mitoCN, we measured con-
cordance using the square of the correlation (R2) between the two estimates
and the percent mtDNA-CN change with mtSwirl using the following
formula:

percent change in mtDNA copy number

¼ mtSwirl estimate�mitoCN estimate
mitoCN estimate

ð4Þ

Statistical analysis
For cohort association tests, we used robust linear models to mitigate the
impact of outliers on regression estimates, utilizing the “rlm()” function
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from the MASS R package (version 7.3-60)42,43. Log-transformed mtDNA-
CN, represented as log(mt),was usedas thedependent variable and adjusted
for ancestry background using the first five principal components (PC1-5).
Specifically, the followingmodels were utilized for tests involving covariates
(age and sex) and PD-related variables (e.g., diagnosis), respectively:
1. Model for covariates: log(mt) ~ age+ PC1-5; log(mt) ~ sex+ PC1-5.
2. Model for PD-related variables: log(mt) ~ PDdiagnosis+ age+ sex+

PC1-5.

For meta-analysis, RE meta-analysis models were applied, fitted with
restricted maximum likelihood estimation using the metafor R package
(version 4.4-0)44. Two-sample t-tests with unequal varianceswere employed
to assess the significance of themean difference in binary phenotypes. The p
values, except for those in the meta-analyses, were adjusted to control the
FDR at 5% using the Benjamini–Hochberg procedure. All statistical ana-
lyses were conducted using R version 4.3.1.

Blood composition estimation and correction
WholebloodbulkRNA-seqdatawere obtained fromasubset of participants
fromthePPMIcohort. Thegene-level counts fromanRNA-seq experiment,
featureCounts, were accessed through the Terra platform and were con-
verted to counts per million (CPM) using the edgeR R package (version
4.0.5)45,46. The Ensembl gene IDs from the featureCounts matrix were
annotated using the biomaRt R package (version 2.58.0)47,48 to retrieve
associated HUGO gene symbols.

We estimated the cell type proportions from the bulk whole blood
RNA-seq data using CIBERSORTx21. The reference gene expression
profile LM22 served as the signaturematrix, consisting of 547 genes that
differentiate among 22 human hematopoietic cell phenotypes22. Nota-
bly, as LM22 includes genes only for PBMCs and not platelets, we
employed the absolute score for cluster 2 to reflect the absolute pro-
portion of each cell type in a mixture. B-mode (bulk mode) batch
correction was applied to address technical differences between the
LM22 signature matrix derived from microarrays and the input bulk
RNA-seq data. Significance analysis was conducted with 100 permu-
tations. The absolute score, reflecting the absolute proportion of each
cell type in a mixture, was utilized.

To assess the performance of the CIBERSORTx and validate the
cell composition estimation, we employed a validation cohort com-
prising whole blood samples from 12 healthy adults, sourced from the
CIBERSORTx website (https://cibersortx.stanford.edu/download.
php). This cohort offers ground truth cell proportions determined by
direct flow cytometry and whole blood bulk RNA-seq data. Applying
the same parameters described above, we estimated the cell composi-
tion of the validation cohort and compared the estimates with the
ground truth proportions using Pearson correlation tests. Despite
systematically over- or under-estimates of some cell types, such as
neutrophils and monocytes, the overall proportion estimates show
significantly positive correlations with the true measurements (R:
0.65–0.95, Supplementary Fig. S18A). Given our intention to use the cell
composition for covariate adjustment, the relative values across sam-
ples are crucial, and the estimation bias will not impact the downstream
analyses. Boxplots illustrating the range of proportion estimates from
the validation cohort and healthy controls in the AMP PD data
demonstrate a consistent distribution across cell types (Supplementary
Fig. S18B, C). These results suggest that the computationally estimated
proportions are reliable.

Weutilized total absolute score as the proportion ofwhite blood cells in
a mixture of whole blood and selected 8 of 22 cell types with proportions
>0.01. These include naïve B cells, naïve CD4 T cells, resting memory CD4
T cells, activatedmemory CD4 T cells, resting NK cells, monocytes, resting
mast cells, and neutrophils. Using a stepwise model selection procedure we
excluded three blood variables: activated memory CD4 T cells, resting NK
cells, andmonocytes. AdjustedmtDNA-CNwas defined using the residuals
of the following model: log(mtDNA-CN) ~ naïve B cells+ naïve CD4

T cells+ resting memory CD4 T cells+ resting mast cells+
neutrophils+white blood cells.

Polygenic risk score
Using the summary statistics made available by Gupta et al.9 from the
across-ancestry meta-GWAS (Supplementary Table S4, Supplemen-
tary Note) we calculated the PRSs for both raw and adjusted mtDNA-
CN for all individuals in the AMP PD v3 dataset with available WGS
data. The GWAS for adjusted mtDNA-CN identified 92 Linkage Dis-
equilibrium (LD)-independent signals, with 88 variants present in the
AMP PD dataset. Onemissing variant, rs578069621, was replaced with
SNP in perfect LD (D′ = 1), rs141447648, using the LDProxy49 tool. The
resulting 89 SNP PRS was calculated using the --score flag in PLINK
2.050. In the case of rawmtDNA-CN, a similar approach was employed,
leading to the utilization of 134 out of 141 variants for PRS calculation.
The two PRSs are in positive correlation (R = 0.62, p < 2.2e-16).

To validate our calculation, we demonstrated a negative correlation
betweenPRSs and kinship coefficients (Supplementary Fig. S19), suggesting
that individuals with familial relationships exhibit more similarity in their
PRSs compared to unrelated individuals. Additionally, we show that both
mtDNA-CN PRSs are positively correlated with actual mtDNA-CN esti-
mates from blood samples (Supplementary Table S5). To investigate the
associations between PD and the mtDNA-CN PRSs, density plots, and t-
tests were utilized to compare the PRSs between healthy controls and
individuals diagnosed with PD.

Bidirectional MR between mtDNA-CN and PD
We performed a bidirectional two-sampleMR analysis, employing SNPs as
IVs based on summary statistics fromGWASs. The summary-level data for
PD risk was obtained from a recent meta-analysis of GWASs in the Eur-
opean population51. For blood-derived mtDNA-CN, we utilized three
GWAS datasets employing different estimation methods, including esti-
mates from WGS with and without adjusting for cell composition9, esti-
mates from genotyping data10, and estimates from a combination of WES
and genotyping arrays52. All mtDNA-CN GWAS studies were conducted
using UKB data, and the majority of participants had European ancestry
(Supplementary Table S4).

To ensure the selection of valid SNPs as IVs for our study, several
criteria were applied. This included filtering SNPs based on p-value
thresholds (p < 5 × 10−6 for PD and p < 5 × 10−8 for mtDNA-CN pheno-
types), conducting LD clumping (r2 = 0.001 with a window size of
10,000 kb) with the “clump_data()” function in the TwoSampleMR R
package, aligning the effect alleles of the exposure and outcome variables to
the forward strand, and excluding palindromic SNPs.

For the causal estimate, we employed multiple methods, including
IVW, MR Egger, weighted median, and weighted mode. To assess the
robustness of the causal estimates, sensitivity analyses were conducted,
incorporating the heterogeneity test measured by Cochran’s Q statistic and
pleiotropy by the MR-Egger intercept test. Furthermore, to evaluate the
potential impact of each SNP on the IVW estimate, leave-one-out analyses
were performed, systematically removing one SNP at a time. Funnel plots
were used to visualize the selection bias of IVs. All statistical analyses were
conducted inR software (version 4.3.1) using theRpackageTwoSampleMR
(version 0.5.7)53,54.

Data availability
Access to the AMP PD data is available through the Terra platform upon
completion of an AMP PD access application (https://www.amp-pd.org/
register-for-amp-pd). UKB phenotype and WGS data can be obtained
through theUKBResearch Analysis Platform following the submission of a
UKB access application (https://ukbiobank.dnanexus.com/landing).
Individual-level data, mtDNA-CN estimates, generated as part of AMP PD
have been returned to enable utilization of the full individual-level data by
the broader scientific community through theTerraworkspace (https://app.
terra.bio/#workspaces/bahlo_lab_amp_pd/MJFF-021399/data).
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Code availability
The mitoCN software is accessible to the public at GitHub (https://github.
com/bahlolab/mitoCN). The underlying code for this study is available on
GitHub and can be accessed via this link https://github.com/bahlolab/
mitoCN/tree/main/scripts.
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