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Preface/abstract:  31 

Apoptosis is a form of programmed cell death that is regulated by the balance between pro-32 

survival and pro-apoptotic BCL-2 protein family members. Evasion of apoptosis is a hallmark 33 

of cancer which arises when this balance is tipped to favour survival. Anti-cancer therapeutics, 34 

termed BH3-mimetics, have been developed to directly activate the apoptosis machinery in 35 

malignant cells. These drugs bind to and inhibit specific pro-survival BCL-2 family proteins, 36 

thereby mimicking their interaction with the BH3 domains of pro-apoptotic BCL-2 proteins. 37 

The BCL-2 specific inhibitor venetoclax/venclexta is approved by the FDA and many 38 

regulatory authorities worldwide for the treatment of chronic lymphocytic leukemia (CLL) and 39 

acute myeloid leukemia (AML). BH3-mimetics targeting other BCL-2 pro-survival proteins 40 

have been tested in pre-clinical models of cancer and drugs targeting MCL-1 or BCL-XL have 41 

advanced into phase 1 clinical trials for certain cancers. As with all therapeutics, efficacy and 42 

tolerability need to be carefully balanced to achieve a therapeutic window whereby there is 43 

significant anti-cancer activity with an acceptable safety profile. Here we review the current 44 

state of BH3-mimetics targeting various pro-survival BCL-2 proteins and discuss emerging 45 

data regarding primary and acquired resistance to these agents and approaches that may 46 

overcome this. We highlight issues that need to be addressed to further advance the clinical 47 

application of BH3-mimetic drugs, both alone and in combination with additional anti-cancer 48 

agents, for improved therapy. 49 

 50 

51 



Introduction 52 

 53 

The BCL-2 regulated pathway to apoptosis (Figure 1) is critical to remove damaged or 54 

superfluous cells (reviewed in1-4). This pathway becomes activated in response to diverse 55 

cellular stresses, including DNA damage, growth factor deprivation and oncogene activation. 56 

Such stimuli lead to upregulation of the pro-apoptotic BH3-only proteins (BIM, PUMA, 57 

NOXA, BID, BAD, BMF, BIK and HRK) by transcriptional and post-transcriptional 58 

mechanisms. These proteins bind via their BH3 domain into the hydrophobic pocket of pro-59 

survival proteins (BCL-2, MCL-1, BCL-XL, A1/BFL1, BCL-W) (shown for MCL-1:BIM 60 

interaction in Figure 2a). This leads to the liberation and consequent activation of the pro-61 

apoptotic effector proteins BAX and BAK that oligomerise and cause a breach in the 62 

mitochondrial outer membrane5-11. Cytochrome c and other apoptogenic factors are then 63 

released from inside the mitochondria, triggering formation of the apoptosome. This in turn 64 

activates caspase-9, initiating a cascade of effector caspases that cleave hundreds of proteins 65 

and thereby dismantle the cell in an orderly fashion (Figure 1). Several layers of selectivity in 66 

the pathway exist: different cellular stresses preferentially induce different BH3-only proteins 67 

(reviewed in12) and the different BH3-only proteins have selective binding to different BCL-2 68 

family pro-survival proteins13-15. 69 

 70 

A wealth of data has demonstrated that defects in apoptosis signalling promote tumorigenesis 71 

and can render malignant cells resistant to diverse anti-cancer agents (Box 1 summarises the 72 

key discoveries in this field). BH3-mimetic drugs have been developed to directly induce 73 

apoptosis in malignant cells by binding and inhibiting select pro-survival members of the BCL-74 

2 protein family (Box 2 describes the development of BH3-mimetic drugs; Table 1 provides 75 

the names and structures of the leading compounds). It is timely to review this rapidly evolving 76 

field. Firstly, there is an expanding range of indications for the BCL-2 inhibitor venetoclax 77 

approved by the FDA and many regulatory authorities worldwide, and several ongoing clinical 78 

trials with other BH3-mimetic drugs. Secondly data regarding resistance on venetoclax in 79 

patients with chronic lymphocytic leukaemia (CLL) and acute myeloid leukaemia (AML) are 80 

emerging. Finally, there is compelling evidence that BH3-mimetics targeting other pro-survival 81 

BCL-2 family proteins, either used as monotherapy or in combination with venetoclax or other 82 

anti-cancer agents, could be highly effective at inducing robust and durable regressions of 83 

diverse tumour types, provided on-target toxicities to healthy cells could be minimised. The 84 

latter has invigorated efforts to develop strategies to target BH3-mimetic drugs specifically to 85 

cancer cells. We focus our review on these emerging clinically focused issues, referring readers 86 

to other informative reviews describing apoptosis and the detailed rationale behind the 87 

development of BH3-mimetic drugs2,3,16,17.  88 

 89 

  90 

Targeting BCL-2 pro-survival proteins - pre-clinical studies 91 

 92 

Early work using gene knockout (ko) mice predicted the cell types which might be impacted 93 

by on-target toxicities associated with therapeutic targeting of BCL-2 pro-survival proteins 94 

(Summarised in Box 3). Fortunately, observed toxicities from BH3-mimetic drugs are lower 95 

than predicted from these models. Even for MCL-1, which has an essential role in many 96 

tissues15,18-20, there is evidence to suggest that a therapeutic window exists for some cancers, 97 

which can be exploited by MCL-1 inhibitors21. Specifically, it was shown that loss of a single 98 

allele of Mcl-1 was sufficient to kill MYC-driven lymphomas in vivo, and importantly, healthy 99 

mice could tolerate loss of one allele of Mcl-1, even when administered with patient-relevant 100 

doses of chemotherapeutic drugs22. The disconnect between predicted and observed toxicities 101 



could be explained by the transient and possibly incomplete nature of the inhibition of pro-102 

survival proteins by BH3-mimetic drugs, compared with complete and irreversible protein loss 103 

in gene knockout mice. In order to identify cancers that may benefit from use of particular BH3-104 

mimetic drugs, these compounds have been used to explore the dependency of a wide range of 105 

human cancer derived cell lines and mouse models on particular pro-survival proteins.  106 

 107 

BH3-mimetics as monotherapy 108 

 109 

Given the prevalence of high levels of BCL-2 expression among haematological malignancies, 110 

for example in follicular lymphoma (FL)23,24 and CLL25, BH3-mimetics were initially trialed 111 

as monotherapy in these diseases. Preclinical work with ABT-737, the precursor to navitoclax 112 

(targets BCL-2, BCL-XL, BCL-W with high affinity (Ki <1 nM)), and the BCL-2 selective 113 

inhibitor venetoclax (binds with high affinity to BCL-2 (Ki <1 nM) and much less avidly to 114 

BCL-XL (Ki ~50 nM) and BCL-W (Ki >200 nM)) found clear efficacy in CLL26,27, AML28,29 115 

and myeloma harbouring t(11;14)30. Responses to single agent venetoclax have also been 116 

observed in certain other haematological cancers and solid malignancies, such as estrogen 117 

receptor-positive breast cancer31, and some BCL-2 positive small cell lung cancers32. These 118 

findings have led to a multitude of clinical trials employing venetoclax. Servier have also 119 

developed an orally bioavailable BCL-2 selective inhibitor called S55746 that showed potent 120 

efficacy against primary cells from CLL and MCL patients in vitro and in xenograft models in 121 

preclinical studies33. S55746 and a related compound S65487 that is administered intravenously 122 

have progressed into clinical trials for several haematological malignancies.  123 

 124 

The MCL-1 selective inhibitors S63845, AZD5991 and AMG 176 have shown promising 125 

results in cancer derived cell lines and mouse models of AML, multiple myeloma (MM), and 126 

non-Hodgkin lymphomas (NHL)21,34,35. MCL-1 inhibitors may also have a role in combination 127 

with venetoclax, particularly in AML36-39 and B-cell acute lymphoblastic leukaemia (B-128 

ALL)40,41, for example by combatting drug resistance caused by upregulation of MCL-1 129 

following venetoclax exposure. Xenografts of human cancer cells in mice are commonly 130 

employed to test the impact of BH3-mimetics in vivo, but one caveat when conducting 131 

preclinical studies of MCL-1 inhibitors in mice is that three of the leading compounds, S63845, 132 

AMG 176, and AZD5991, have a significantly higher affinity for human MCL-1 than mouse 133 

MCL-1 (6-fold, 1000-fold and 25-fold, respectively)21,34,35. This means both the efficacy of 134 

these compounds against cancer cells and damage to normal tissues is underestimated in murine 135 

studies. To improve the accuracy of preclinical studies using these MCL-1 inhibitors, mice 136 

carrying the human MCL-1 coding regions in place of murine MCL-1 have been generated34,42. 137 

Cells from these mice show greater sensitivity to MCL-1 inhibitors than their wildtype 138 

counterparts. Encouragingly, a therapeutic window for targeting cancer cells expressing human 139 

MCL-1 in these humanised MCL-1 mice could still be established34,42.  140 

 141 

BH3-mimetics targeting BCL-XL are effective in cell line studies for aggressive human NK/T-142 

cell lymphomas, subsets of MM43,44 and Hodgkin lymphoma45 in vitro and in vivo46. Targeting 143 

BCL-XL may be more promising for killing many blood cancers than appreciated from ex vivo 144 

studies, due to signalling from stromal cells to the malignant cells in the lymph nodes and bone 145 

marrow, which can elevate expression of BCL-XL in vivo, for example through NF-kB pathway 146 

activation47-49. However, challenges remain with the in vivo use of BCL-XL inhibitors due to 147 

on-target toxicity to platelets50. 148 

 149 

BH3-mimetics in combination drug regimens 150 

 151 



The survival of many solid cancer cells is safeguarded by both MCL-1 and BCL-XL51, and a 152 

myriad of studies in human cancer cell lines and mouse models have highlighted the 153 

effectiveness of co-targeting these proteins, including for cervical cancer52, paediatric solid 154 

tumours, including osteosarcoma and neuroblastoma53, melanoma54, lung squamous cell 155 

carcinoma55, head and neck squamous cell carcinoma56, malignant pleural mesothelioma57 and 156 

colorectal cancer58. Combining MCL-1 inhibitors with navitoclax (thereby inhibiting MCL-1, 157 

BCL-XL, BCL-2 and BCL-W) showed promise for treatment of refractory melanoma59 and 158 

cervical cancer60. Simultaneous deployment of BCL-XL and MCL-1 inhibitors in vivo, 159 

however, has not yet been achieved safely, with one attempt resulting in acute liver toxicity in 160 

mice55, a predictable outcome based on studies of BCL-XL/MCL-1 conditional double 161 

knockout mice showing that these proteins are required for the survival of hepatocytes61 (see 162 

also Box 3). Employing creative dosing schedules may assist in limiting toxicity, however, 163 

advancements in the delivery of BCL-XL and/or MCL-1 inhibitors to achieve preferential or 164 

even specific targeting of malignant cells to reduce toxicity will likely be required for this drug 165 

combination to achieve clinical potential62,63.  166 

 167 

BH3-mimetic drugs synergise with diverse standard-of-care anti-cancer agents, including 168 

chemotherapeutic drugs and oncogenic kinase inhibitors (OKIs). This synergy can be explained 169 

by these drugs causing increases in BH3-only proteins, such as BIM, PUMA and NOXA, that 170 

inhibit the pro-survival BCL-2 proteins that are present in malignant cells but not neutralised 171 

by the BH3-mimetic used64-66. For triple-negative or HER2-amplified breast cancer, the MCL-172 

1 inhibitor S63845 synergised with docetaxel (microtubule stabilising chemotherapeutic), 173 

lapatinib (tyrosine kinase inhibitor), and trastuzumab (monoclonal antibody targeting HER2)67, 174 

while targeting BCL-XL enhanced the effectiveness of BET inhibitors for killing of triple-175 

negative breast cancer-derived cell lines68. The MCL-1 inhibitor S63845 could overcome 176 

TRAIL resistance in melanoma cell lines69, and addition of venetoclax re-sensitised aggressive 177 

c-MYC-driven lymphomas with elevated BCL-2 expression to BET inhibitors, leading to a 178 

reduction in tumour burden and prolonged survival of DLBCL xenograft bearing mice70. 179 

Neutropenia is one of the established side effects of BCL-2 inhibition71; caution must therefore 180 

be used when combining BCL-2 inhibitors with chemotherapeutics that also impact this subset 181 

of immune cells.  182 

 183 

OKIs target pathways essential for tumour cell survival and proliferation, resulting in 184 

stabilisation of malignant disease, but not necessarily regression. Addition of BH3-mimetics to 185 

drive apoptosis presents an attractive strategy to eliminate cancer cells after OKI treatment, 186 

which frequently induces cytostasis in sensitive cancer cells72. Combining MEK inhibitors with 187 

BH3-mimetics induces tumour regression in KRAS- and EGFR-mutant non-small cell lung 188 

cancers in genetically manipulated mice or human tumour xenografts73,74 as well as in human 189 

BRAF-mutant colon, pancreatic and melanoma derived cell lines75. A more durable response 190 

to EGFR inhibitors was achieved in a human lung adenocarcinoma xenograft model through 191 

application of ABT-737 (inhibitor of BCL-XL, BCL-2 and BCL-W; tool compound)76. 192 

Furthermore, the combination of navitoclax (inhibitor of BCL-XL, BCL-2 and BCL-W that has 193 

entered clinical trials) and an Aurora kinase A inhibitor was synergistic for patient-derived 194 

xenografts of aggressive alveolar rhabdomyosarcoma77. The Ascentage Pharma BCL-2 195 

inhibitor APG-2575 showed synergistic killing of human DLBCL cell lines with high BCL-2 196 

expression when combined with BTK inhibitors or a novel MDM2 inhibitor78, and this agent is 197 

currently being evaluated in clinical trials for a range of haematological malignancies as 198 

monotherapy (NCT03537482 and NCT04215809) and in combination with rituximab or 199 

acalabrutinib or voruciclib (NCT04215809).  200 

 201 



BH3-mimetic drugs have also been paired with hypomethylating agents (HMAs), the current 202 

standard-of-care for myelodysplastic syndromes (MDS), a class of disorders that can progress 203 

into AML79. HMAs have been shown to reduce the levels of MCL-1 in primary AML cells80 204 

and can also induce the DNA damage response, leading to upregulation of BH3-only proteins, 205 

such as NOXA81. MDS-associated CD34+ myeloblasts express substantial BCL-282, providing 206 

a rationale for combining HMAs with venetoclax. Preclinical studies using primary patient 207 

MDS or AML samples found that this combination was synergistic in vitro83,84.  208 

 209 

It is clear from these studies that the ability to target pro-survival proteins, either only one 210 

member or two in combination, offers extensive opportunities for improving the effectiveness 211 

of a myriad of currently used anti-cancer drugs for a wide range of malignancies.  212 

 213 

 214 

BH3-mimetics in the clinic 215 

 216 

BCL-2 inhibitors 217 

 218 

Whilst venetoclax is the furthest advanced in the clinic, the first bona fide BH3-mimetic to enter 219 

phase I clinical trials was navitoclax, the orally bioavailable small molecule with high binding 220 

affinity to BCL-2, BCL-XL and BCL-W85, used initially in patients with relapsed and refractory 221 

(RR) non-Hodgkin lymphoma (NHL)86 and CLL87. Overall response rates (ORR) of up to 22% 222 

for NHL and 35% for CLL were observed, all of which were partial remissions (PR) and 223 

translated into modest progression free survival (PFS) of 16 months86 and 25 months, 224 

respectively87. Furthermore, combining navitoclax with rituximab in CD20 positive 225 

lymphoproliferative disorders88 demonstrated a significantly superior ORR compared to 226 

rituximab monotherapy in CLL89. However, the clinical development of navitoclax was 227 

hampered by thrombocytopenia86,87 due to on-target inhibition of BCL-XL in platelets which 228 

is crucial to their maintenance in the blood50,90. This limited dose escalation of navitoclax above 229 

300 mg per day prevented full exploration of the clinical potential of this therapy. Despite this, 230 

the promising early phase clinical efficacy underpinned impetus for development of a BCL-2 231 

selective inhibitor.  232 

In 2013 the first BCL-2 selective inhibitor, venetoclax, was reported27. The efficacy of 233 

venetoclax is dependent on BAX and BAK, as evidenced by the inability of the drug to kill 234 

cells that lack these effectors of apoptosis91. Furthermore, markers of apoptotic death of CLL 235 

cells were observed in patients after dosing with venetoclax91. Venetoclax has shown activity 236 

in a range of malignancies and is approved by the FDA and other regulatory authorities for a 237 

number of haematological diseases with emerging evidence of activity in some non-238 

haematological neoplasms (Table 2). BCL-2 inhibitors have also been developed by other 239 

pharmaceutical companies including, but not limited to, Servier (drugs termed S55746 and 240 

S65487) and are being tested in clinical trials (Table 2), but so far no results have been published 241 

(conference abstract92). These trials include S65487 as monotherapy for treatment relapsed 242 

refractory AML, NHL, MM, CLL (NCT03755154), S55746 as monotherapy for CLL, NHL, 243 

MM (NCT02920697), AML and MDS (NCT02920541) and S65487 in combination with 244 

azacytidine in AML (NCT04742101).  245 

 246 

Relapsed and refractory (RR) chronic lymphocytic leukaemia (CLL)  247 

Venetoclax was first tested in humans as monotherapy in RR CLL and NHL. Even among 248 

heavily pretreated CLL patients enriched for adverse prognostic markers this drug 249 

demonstrated ORR of 79% establishing its role in the treatment of high-risk RR disease71. These 250 

findings were subsequently verified in a cohort of patients with 17p deletion (with loss of the 251 



tumour suppressor TP53)93. The most serious adverse event identified in the early phase studies 252 

of venetoclax was tumour lysis syndrome (TLS)71,93 which in some cases was fatal and related 253 

to the rapid death of CLL cells in patients with significant tumour bulk94. Validated TLS 254 

mitigation strategies, such as dose ramp-up of venetoclax over a period of weeks, use of uric 255 

acid limiting agents, hydration, close monitoring of biochemistry and stratifying patients for 256 

intensified monitoring based on TLS risk, have significantly mitigated the risk of TLS95. Other 257 

toxicities associated with venetoclax treatment include gastrointestinal upset and cytopenias, 258 

especially neutropenia. Importantly, as anticipated, venetoclax treatment avoids the 259 

thrombocytopenia which hindered clinical progression of navitoclax (inhibitor of BCL-2, BCL-260 

XL and BCL-W).  261 

 262 

A phase Ib study of indefinite venetoclax in combination with six monthly doses of rituximab 263 

demonstrated deeper clinical responses than were seen in the phase I first in human study, with 264 

57% of patients obtaining undetectable minimal residual disease (uMRD)96. The deep responses 265 

achieved with the use of this combination therapy led to the hypothesis that venetoclax could 266 

be given as time limited therapy, i.e. achievement of deep responses would enable prolonged 267 

disease-free survival off active therapy. This hypothesis was tested in the Murano study where 268 

patients were randomised to 24 months of venetoclax in combination with six months of 269 

monthly rituximab (VenR). Among patients who were uMRD at the end of treatment, 60/83 270 

(72%) were progression free at a median follow up of 59.2 months, validating a time limited 271 

strategy (conference abstract97). A phase 1b study of venetoclax in combination with 272 

obinutzumab and ibrutinib also showed promising results for RR CLL 98. Sequential cycles of 273 

each drug were used to minimise the risk of TLS. At the end of the fixed-duration regimen, all 274 

12 patients achieved uMRD in either blood or bone marrow and the 24-month estimated PFS 275 

was 92%. 276 

 277 

In older patients with treatment-naïve CLL and comorbidities, venetoclax in combination with 278 

obinutuzumab was superior to standard-of-care chemo-immunotherapy with chlorambucil-279 

obinutuzumab99. Venetoclax alongside other targeted therapies has for the first time opened the 280 

possibility of cytotoxic drug-free treatment regimens for patients in whom traditional 281 

chemotherapeutics are associated with inferior outcome100,101. The Captivate study explored 282 

venetoclax-ibrutinib treatment in patients with previously untreated CLL (conference 283 

abstract102). Patients were treated with 3 cycles of ibrutinib, followed by 12 cycles of 284 

venetoclax-ibrutinib over 12 months. Patients with uMRD were then randomised to either 285 

ibrutinib monotherapy or placebo. No significant difference in disease-free survival was found 286 

at 12 months for the ibrutinib (100%) or placebo (95.3%) arms, suggesting that fixed duration 287 

therapy is feasible if patients achieve uMRD. Those patients who did not achieve uMRD were 288 

randomised to either ibrutinib monotherapy or venetoclax-ibrutinib; in both arms, PFS at 30 289 

months was >95%. 290 

 291 

Lymphoma  292 

Venetoclax has been assessed as mono- or combination therapy for a range of lymphomas. As 293 

monotherapy, venetoclax is associated with an ORR of 75% in patients with RR mantle cell 294 

lymphoma (MCL)103. Venetoclax was also tested in combination with ibrutinib in 23 patients 295 

with RR MCL and 1 patient with treatment naïve MCL, including approximately 50% of 296 

patients with TP53 mutations. In this high-risk group, 67% of patients achieved uMRD by flow 297 

cytometry104. Two patients had TLS, but other adverse events were generally low grade. 298 

Waldenstroem’s macroglobulinemia (a type of NHL) appears to be particularly sensitive to 299 

venetoclax with 30 RR patients achieving ORR of 87% to venetoclax monotherapy (conference 300 

abstract105). The vast majority of follicular lymphomas (FL) harbour a t(14;18) translocation 301 



resulting in overexpression of BCL-2. However, venetoclax monotherapy in 29 patients with 302 

FL achieved an ORR of only 38%103. The CONTRALTO study investigated the efficacy of 303 

venetoclax and rituximab vs venetoclax in combination with both rituximab and bendamustine 304 

(BR) versus BR alone in 163 patients with RR FL106. While the CR rate was highest among 305 

patients given venetoclax in combination with BR, this group was also found to have increased 306 

haematological toxicity, requiring dose modification and in some cases cessation of treatment. 307 

Why a disease characterised by BCL-2 overexpression like FL would be relatively resistant to 308 

venetoclax remains an open question. One may hypothesise that if malignant cells not only 309 

express high levels of BCL-2 but also substantial levels of one or more additional pro-survival 310 

BCL-2 proteins (e.g. BCL-XL, MCL-1) they will be less dependent on BCL-2 and hence less 311 

sensitive to a BCL-2 inhibitor than cancer cells expressing substantial BCL-2 but only low 312 

levels of other pro-survival proteins (e.g. many cases of CLL). Another explanation is that the 313 

sensitivity to BCL-2 inhibition depends not only on BCL-2 levels but also the levels of critical 314 

pro-apoptotic BH3-only proteins, such as BIM107. 315 

In diffuse large B cell lymphoma (DLBCL) the venetoclax response rates are poor, with an 316 

ORR as monotherapy of only 18%103. When venetoclax was given in combination with standard 317 

of care DLBCL treatment, rituximab plus cyclophosphamide, doxorubicin, vincristine, and 318 

prednisone (R-CHOP)108, in a study of 206 patients there was no significant improvement in 319 

CR compared with an R-CHOP historical cohort. Furthermore, venetoclax enhanced the 320 

toxicity of R-CHOP with increased haematological toxicity and infection rates, although 321 

importantly there was no increase in mortality. The use of venetoclax in combination with 322 

rituximab is currently being investigated in high-risk DLBCL (NCT03984448). Given the 323 

limited efficacy of single agent venetoclax in DLBCL, it is likely that future studies will focus 324 

on its potential for additive benefit in BCL-2-driven DLBCL such as the very high-risk ‘double 325 

hit’ group that have two chromosomal translocations that drive over-expression of both c-MYC 326 

and BCL-2. 327 

 328 

Multiple myeloma (MM) 329 

Venetoclax as monotherapy in a cohort of heavily pretreated patients with RR MM109 330 

demonstrated an ORR of 21%, however, among those patients with the t(11;14) chromosomal 331 

translocation the ORR was 40%, suggesting that venetoclax may be a promising treatment for 332 

this subgroup. Venetoclax was also tested in combination with bortezomib and dexamethasone 333 

vs bortezomib and dexamethasone alone in a randomised phase 3 study of 291 patients with RR 334 

MM (conference abstract110) of whom 12% harboured a t(11;14) translocation, and 79% 335 

exhibited high BCL-2 by immunohistochemistry (BELLINI trial). While venetoclax 336 

significantly improved PFS compared with placebo (conference abstract110), treatment related 337 

mortality (often due to infections)111 was significantly higher in the venetoclax arm, resulting 338 

in improved overall survival (OS) in the placebo arm. This has raised significant concerns about 339 

the safety of venetoclax in myeloma especially in combination with bortezomib. The reasons 340 

for the excess incidence of treatment related mortality in the venetoclax arm in myeloma in 341 

contrast to other indications requires further examination but may relate to significant levels of 342 

pre-existing immunosuppression among myeloma patients due to hypogammaglobulinemia 343 

and extensive pretreatment. Despite this, patients with the t(11;14) translocation who were 344 

treated with venetoclax, bortezomib and dexamethasone had a favourable risk-benefit ratio due 345 

to increased response rates in this subgroup111. This highlights the importance of identifying 346 

biomarkers that predict tumour response to venetoclax and therefore enable optimal selection 347 

of patients for treatment. 348 

 349 

Acute myeloid leukaemia (AML) 350 



Venetoclax monotherapy in RR AML demonstrated that the agent is well tolerated and 351 

associated with an ORR of 19%112. Venetoclax in combination with hypomethylating agents 352 

(HMA) decitabine or azacytidine in treatment naïve AML who were unfit for intensive 353 

chemotherapy 113 demonstrated 67% CR in the venetoclax-HMA arm. The phase 3 trial of 354 

venetoclax plus azacytidine as first-line therapy for previously untreated patients with AML114 355 

randomised 431 patients to either venetoclax-azacytidine or azacytidine along with a placebo. 356 

At a median follow-up of 20.5 months the median OS increased in the combination arm vs the 357 

placebo arm (14.7 vs 9.6 months; p < 0.001). This held true across all high-risk molecular 358 

subgroups analysed, including for AML with IDH1/2, FLT3 and TP53 mutations. Venetoclax 359 

has also been examined in combination with intensive therapy in a mixed cohort of patients 360 

with treatment naïve or RR AML (conference abstract115). An ORR of 84% was achieved, with 361 

89% of newly diagnosed and 66% of RR patients achieving a composite CR.  362 

 363 

Acute lymphoblastic leukaemia (ALL) 364 

As an aggressive rapidly evolving leukaemia, venetoclax monotherapy for ALL has not been 365 

extensively evaluated, however good preclinical rationale exists for dual BCL-XL/BCL-2 366 

inhibition for this indication116. Combining venetoclax with low dose navitoclax was 367 

hypothesised to allow targeting of BCL-XL without dose-limiting thrombocytopenia. A phase 368 

I trial of these BH3-mimetics in combination with chemotherapy was performed on 47 patients 369 

with RR ALL or lymphoblastic lymphoma117. A CR of 60% was achieved, with 57% achieving 370 

uMRD. Overall, the combination treatment was well tolerated by most patients, with the 371 

primary safety concern identified being delayed haematopoietic recovery. Another avenue 372 

being investigated is the combination of venetoclax with low dose chemotherapies. Preliminary 373 

results from a phase I trial found that this combination induced profound responses in elderly 374 

treatment-naïve ALL patients, with 9/10 patients achieving uMRD and no relapses recorded at 375 

a mean follow up of 11.3 months (conference abstract118). These promising results warrant 376 

further investigation with larger patient cohorts.  377 

 378 

Non-haematological malignancies 379 

The first study to examine venetoclax for use in solid tumours was a phase 1b study of 380 

venetoclax in combination with tamoxifen for treatment of ER/BCL-2-positive breast cancer119. 381 

33 patients received this combination treatment, with no adverse events reported beyond 382 

expected on-target lymphopenia. Of the 24 patients who were treated with the recommended 383 

phase II dose, a 54% response rate was achieved, with a clinical benefit rate of 75%. Further 384 

trials of venetoclax in combination with additional agents for breast cancer are ongoing, 385 

including with palbociclib (a CDK4/6 inhibitor that blocks proliferation) and letrozole (a 386 

standard-of-care agent) for ER/BCL-2 positive breast cancer (NCT03900884) (conference 387 

abstract120) and with fulvestrant (a novel ER antagonist) for ER positive, HER2 negative breast 388 

cancer following CDK4/6 inhibition (NCT03584009) (conference abstract121). The rationale 389 

for these drug combinations is to simultaneously inhibit tumour cell proliferation and induce 390 

apoptosis for effective elimination of cancer cells.  391 

 392 

 393 

MCL-1 selective inhibitors 394 

 395 

MCL-1 targeting BH3-mimetic drugs have been slow to reach the clinic due to challenges in 396 

their development and reservations regarding predicted on-target toxicity to many healthy cell 397 

types, including cardiac cells15,18-20,122. Since 2016, six MCL-1 inhibitors, developed 398 

independently by several pharmaceutical companies, (AMG 176, AMG 397, S64315, 399 

AZD5991, ABBV-467, and PRT1419) have entered clinical trials for lymphoma, MM and 400 



AML (Table 3). On September 12th 2019, the U.S. Food and Drug Administration (FDA) 401 

placed a clinical hold on a phase I study of the oral MCL1 inhibitor AMG 397 after finding a 402 

safety signal of cardiac toxicity with the agent. As a precaution, a voluntary hold was also 403 

placed on the intravenously delivered AMG 176 in patients with AML. Clinical trials with 404 

AMG-176 have since recommenced and are ongoing with other MCL1 inhibitors, such as 405 

MIK665 (S64315) and AZD5991. Whether potential cardiac toxicity will limit the clinical 406 

application of BH3-mimetics targeting MCL-1 remains to be determined. To date MCL-1 407 

inhibitors are not registered for clinical use. 408 

 409 

 410 

Resistance to BH3-mimetics  411 

 412 

Despite the promise of BH3-mimetics across a diverse range of diseases they are not curative 413 

by themselves and over time relapse appears inevitable, limiting their long-term efficacy. As 414 

the clinical trials with venetoclax have progressed, data are emerging to suggest two patterns 415 

of venetoclax resistance: upfront (primary) resistance to therapy and, more recently, secondary 416 

resistance that emerges in patients on therapy. Primary resistance to venetoclax is rare in 417 

diseases that are known to respond well to this drug, with ORR in RR CLL close to 80% and 418 

RR MCL ~75%71,103. Primary resistance to venetoclax is more common in B cell 419 

lymphoproliferative disorders other than CLL, for example FL (ORR 38%) and DLBCL (ORR 420 

~18%)103 despite high levels of BCL-2 in both malignancies. Even though substantial response 421 

rates have been observed, venetoclax has never been shown to be curative and at least in the 422 

RR setting, secondary resistance inevitably emerges with time. The reasons for this are varied. 423 

Here we delve into the factors, both intrinsic and extrinsic, that are reported to confer resistance 424 

to BH3-mimetics. 425 

 426 

Primary resistance  427 

 428 

Insights into the modes of primary resistance to BH3-mimetic therapy have emerged from 429 

clinical trials of venetoclax in patients with lymphoid malignancies such as FL. The reasons for 430 

the poor responses despite high BCL-2 expression in certain malignancies have not been fully 431 

resolved but may reflect dependencies on multiple pro-survival proteins. There is evidence that 432 

the BCL-2/BIM ratio may be a more reliable predictor of response than high levels of BCL-2, 433 

with low ratios conferring sensitivity to venetoclax107 and this is discussed further in the section 434 

on predicting responses to BH3-mimetics.  435 

 436 

Recently evidence has emerged to indicate that genetic abnormalities that affect chromatin 437 

remodelling can contribute to primary resistance, possibly due to these defects leading to 438 

increased expression of BCL-XL. Whole exome sequence (WES) analysis of 5 MCL patient 439 

samples from the AIM clinical trial, that showed primary resistance to venetoclax combined 440 

with ibrutinib, revealed genomic abnormalities affecting the SWI-SNF chromatin remodelling 441 

complex (namely mutations in SMARCA4 and ARID2 and somatically acquired copy number 442 

deletions involving SMARCA2)123. These tumour samples displayed high levels of BCL-XL 443 

mRNA, possibly due to loss of accessibility of chromatin at the ATF3 gene locus leading to 444 

decreased expression of ATF3, a repressor of BCL-XL expression123,124. This raises the 445 

possibility of testing approved agents known to affect chromatin remodeling, such as vorinostat 446 

and panobinostat, in combination with venetoclax. 447 

 448 

Insights into the factors that contribute to primary resistance to BH3-mimetic drugs targeting 449 

other BCL-2 pro-survival proteins are currently limited to pre-clinical studies. There is evidence 450 



that high levels of BCL-XL correlate with poor responses to MCL-1 inhibitors in a diverse 451 

range of malignancies21,34, drawing parallels to the underlying mechanism of resistance 452 

observed in MCL patients treated with venetoclax. 453 

 454 

 455 

Cell-intrinsic secondary resistance  456 

 457 

Early indications that mutations within BCL-2 itself could confer resistance to venetoclax came 458 

from pre-clinical studies involving the continuous culture of a mouse leukaemia cell line to 459 

achieve venetoclax resistance. The resistant cell line had acquired two BCL-2 mutations 460 

(Phe101Cys and Phe101Leu, equivalent to human Phe104Cys and Phe104Leu)125. These 461 

particular BCL-2 mutations have not been detected in resistant tumour samples from patients 462 

treated with venetoclax. However, a different BCL-2 mutation has recently been detected in 463 

7/15 patients treated with venetoclax that had progressed with a CLL-type disease, but 464 

excluding those with Richter’s transformation (RT)126. Targeted amplicon NGS of the entire 465 

BCL-2 coding region revealed a G101V mutation in 4 samples from patients that were given 466 

venetoclax, occurring at a frequency of 26-70% of CLL cells, yet undetectable in the paired 467 

patient pre-treatment samples. In three other relapsed CLL patient samples, the G101V BCL-2 468 

mutation was detected at a lower frequency (1.4-4.3%) of CLL cells. This same mutation was 469 

found in a separate cohort of CLL patients that progressed on venetoclax therapy127. Of note, 470 

the BCL-2 G101V mutated CLL cells were more resistant to venetoclax but not to other anti-471 

cancer agents, including etoposide, cytarabine, fludarabine, and dexamethasone. This indicates 472 

that this mutation confers specific resistance to BCL-2 targeting BH3-mimetic drugs but that 473 

the BH3-only proteins that are up-regulated in response to chemotherapy can still efficiently 474 

bind and neutralise this mutant BCL-2. Structural studies revealed that the mutated G101 475 

residue is located in the alpha 2 helix of BCL-2 and its mutation displaces the adjacent Glu152 476 

residue, from the alpha 5 helix into the base of the P2 pocket, thereby preventing venetoclax 477 

from binding deeply into the pocket (Figure 2d)126,128. Plasma surface resonance studies showed 478 

that the G101V mutation reduced the binding affinity of venetoclax to BCL-2 by ~180 fold, but 479 

did not affect mutant BCL-2 protein binding to the BH3 domain of BIM, which can function 480 

without inserting as deeply into the pocket. Therefore, the ability of BCL-2 to be inhibited by 481 

BH3-only proteins, such as BIM, is retained128. The finding that this mutation in BCL-2 is 482 

detectable after 19-42 months on venetoclax and prior to relapse may permit its use as a 483 

biomarker of disease recrudescence.  484 

 485 

The finding that the BCL-2 G101V mutation is sub-clonal (1.4-70% of CLL cells in relapsed 486 

patient samples) indicates that co-existing resistance mechanisms contribute to disease 487 

progression on venetoclax. Accordingly, a second acquired BCL-2 mutation, Asp103Tyr, was 488 

found in a CLL patient sample bearing the G101V mutation but in separate CLL subclones. 489 

High BCL-XL expression was found in a CLL patient with the G101V BCL-2 mutation, again 490 

in separate subclones. Another BCL-2 mutant, Phe104Ile, that also decreases venetoclax 491 

binding by changing the p2 binding pocket128 has been described in a patient with FL129. It is 492 

postulated that this mutation arose through somatic hypermutation of the translocated BCL-2 493 

gene in FL. It remains to be determined whether therapy with BH3-mimetics targeting other 494 

pro-survival BCL-2 family proteins, such as MCL-1 inhibitors, will also result in the emergence 495 

of therapy-resistant mutated variants of the targeted protein. 496 

 497 

Mechanistically, it seems likely that resistance to BH3-mimetic drugs may arise through loss 498 

of expression of the targeted pro-survival protein, increased expression of non-targeted pro-499 

survival BCL-2 proteins or reduced expression of critical pro-apoptotic proteins. Recent 500 



analyses of patients on therapy and pre-clinical studies have provided evidence for this. MCL-501 

1 overexpression was observed in samples from CLL patients that relapsed after venetoclax 502 

therapy, a finding confirmed by cellular models of several haematological cancers130. The 503 

derivation in vitro of venetoclax resistant cell lines of diverse leukaemia and lymphoma 504 

subtypes revealed frequent upregulation of MCL-1 or BCL-XL131. Furthermore, co-treatment 505 

with MCL-1 and/or BCL-XL inhibitors alongside venetoclax could delay development of 506 

acquired venetoclax resistance in human CLL cell lines132. Studies using MCL and NHL-507 

derived cell lines revealed selection for rare lymphoma cells that had loss of the BCL-2 508 

amplicon133. Genome-wide GOF screens containing ORFs for almost 13,000 proteins in OCI-509 

AML cells identified enrichment for increased BCL-XL, BCL-W, BCL-2 or MCL-1 expression 510 

after venetoclax treatment130. Whole genome-wide CRISPR LOF screens in AML and B 511 

lymphoma cell lines have identified enrichment for sgRNAs that target genes encoding the pro-512 

apoptotic proteins BIM, NOXA, BAX and BAK after 14 days venetoclax treatment130,134,135. 513 

Similarly, Bax was identified as the top hit from a CRISPR LOF screen performed in MCL-1 514 

dependent mouse Eµ-Myc lymphoma cells treated with the MCL-1 inhibitor S63845136.  515 

 516 

A less predictable finding is that TP53 gene aberrations confer resistance to BH3-mimetic 517 

drugs. Since BH3 mimetics activate apoptosis downstream of TP53 (Figure 1), it was predicted 518 

that they would be efficacious for TP53 mutated cancers that are often unresponsive to 519 

conventional DNA damaging therapeutics. Indeed, early studies were consistent with this 520 

notion, with deep initial responses to venetoclax monotherapy observed in patients with 521 

TP53-mutant CLL71,91. However, evidence is emerging that TP53 dysfunction is associated 522 

with earlier relapsing disease in patients with CLL treated with venetoclax137, and in patients 523 

with AML treated with venetoclax combined with either chemotherapy or a hypomethylating 524 

agent33,138,139. These findings from clinical studies were confirmed in non-biased pre-clinical 525 

studies where CRISPR whole genome LOF screens in AML cell lines identified loss of TP53 526 

as a resistance factor to venetoclax treatment134,135,140. Similar work identified loss of Trp53 as 527 

a resistance factor to MCL-1 targeting BH3-mimetics in mouse Eu-Myc lymphoma cell lines 528 

that are highly MCL-1 dependent136. The underlying mechanisms surrounding resistance to 529 

BH3-mimetic drugs conferred by TP53 dysfunction are still emerging, but delayed/reduced 530 

apoptosis, genomic instability, mitochondrial reprogramming and metabolic changes as a result 531 

of TP53 loss have been postulated to contribute.  532 

WES analysis of 8 samples from CLL patients with TP53 loss or mutation that progressed on 533 

venetoclax (4 with RT to DLBCL) revealed recurrent non-synonymous mutations in TP53, 534 

NOTCH1, BTG1 (2 patients with missense mutations), and non-synonymous mutations in 535 

BRAF, SF3B1, RB1, BIRC3 (not validated) and MLL3 in individual patients, plus homozygous 536 

deletion of CDKN2A/B (in 3 patients) and focal amplification of CD274 encoding PD-L1141. 537 

All patient samples showed signs of increasing genomic instability and there was evidence of 538 

subclonal outgrowth during venetoclax treatment. The causality of these mutations remains to 539 

be determined. BTG1 mutations, whilst rare in pre-treated samples, were found alongside 540 

CDKN2A/B loss in some resistant samples. SF3B1 mutations were detected pre-treatment in 541 

0.04% and 0.033% of CLL cells and were selected for during venetoclax treatment but were 542 

probably not the single cause of resistance since they were also found alongside CDKN2A/B 543 

loss. In studies using cell lines, the deletion of CDKN2A/B made no difference to venetoclax 544 

sensitivity, possibly explaining why this deletion is always found alongside other genomic 545 

alterations in patient samples. 546 

Evidence suggests that the presence of TP53 mutant clones alone does not preclude robust 547 

clinical responses to BH3-mimetics, but the data support the notion that BH3-mimetics should 548 

be dosed as highly as can be tolerated to ensure deep responses, thus overcoming the selective 549 

advantage associated with TP53 mutated disease142. Evidence from the CAVEAT study 550 



suggests that combining BH3-mimetics with chemotherapeutics does not improve survival 551 

outcomes of patients with TP53 mutant AML138. Pre-clinical data suggest increased therapeutic 552 

benefit may, however, be achieved by combining BH3-mimetics that target different BCL-2 553 

pro-survival proteins, such as BCL-2 and MCL-1, rather than including drugs that rely on TP53 554 

for action136. Non-DNA damaging agents, such as venetoclax, result in better outcomes for 555 

patients with high-risk TP53 dysfunctional disease compared with standard chemo-556 

immunotherapy based approaches in CLL. Understanding and overcoming the adverse 557 

prognostic implications of this defect remains a key challenge (conference abstract97). 558 

 559 

Further modes of resistance to BH3-mimetics have been indicated from studies of patient 560 

samples and pre-clinical models. A WES analysis of DNA from CLL cells before venetoclax 561 

treatment and at the time of relapse was compared to germline DNA and found marked clonal 562 

shifts in patient samples during treatment, including changes in subclones that have CLL driver 563 

mutations, such as in TP53, ATM or SF3B1. However, no somatic single nucleotide variations 564 

(sSNVs) of known CLL driver mutations were consistently selected for during emerging 565 

resistance, indicating that venetoclax resistance is not driven by any one sSNV or somatic copy-566 

number variation (sCNV) but rather by multiple changes130. 567 

 568 

CRISPR LOF screens in AML cells treated with venetoclax identified selection for sgRNAs 569 

targeting NFKBIA (inhibitor of NF-KB activation), genes encoding lymphoid transcription 570 

factors (IKZF5, ID3, EP300, NFAI) and ubiquitin-related processes (OTUD5, UBR5)130. Of 571 

note, many of these genes are mutated in B cell malignancies, consistent with the notion that 572 

their loss enhances the survival and proliferation of malignant cells. Using GOF screens, factors 573 

conferring resistance to venetoclax were components of the PKA/AMPK signalling pathway, 574 

mitochondrial energy metabolism, vesicle transport/autophagy, ribosomal proteins or 575 

components of ubiquitination130. The importance of mitochondrial factors in conferring 576 

resistance to BH3-mimetic drugs was apparent from several pre-clinical studies. Lymphoid cell 577 

lines selected for resistance to venetoclax had higher basal and maximal oxygen consumption, 578 

most coupled to ATP production by OXPHOS, and an overall increased respiratory capacity 579 

and OXPHOS. These venetoclax resistant cells had more mitochondria compared to normally 580 

sensitive cells130. Genes involved in mitochondrial organisation and function were found to be 581 

depleted in a genome-wide CRIPSR/Cas9 screen to identify genes whose inactivation sensitises 582 

AML cells to venetoclax135. 583 

 584 

Cell extrinsic secondary resistance 585 

 586 

Cell extrinsic factors are also known to play a role in protecting tumour cells from BH3-mimetic 587 

drug therapy. Culturing patient-derived primary MCL and CLL cells on CD40L-expressing 588 

cells with IL-10, both cell survival promoting cytokines that are produced in the tumour micro-589 

environment, increases resistance to venetoclax, likely because these cells have an NF-kB 590 

driven increase in BCL-XL and/or MCL-1 expression143,144.This supports the rationale to 591 

combine BH3-mimetic drugs with BTK inhibitors that can mobilise CLL cells from their niche 592 

in lymph nodes thereby removing them from the above mentioned survival promoting factors. 593 

Recent clinical data have shown that treating RR CLL patients that progressed on venetoclax 594 

with BTK inhibitors, such as ibrutinib or zanubrutinib, can provide durable control of 595 

disease145. Furthermore, the combination of venetoclax with ibrutinib has proven an efficacious 596 

strategy in a variety of diseases, including CLL and MCL104 (AIM), with ongoing studies in 597 

Marginal Zone Lymphoma (AIM2).  598 

 599 

Predicting responses to BH3-mimetics 600 



 601 

As is evident from the preclinical and clinical data discussed, the response of a tumour to a 602 

particular BH3-mimetic drug cannot be predicted from the expression of pro-survival proteins 603 

alone. The concept of apoptotic priming – that is, how close a cell is to committing to cell death, 604 

plays an important role146. The primed status of tumour cells and the amount and type of the 605 

further pro-apoptotic signal that is required to trigger cell death can be examined by BH3 606 

profiling. This technique exposes isolated mitochondria to a panel of peptides derived from pro-607 

apoptotic BH3-only proteins that induce apoptosis by sequestering one or more specific pro-608 

survival proteins146. By measuring MOMP in response to these BH3 peptides, the individual 609 

pro-survival proteins which are protecting the cell from apoptosis can be identified. BH3 610 

profiling can be used to predict the clinical response of cancer cells to chemotherapies147,148 and 611 

can be used to predict sensitivity of tumours to BH3-mimetic drugs149,150. Recent work has 612 

shown that the primed state of a tumour and therefore its pro-survival dependency can change 613 

during drug treatment151,152. This is consistent with the finding that BH3-mimetic drug 614 

resistance can arise through increased expression of non-targeted pro-survival proteins in 615 

tumour cells that have escaped initial waves of cell death130-132. Of note, acquired resistance to 616 

one therapy can sometimes result in hypersensitivity to another. A recent study using 617 

CRISPR/Cas9 knockout screens in AML cell lines found that cells which tended to acquire 618 

resistance to bromodomain inhibitors through upregulation of c-MYC were in turn sensitised 619 

to BCL-2 inhibition153. BH3 profiling of tumours before and during treatment may be useful to 620 

identify patients most likely to benefit from initial or continued treatment with BH3-mimetic 621 

drugs112,154 but in cases where tumour cells from patients are available for testing it will be more 622 

direct to examine their response to BH3-mimetics by treating them with these agents in culture. 623 

 624 

 625 

 626 

Novel approaches to target BCL-2 family proteins 627 

 628 

Clinical progression of compounds targeting pro-survival proteins other than BCL-2 has been 629 

somewhat restricted largely due to on-target toxicity (e.g. killing of platelets with BCL-XL 630 

inhibition50). This has inspired the development of strategies to target this pro-survival protein 631 

selectively in cancer cells. One such approach is based on antibody drug conjugates linking 632 

BCL-XL-specific BH3-mimetics from the WEHI/ABBVIE BCL-XL selective series with 633 

antibodies specific for tumour surface markers. AbbVie disclosed proof-of-concept data in the 634 

patent literature with BCL-XL inhibitor/antibody conjugates (ADCs) targeting EGFR 635 

(US20160158377). ABBV-155/Mirzotamab Clezutoclax, a BCL-XL inhibitor coupled to an 636 

antibody targeting B7-H3 (CD276), is currently in phase 1 clinical trials in patients with 637 

advanced solid tumours (NCT03595059). Results of these studies are eagerly awaited to learn 638 

whether this strategy will realise the potential of BCL-XL inhibitors for cancer therapy. 639 

 640 

Other technologies that improve tumour delivery of BH3-mimetic drugs have also been 641 

employed to reduce the toxicity of BCL-XL inhibitors. The Astra-Zeneca dendrimer-642 

conjugated BCL-2/BCL-XL inhibitor AZD0464 allows enhanced accumulation and release of 643 

this inhibitor into tumours155, resulting in decreased cardiovascular toxicity in rats and dogs. 644 

While AZD0464 still induced thrombocytopenia, this could be moderated by intermittent 645 

dosing to allow platelets to recover. The Ascentage Pharma BCL-2/BCL-XL targeting pro-drug 646 

APG-1252 is converted to a more active form inside cells but has reduced permeability into 647 

platelets (conference abstract156). Both AZD0646 (NCT04214093) and APG-1252 648 

(NCT03080311) (conference abstract157) are in clinical trials for haematological and/or solid 649 

cancers.  650 



 651 

An alternative approach to limit toxicity has been to exploit the “proteolysis-targeting chimera” 652 

technology, called PROTACs158. This strategy employs bifunctional compounds with one 653 

module targeting the protein of interest and the second targeting an E3 ubiquitin ligase or an 654 

E3 adapter protein, most commonly the von Hippel-Lindau (VHL) or cereblon (CRBN) 655 

proteins. PROTACs function by forcing a targeted protein into the proximity of the E3 ligase, 656 

leading to its ubiquitination and ensuing proteasomal degradation. VHL is poorly expressed in 657 

platelets, thus targeting BCL-XL using a VHL-based PROTAC could spare platelet viability, 658 

overcoming the on-target toxicity seen for BH3-mimetics targeting BCL-XL. VHL targeting 659 

PROTACs incorporating BCL-XL binding warheads have been reported based on both the 660 

ABT-26362 and the WEHI/ABBVIE BCL-XL selective scaffolds63. Interestingly, while ABT-661 

263 is a potent inhibitor of BCL-XL, BCL-2 and BCL-W, the degrader molecules based on this 662 

BH3-mimetic specifically target BCL-XL (but not BCL-2) for degradation and kill cancer cells 663 

that are dependent on BCL-XL for survival, including in xenograft models, with reduced 664 

toxicity to platelets62,159. One such BCL-XL-degrading PROTAC, DT2216, recently entered 665 

clinical trials for relapsed/refractory malignancies (NCT04886622). PROTACs that degrade 666 

MCL-1 have also been described160, but it remains to be seen whether utilising the PROTAC-667 

based approach will improve the therapeutic window over classical MCL-1 inhibitors. BH3-668 

mimetic/PROTAC strategies may provide opportunities to expand BH3-mimetic therapies to 669 

settings in which they have yet to find application due to on-target toxicities, including the 670 

simultaneous targeting of two pro-survival BCL-2 family members, such as MCL-1 plus BCL-671 

XL, that is otherwise highly toxic. 672 

 673 

Targeting BH3-mimetics to tumours using nanoparticles might also facilitate the progression 674 

of BH3-mimetics, especially when they are used in combination. For example, co-targeting of 675 

BCL-2 and MCL-1 is already proving a powerful combination against a number of blood cell 676 

cancers, with one trial underway (NCT03672695), but this strategy may encounter the same 677 

safety challenges as single agent MCL-1 inhibitor treatments. Cancer targeted nanoparticles 678 

have been reported to improve both the efficacy and the tolerability of a BCL-2/MCL-1 679 

inhibitor combination in pre-clinical models of DLBCL161. Enabling targeted delivery of this 680 

and other BH3-mimetic combinations with innovative and clinically-safe strategies will be 681 

another exciting development in the field.  682 

 683 

Conclusions/perspective:  684 

In some cancer types, the responses to BH3-mimetic drugs have been transformative but 685 

challenges remain. To improve long-term response rates in patients with resistant or relapsing 686 

disease, the employment of single cell technologies that permit the early identification and 687 

characterisation of resistant clones will be critical. Similarly, more accurate pre-clinical models 688 

of disease that can be utilised to test the therapeutic potential of combination therapies that 689 

could overcome resistance to BH3-mimetic monotherapy will improve the clinical application 690 

of BH3-mimetics. A major barrier that precludes maximal administration of BH3-mimetic 691 

drugs is the on-target toxicity associated with inhibiting critical pro-survival proteins required 692 

for normal function of many non-cancerous cells. This is particularly pertinent since there is 693 

accumulating evidence from pre-clinical studies that co-targeting two or more pro-survival 694 

BCL-2 proteins (e.g. BCL-2 plus MCL-1) with different BH3-mimetic drugs can achieve long 695 

and durable responses. In order to achieve therapeutic windows, future efforts to specifically 696 

target the delivery and/or activation of BH3-mimetics to cancer cells will be essential.  697 
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BOXES 1398 

 1399 

Box 1: Blocking apoptosis promotes tumorigenesis and renders malignant cells resistant 1400 

to diverse anti-cancer agents 1401 

The first observations that blocking apoptosis could enhance uncontrolled proliferation and 1402 

accelerate oncogene-driven tumorigenesis were made through overexpression of BCL-2162-164. 1403 

This was recapitulated with overexpression of other pro-survival proteins165,166 or deletion of 1404 

pro-apoptotic BCL-2 family proteins (e.g. BIM or PUMA)167-169. Accordingly, the apoptotic 1405 

pathway is frequently deregulated in human tumour cells. This can occur through 1406 

overexpression of pro-survival BCL-2 proteins, e.g. through chromosomal translocations as in 1407 

follicular lymphomas where there are frequent IgH; BCL-2 (t(14:18)) translocations170-172, gene 1408 

amplifications as is reported for MCL-1 and BCL2L1 (that encodes BCL-XL)173 and 1409 

hemizygous or homozygous loss of certain microRNAs (e.g. miRs-15a, -16-1 and -29) that 1410 

negatively regulate the expression of pro-survival BCL-2 family members174-176. Alternatively, 1411 

apoptosis can be deregulated by silencing of pro-apoptotic proteins through epigenetic 1412 

mechanisms as is reported for BIM and PUMA in Burkitt Lymphoma168,177 or gene deletions, 1413 

such as at the BIM locus in mantle cell lymphoma (MCL)178,179. These perturbations result in 1414 

decreased sensitivity to diverse anti-cancer drugs, including standard chemotherapeutics and 1415 

inhibitors of oncogenic kinases180. BH3-mimetic drugs have been developed to directly activate 1416 

the cell intrinsic apoptotic machinery for cancer therapy16.  1417 

 1418 

Box 2: Development of BH3-mimetic drugs  1419 

 1420 

BH3-mimetic compounds are a complex and diverse set of molecules (Table 1) developed 1421 

through leveraging knowledge of the structural features that underpin BCL-2 protein family 1422 

interactions. These key pro-survival protein:BH3 domain interaction sites (Figure 2a) include: 1423 

(1) four hydrophobic pockets, P1-P4, on the pro-survival protein that engage conserved 1424 

hydrophobic residues on the interacting BH3 domain from a pro-apoptotic member (P2 and P4 1425 

may be particularly important181), and (2) a charged interaction between a conserved arginine 1426 

(pro-survival)/aspartate (BH3) pair181,182. 1427 

 1428 

AbbVie spearheaded BH3-mimetic drug discovery with three milestone compounds, ABT-737 1429 

(Figure 2b), ABT-263/navitoclax (Figure 2c) and ABT-199/venetoclax (Figure 2d)26,27,183,184. 1430 

ABT-737, the first BH3-mimetic tool compound, targets BCL-XL, BCL-2 and BCL-W26,185,186. 1431 

Improvement of ABT-737’s properties led to ABT-263/navitoclax (BCL-XL, BCL-2 and BCL-1432 

W), the first BH3-mimetic to reach the clinic85,87,184. Optimisation of selectivity, to alleviate on-1433 

target platelet toxicity by BCL-XL inhibition, led to the BCL-2 inhibitor ABT-199/venetoclax, 1434 

now a marketed drug50,27. This class of molecules creates a deep pocket in P2 and fill P4. 1435 

Selective BCL-2 inhibitors have also been disclosed by Servier33, e.g. S55746 which engages 1436 

P1, P2 and P3128. 1437 

 1438 

BCL-XL specific inhibitors have also been developed, notably WEHI-539 (Figure 2e)187,188 and 1439 

the optimised analogue A-1331852 (Figure 2f and Table 1)189-192. On-target platelet toxicity50 1440 

has hampered their progression to the clinic, although targeted approaches may circumvent this 1441 

issues (see main text). These compounds create a large cavity at P2 that likely provides potency 1442 

and selectivity (Figure 2e and 2f)187,192. Other important interactions occur through hydrophobic 1443 

groups sitting in P4, and between a carboxylate and the conserved arginine. 1444 

 1445 

MCL-1 inhibitors hold therapeutic potential, but their development has lagged, primarily due 1446 

to toxicity concerns193. Servier disclosed the first potent and selective MCL-1 inhibitor, S63845 1447 



(Figure 2g)194,195, demonstrating efficacy in multiple in vivo tumour models and providing 1448 

evidence for an achievable therapeutic window21. The optimised analogue S64315 has entered 1449 

clinical trials (Table 3), as have inhibitors from Astra-Zeneca and Amgen (AZD5991196 and 1450 

AMG-17634,35). AZD5991, AMG-176 and S63845 all create a wide hydrophobic pocket around 1451 

the P1/P2 region in MCL-1 (Figures 2g-i), and S63845 leverages additional interactions at P4. 1452 

Additional MCL-1 inhibitors with similarities to the Astra-Zeneca series (VU-661013) have 1453 

also been disclosed197. 1454 

 1455 

BOX 3: Insights from murine models into the role of pro-survival BCL-2 family members 1456 

in non-transformed cells. 1457 

Toxicity to normal cells is a major limitation of targeting pro-survival BCL-2 proteins for 1458 

cancer therapy. The cell types that may be affected by individual and combined BH3-mimetic 1459 

drugs can be predicted from studies of gene deletion mice. 1460 

 1461 

BCL-2 deficient mice die at 4-8 weeks due to polycystic kidney disease caused by apoptosis of 1462 

developing kidney epithelial cells in the embryo198. In the adult, BCL-2 is required for survival 1463 

of mature T and B cells and melanocytes198-201. 1464 

 1465 

BCL-XL deficient mice die by E13.5 due to apoptosis of neuronal and erythroid cells. BCL-1466 

XL is also required for survival of T and B cell progenitors202,203. Conditional deletion of Bcl-1467 

X in the haematopoietic system204,205 and deletion of a single allele of Bcl-X50 revealed a critical 1468 

role for this protein in the survival of reticulocytes and platelets. 1469 

 1470 

MCL-1 deficient embryos fail to implant and die at ~E3.5206. Conditional deletion studies 1471 

showed that MCL-1 is essential for the survival of a range of cell types, including T and B 1472 

lymphocytes15, cardiomyocytes19,20, haematopoietic stem/progenitor cells18 and neuronal 1473 

progenitors122. 1474 

 1475 

Mice lacking single alleles of Mcl-1 and Bcl-X exhibit developmentally lethal craniofacial 1476 

defects207. In adult mice, deletion of single alleles of Mcl-1 and Bcl-X showed that hepatocytes 1477 

are reliant on this combination of proteins for survival61. In contrast, deletion of single alleles 1478 

of Mcl-1 and Bcl-2 or Bcl-X and Bcl-2 in adult mice caused only minimal abnormalities and 1479 

mice survived to late adulthood207, suggesting that combinations of drugs targeting these 1480 

proteins may be better tolerated than co-targeting of MCL-1 and BCL-XL. 1481 

 1482 

  1483 



FIGURES AND TABLES 1484 

Figure 1: Schematic of the intrinsic (BCL-2 regulated) apoptosis pathway, indicating 1485 

where BH3-mimetic drugs act to induce apoptosis. Cytokine deprivation, DNA damage, and 1486 

cellular stress caused by oncogene activation can activate the pathway leading to upregulation 1487 

of pro-apoptotic BH3-only proteins that bind to pro-survival proteins. This results in activation 1488 

of the pro-apoptotic effector proteins BAX and BAK that oligomerise and cause a breach in the 1489 

mitochondrial outer membrane, leading to the release of cytochrome c and other apoptogenic 1490 

factors, and triggering formation of the apoptosome. This activates caspase-9, initiating a 1491 

cascade of effector caspases that cause the dismantling of the cell. BH3-mimetic drugs bind to 1492 

select pro-survival proteins and inhibit their function, permitting pro-apoptotic proteins to 1493 

induce apoptosis.  1494 

 1495 

 1496 

Figure 2: Binding mode of select BH3-mimetic compounds in complex with pro-survival 1497 

proteins. A) Interaction of a pro-survival protein with a BH3 domain from a pro-apoptotic 1498 

relative as exemplified by the MCL-1:BimBH3 complex208. The BH3 domains possess 4 1499 

hydrophobic residues that interact with 4 pockets (p1 red shading, p2 green shading, p3 blue 1500 

shading, p4 yellow shading) within the BH3 binding groove on the pro-survival protein. 1501 

Additional interactions (circled) occur between a conserved Asp on the BH3 domain with a 1502 

conserved Arg (cyan in all panels) on the pro-survival protein. Interaction between (B) BCL-1503 

XL and ABT-737 (green)209, (C) BCL-2 and Navitoclax (ABT-263) (light green)27, (D) BCL-1504 

2 and Venetoclax (ABT-199) (magenta)128. Venetoclax engages BCL-2 by creating a deep 1505 

pocket in the P2 region lined by a number of hydrophobic residues27,128. Key interactions in the 1506 

P4 pocket with ASP103 and ARG107 are believed to drive selectivity, especially the former 1507 

where the equivalent residue in BCL-XL is a glutamic acid (GLU96). While all these 1508 

compounds bear an acidic moiety (acysulfonamide), these do not directly mimic the Arginine-1509 

Aspartate interaction key for BH3-only protein binding (dotted line on Figure 2a), (E) BCL-1510 

XL and WEHI539 [purple)187, (F) BCL-XL and compound 4 (grey) a close analogue of 1511 

A1331852210, (G) MCL-1 and S63845 (yellow)21, (H) MCL-1 and compound 3 (mauve)211 a 1512 

close analogue AMG 17634, and (I) MCL-1 and AZD5991 (blue)35. All compounds target the 1513 

p2 pocket (green shading) of the BH3 binding groove, with a selection also targeting the p4 1514 

pocket (yellow shading) and the conserved Arg (as labelled with dotted lines). Interestingly, 1515 

compounds targeting MCL-1 (S63845, AMG series and AZD5991) occupy a merged pocket 1516 

that spans P1 (red shading) and P2 (green shading). In all images the pro-survival protein is 1517 

displayed as a transparent surface with MCL-1, BCL-2 and BCL-XL shown as brown, pink and 1518 

blue ribbons, respectively.  *Structures are published as cited, but these images were produced 1519 

by PC. 1520 

 1521 
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Table 1. Validated BH3-mimetics in preclinical/clinical phase or approved. 2 

 3 

 4 

Target Compounds Structure Originator Status 
BCL-2, 
BCL-XL, 
BC-W 

ABT-737 
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BCL-2 ABT-
199/Venetoclax 

 

AbbVie/Genentech/WEHI Approved 

S55746 

 

Servier/Novartis Phase 1 

N

Cl

N

N
H

O
S

O O
NO2

NH

O

O

N

HN

N

O
N

HO

N

O

N

O

O

O



 APG-
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MCL-1 S63845 

 

Vernalis/Servier Pre-clinical 

S64315 

 

Vernalis/Servier/Novartis Phase 1 
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Amgen Phase 1 (on 
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AZD5991 

 

Astra-Zeneca Phase 1/2 

VU661013 

 

Vanderbilt University  Preclinical 
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Table 2. Progression of BCL-2 selective BH3-mimetics in clinical trials. 1 

Indication (FDA 
registration status) 

Treatment Progression free 
survival 
(PFS)/Overall 
survival (OS)/Overall 
Response Rate 
(ORR)/Complete 
Response (CR) 

References 

RR chronic 
lymphocytic 
leukaemia 
 
(FDA approval: 
Single agent for the 
treatment of adult 
patients with 
chronic lymphocytic 
leukaemia (CLL) or 
small lymphocytic 
lymphoma (SLL).) 

Single agent 
venetoclax 

Median PFS: 25 
months 
PFS (15 months): 69% 
Estimated OS (2 
years): 84% 
 

71 
NCT01328626 
 

Single agent 
venetoclax in 
del17p population 

PFS (24 months): 54% 
Estimated median PFS: 
27.2 months 
OS (24 months): 73% 
 

212 
NCT01889186 
 
 

Venetoclax + 
Rituximab 

Estimated PFS (2 
years): 82% 
Median OS: Not 
reached 

96 
NCT01682616 
 

Venetoclax + 
Rituximab time 
limited therapy 

PFS (4 years): 57.3% 
OS (4 years): 85.3% 

213 
NCT02005471 
MURANO 

Venetoclax + 
Ibrutinib 

ORR: 89% 
CR: 51% 

214,215(conference abstract) 

EudraCT 2015-
003422-14 
ISCRTN13751862 
CLARITY 

 Venetoclax + 
Ibrutinib + 
Obinutuzumab time 
limited therapy 

Estimated PFS (24 
months): 92% 

98 
NCT02427451  

Upfront chronic 
lymphocytic 
leukaemia 
 
(FDA approval: 
Single agent for the 
treatment of adult 
patients with 
chronic lymphocytic 
leukaemia (CLL) or 
small lymphocytic 
lymphoma (SLL).) 

Venetoclax + 
Obinutuzumab 

Estimated PFS (24 
months): 88.2% 
Median OS: Not 
reached 

99 
NCT02242942 

Venetoclax + 
Ibrutinib 

PFS (30 months): 
>95% 
OS: Not reported 

102(conference abstract) 
NCT02910583 
CAPTIVATE 
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RR multiple 
myeloma 

Single agent 
venetoclax 

ORR: 21% (15% 
VGPR) 

109 
NCT01794520 
 

Venetoclax + 
Bortezomib + 
Dexamethasone* 

Median PFS: 22.4 
months 
Median OS: Not 
reached 

110,216(conference abstract) 
NCT02755597 
BELLINI 

Upfront diffuse 
large B cell 
lymphoma 

Venetoclax + 
RCHOP 

CR: 69% 108 
NCT02055820 
CAVALLI 

RR follicular 
lymphoma 

Venetoclax + 
Rituximab, with or 
without 
Bendamustine 

CR (Venetoclax + 
Rituximab): 17% 
CR (Venetoclax + 
Rituximab + 
Bendamustine): 75% 

106 
NCT02187861 
CONTRALTO 

RR mantle cell 
lymphoma 

Venetoclax + 
Ibrutinib 

CR: 42% by CT, 71% 
by PET 
OS (18 months): 74% 
Estimated PFS (18 
months): 57%  

104 
NCT02471391 
AIM 

RR Waldenstroem’s 
macroglobulinaemia 

Venetoclax + 
Ibrutinib 

ORR: 87% (17% 
VGPR, 63% PR) 

105(conference abstract) 
NCT02677324 

RR acute myeloid 
leukaemia 
 
 

Venetoclax 
monotherapy  

ORR: 19% 
CR: 13% 
Estimated OS (6 
months): 26% 
Median PFS: 2.5 
months 

112 
NCT01994837 

Venetoclax + 
FLAG-IDA 

ORR: 74% 
CR: 66% 
OS (1 year): 52% 
Median OS: 11 months 
 

115(conference abstract) 
NCT03214562 

Upfront acute 
myeloid leukaemia 
 
(FDA approval: In 
combination with 
azacytidine, or 
decitabine, or low-
dose cytarabine for 
the treatment of 
newly diagnosed 
acute myeloid 

Venetoclax + 
decitabine or 
azacytidine 

CR: 67% 
OS: 17.5 months 

113 
NCT02203773 

Venetoclax + 
azacytidine 

CR: 36.7% 
OS: 14.7 months 
 

114 
NCT02993523 
VIALE-A 

Venetoclax + 
FLAG-IDA 

ORR: 96% 
CR: 89% 
OS (1 year): 92%  
Median OS: Not 
reached 

115(conference abstract) 
NCT03214562 
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leukaemia (AML) in 
adults 75 years or 
older, or who have 
comorbidities that 
preclude use of 
intensive induction 
chemotherapy) 
RR acute lymphoid 
leukaemia 

Venetoclax + 
Navitoclax 

CR: 60% 117 
NCT03181126 
 

Upfront/RR 
ER/BCL-2 positive 
breast cancer 

Venetoclax + 
Tamoxifen 

ORR: 54% 
Clinical benefit rate: 
74% 
Median PFS not 
reached at 51 weeks 

119 
NCT03584009 

RR non-Hodgkin 
lymphoma, 
including diffuse 
large B cell 
lymphoma 
(DLBCL), follicular 
lymphoma (FL), 
mantle cell 
lymphoma and 
marginal zone 
lymphoma  

Single agent 
S55746 

CR: 1/25 DLBCL 
patients 
PR: 2/25 DLBCL 
patients, 1/3 FL 
patients 

92 
NCT02920697 

*trial ceased early due to safety signal 2 

VGPR = very good partial response; PR = partial response 3 

 4 

 5 

 6 

  7 
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Table 3. Clinical trials initiated with BH3-mimetics targeting MCL-1 8 

Indication MCL-1 Inhibitor Treatment Sponsors/Reference 
RR acute myeloid 
leukaemia (AML), 
multiple myeloma 
(MM) 

AMG 176 For MM, as single 
agent. 
For AML, as single 
agent or in 
combination with 
Itraconazole or 
Azacytidine. 

Amgen 
NCT02675452 

RR or intensive 
chemotherapy-
excluded AML, 
myelodysplastic 
syndrome (MDS) 

S64315/MIK 665 Single agent. Institut de 
Recherches 
Internationales 
Servier 
NCT02979366 

RR MM, lymphoma, 
diffuse large B cell 
lymphoma (DLBCL) 

MIK 665/S64315 Single agent. Novartis 
Pharmaceuticals 
NCT02992483 

RR chronic 
lymphocytic 
leukaemia (CLL), 
AML, MDS, MM 

AZD5991 For CLL, MDS and 
MM, as single agent.  
For AML, as single 
agent or in 
combination with 
venetoclax. 
 

Astra-Zeneca 
NCT03218683 

RR or intensive 
chemotherapy-
excluded AML 

S64315/MIK 665 In combination with 
venetoclax. 

Institut de 
Recherches 
Internationales 
Servier 
NCT03672695 

RR AML, non-
Hodgkin’s 
lymphoma (NHL), 
DLBCL 

AMG 176 In combination with 
venetoclax. 

AbbVie 
NCT03797261* 
 

RR MM, AML, NHL, 
MDS 

AMG 397 For NHL, as single 
agent. 
For AML and MDS, 
as single agent or in 
combination with 
azacytidine.  
For MM, as single 
agent or in 
combination with 
dexamethasone. 

Amgen 
NCT03465540^ 
 

RR MM ABBV-467 Single agent. AbbVie 
NCT04178902 

RR MM, AML, NHL, 
MDS 

PRT1419 Single agent. Prelude Therapeutics 
NCT04543305 

*Trial suspended 9 
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^Trial terminated10 
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