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Abstract

Targeted regulation of protein levels is an important tool to gain insights into the role of proteins essential to cell function
and development. In recent years, a method based on mutated forms of the human FKBP12 has been established and used
to great effect in various cell types to explore protein function. The mutated FKBP protein, referred to as destabilization
domain (DD) tag when fused with a native protein at the N- or C-terminus targets the protein for proteosomal degradation.
Regulated expression is achieved via addition of a compound, Shld-1, that stabilizes the protein and prevents degradation.
A limited number of studies have used this system to provide powerful insight into protein function in the human malaria
parasite Plasmodium falciparum. In order to better understand the DD inducible system in P. falciparum, we studied the
effect of Shld-1 on parasite growth, demonstrating that although development is not impaired, it is delayed, requiring the
appropriate controls for phenotype interpretation. We explored the quantified regulation of reporter Green Fluorescent
Protein (GFP) and luciferase constructs fused to three DD variants in parasite cells either via transient or stable transfection.
The regulation obtained with the original FKBP derived DD domain was compared to two triple mutants DD24 and DD29,
which had been described to provide better regulation for C-terminal tagging in other cell types. When cloned to the C-
terminal of reporter proteins, DD24 provided the strongest regulation allowing reporter activity to be reduced to lower
levels than DD and to restore the activity of stabilised proteins to higher levels than DD29. Importantly, DD24 has not
previously been applied to regulate proteins in P. falciparum. The possibility of regulating an exported protein was
addressed by targeting the Ring-Infected Erythrocyte Surface Antigen (RESA) at its C-terminus. The tagged protein
demonstrated an important modulation of its expression.
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Introduction

Malaria is still one of the most important parasitic diseases

affecting mankind, with more than 40% of the world’s population

at risk of infection [1]. The deadliest form of malaria, caused by

Plasmodium falciparum, is responsible for almost a million deaths

every year, most of them children under 5 years of age (WHO

report 2010). Despite global efforts towards control and elimina-

tion of the disease, parasite resistance to nearly all drugs has

emerged. Realizing the goals of future control efforts will, as such,

depend on our ability to quickly diagnose and treat the infected

patients and to control disease transmission.

A critical stage in the advancement of novel therapies is

developing a means to understand specific aspects of Plasmodium

biology, such as metabolic or signalling pathways and other

fundamental mechanisms of parasite cell or molecular processes.

Since Plasmodium is not amenable to RNAi based methods [2], the

identification of gene function has traditionally relied on classical

reverse genetics approaches [3,4,5]. Using such approaches, the

specific function of a protein is determined by phenotype analysis

of null mutant parasites, where the gene encoding the protein of

interest is knocked out either via single crossover-mediated

homologous integration [6] or by double crossover homologous

integration [7]. The haploid nature of the Plasmodium asexual

blood stage genome has only permitted mutagenesis to be

conducted for non-essential P. falciparum proteins expressed during

this stage [8,9]. These classic reverse genetic approaches have

been particularly useful for studying erythrocyte invasion for the

parasites which employ multiple invasion pathways using several

ligands none of which by themselves are essential [9]. Genes

necessary for life cycle stages other than the asexual blood stage

have been successfully studied because the mutants can be made in

the blood stages and then passaged through insect and liver stages

to obtain phenotypes [10,11,12]. However, it is blood stage

infection that produces the symptoms of malarial disease and study
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of this important life cycle stage has been severely hampered by

the inability of knockout approaches to functionally dissect the role

of essential proteins.

In order to address the function of proteins refractory to

deletion, several inducible systems have been developed where the

expression of the protein of interest can be modulated and the

phenotypes analysed [13]. One of the most promising systems,

utilizing conditional regulation of the candidate gene/protein at

the post-translational level, was established by generating mutants

of the human protein FKBP12 that are unstructured and

consequently targeted for degradation in the proteasome. This

mutant protein, called a destabilization domain or DD is fused to

the protein of interest at its N- or C-terminus, which targets the

whole fusion protein for degradation. Regulation is then achieved

by adding a cell-permeable ligand, Shld-1 [14], which stabilizes

the unstructured protein domain preventing it from protein

degradation. The system is functional in several cell types and

organisms [15,16], including P. falciparum, where it has been used

to test the function of several essential proteins [17,18,19]. A

related system has also been developed using mutated versions of

the E. coli DHFR protein, which is unstable when not bound to the

drug trimethoprim [20]. Although such a system has been

successfully established for P. falciparum, it can only be applied to

parasites that already express human DHFR since wild type

parasites are sensitive to TMP [21].

The attraction of inducible systems for investigating protein

function is their ability to specifically inhibit a protein in a

regulated and reversible manner. This can be achieved by two

basic approaches: 1) conditional knockdown where the protein of

interest is expressed at markedly reduced levels; or 2) the regulated

expression of a dominant negative variant where modified proteins

or parts of proteins are expressed that then inhibit the native target

protein or its ligand. In P. falciparum, due to the paucity of

selectable markers and the long time required to generate stable

transfectant parasites, the most straightforward strategy for

conditional protein regulation is to integrate a plasmid containing

the DD domain into the desired locus via single or double

crossover recombination, so that the protein of interest is

expressed in fusion with DD at its C-terminus (with the gene

remaining under the control of the endogenous promoter). Such

an approach, however, may be hindered by considerable leakiness

of C-terminal DD tagging that can lead to insufficient target

protein degradation and knockdown. In order to improve the

strength of knockdown, two new DD variants, referred to as DD24

(E31G-R71G-K105E) and DD29 (D79G-P93S-D100R), have

been developed and these provide more efficient and less leaky

protein degradation [22].

Conditional knockdown of a P. falciparum calpain [19] and a

calcium dependent protein kinase [18] have been achieved by C-

terminal tagging with either the original DD (L106P) or the new

mutant DD29. To our knowledge, these are the only two essential

proteins that have been successfully targeted using C-terminal DD

tagging with many others failing to accept a C-terminal tag or

failing to regulate despite successful integration of either a DD or a

DD29 tag (Baum et al. and Azevedo et al., unpublished data). The

inability of different proteins to accept a C-terminal tag or the

failure of the stabilizing ligand to restore expression levels that

allow parasites to grow normally likely accounts for the lack of

success to achieve integrated regulation. Variation in the ability to

successfully regulate those proteins that will accept a tag likely

arises because the degradation seen is not sufficient or complete

enough to cause a detectable phenotype (incomplete degradation).

Conditional expression of proteins that produce dominant-

negative phenotypes has not yet been reported for P. falciparum.

To gain a better understanding of the performance of the

available DD tagging strategies, we have conducted a systematic

approach to measure the toxicity of Shld-1 as well as the activities

of the available DD variants in P. falciparum. The single original

mutant L106P, referred to as DD, has been characterized [17,19],

as well as the triple mutant DD29 [18]. The triple mutant DD24

has only been characterized in other cell types [22]. Here, using

the reporter proteins luciferase (Luc) and GFP, we show that when

tagged to the C-terminal, DD24 performs clearly better than the

other mutants regarding protein regulation at Shld-1 concentra-

tions that are tolerated by the parasite. In contrast, N-terminal

tagging with either of the triple mutants was less efficient

compared to the original DD single mutant. The possibility of

using the system with secreted or exported proteins was addressed

by C-terminally tagging the endogenous gene for the exported Ring

Infected Erythrocyte Surface Antigen (RESA) with DD24. Successful

regulated expression and export of RESA-DD demonstrate that

proteins secreted via the endoplasmic reticulum (ER) can be

regulated.

Results

Effect of the Shld-1 on Parasite Growth
The application of the DD system includes the incubation of

parasite forms with the small stabilizing molecule Shld-1 which is

considered non-toxic to P. falciparum at the concentrations used in

other cell systems. However, it is possible that Shld-1 interferes

subtly with Plasmodium cell cycle progression or proliferation

leading to a misinterpretation of eventual phenotypes. P. falciparum

conditional knockdown or knockout lines have been successfully

generated [18,19] when parasites had been maintained in 0.5 mM

Shld-1. Depending on the target protein tagged, it may be

desirable or necessary to increase the concentration of Shld-1. In

order to quantify the toxicity of Shld-1 to the parasites and to

determine whether a higher concentration would be tolerable, P.

falciparum ring stage parasites were incubated with either 0.5 mM

or 1.0 mM of Shld-1 for up to four days. Parasite growth was

measured by flow cytometry and parasite forms were analysed by

microscopy of blood smears.

Parasitemias of the cultures kept at 0.5 mM and 1.0 mM Shld-1

were reduced by 11% and 18% after the first reinvasion cycle (48

hours) and by 25% and 45% after the second cycle, respectively,

compared to no Shld-1 controls (Fig. 1). A subtle delay in the

trophozoite development could be made out over one blood stage

cycle when treating with Shld-1, while the incubation for 24 h did

not reveal differences between treated or untreated parasites (Fig.

S3). To ascertain if P. falciparum could tolerate being cultured in

1.0 mM Shld-1 for a longer period, parasites were further grown

for several weeks and continued to expand, proving that despite its

apparent toxicity, 1.0 mM could be employed for long term growth

(data not shown).

Vectors for Inducible Expression of Proteins in
P. falciparum

Prior studies and our own work have demonstrated that N-

terminal tagging of proteins with a Destabilization Domain (DD)

tag provides a much greater efficiency of destabilization than C-

terminal tagging [14,17] (Fig. S1). This observation has proven

valid for a variety of cell types, including P. falciparum, which may

explain why reversible phenotypes of only two conditional

knockout lines have been reported [18,19].

To explore this concept further, a rapid read out for the effects

of DD and Shld-1 on the expression of a reporter gene encoding

Photinus luciferase (Luc) was undertaken with P. falciparum blood

Performance of FKBP Variants in P. falciparum
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stage parasites. Plasmids encoding luc fusions were electroporated

and luciferase activity was measured one day later. GFP was also

incorporated into some of our Luc fusion proteins so that an

option to check the expression of the fusion proteins by

fluorescence microscopy or flow cytometry was available. A

plasmid encoding luciferase alone and luciferase-GFP tagged with

a triple haemagglutinin epitope (HA) served as positive controls for

transfection efficiency and enzyme activity (pEF-Luc & pEF-Luc-

GFP-HA, Fig. 2A). In addition to the originally described and

functional single DD mutant (L106P) (Fig. S1), we made a Luc-

GFP-HA gene fusion with the DD24 and DD29 triple mutants.

The three DD containing plasmids were accordingly called pEF-

Luc-GFP-HA-DD/DD24/29 (Fig. 2A).

Regulation in Transiently Transfected Parasites
The luciferase reporter plasmids were transiently transfected in

P. falciparum and the parasites were cultured in the presence of 0,

0.5 or 1.0 mM Shld-1 for one day after which they were harvested

and their luciferase activity determined (Fig. 2B). Importantly, in

the sample without Shld-1, the culture medium was adjusted to

0,1% ethanol. Also, the incubation time with Shld-1 was limited to

24 h in which no toxic inhibitory effect on parasite progression is

observed (Fig. 1 and Fig. S3). In the absence of Shld-1 the

presence of the GFP-HA reduced luciferase activity to 40% of the

luciferase only control. The DD further reduced reporter activity

to about only 21% of pEF-Luc (Fig. 2B). The reporter activity of

parasites transfected with the DD24 and DD29 plasmids was only

12% and 11% respectively, and much lower than the activity

detected with the original DD plasmid. This indicates that in

P. falciparum the DD triple mutants destabilize the proteins

approximately twice as efficiently as the original DD.

In the presence of 0.5 and 1.0 mM Shld-1 the luciferase activity

of pEF-Luc and pEF-Luc-GFP transfected parasites was almost

the same as without the compound (Fig. 2B), excluding any

nonspecific effect of Shld-1 upon luciferase activity which can be

observed after longer Shld-1 incubations (Fig. 1). In contrast,

cultures transfected with each of the DD vectors and kept in

0.5 mM or 1.0 mM Shld-1 always showed increased luciferase

activity when compared to the same transfected parasites kept in

the absence of the ligand. In 0.5 mM and 1.0 mM Shld-1, the

reporter activity relative to the control was increased to a

respective 48% and 57% for the DD, 38% and 53% for DD24

and to 21% and 29% for DD29 (Fig. 2B). The culturing of DD

and DD24 transfectants on 1 mM Shld-1 elevated the luciferase

activities to a level exceeding the pEF-Luc-GFP-HA control

parasites. In contrast, the luciferase activity of parasites transfected

with DD29 plasmid was only raised to half of the Luc-GFP-HA

parasites in 1 mM Shld-1.

Regulation in Stably Transfected Parasites
To test whether the performance of the DD mutants would be

maintained in transfectants containing the luciferase and GFP

genes in episomes, parasites were stably transfected with the DD

reporter plasmids. Reporter expression was then induced similarly

to the transient transfection experiments, except that Shld-1 was

added to ring stage parasites. Luciferase reporter activity of non-

induced parasites suggested DD24 is the most efficient domain in

destabilizing luciferase, followed by DD29 and DD (Fig. 2C). This

result is somewhat different to the transient transfection data

where both DD24 and DD29 parasites destabilised luciferase to

the same degree (Fig. 2B). The other difference was that in the

transient data Shld-1 drug restored greater luciferase activity in

DD24 compared to DD29 mutants but in the stably transfected

parasites restoration was similar (Figs. 2A & B). Although

luciferase activity was normalized by parasite number in the

stable transfectants, small differences in parasite cell cycle

synchronization could have affected reporter activity. To further

ensure synchronisation was not contributing to the differences,

GFP fluorescence of the stable transfectants was quantified by flow

cytometry, where cells were gated on late stage parasites. DD24

still destabilized luciferase to the lowest levels, followed now by DD

and DD29. The effect of Shld-1 was similar to what was detected

using the luciferase assay (Fig. 2D). The results calculated as fold

induction upon Shld-1 treatment are summarized in Table 1.

Despite some differences between luciferase/GFP expression in

the transient versus stable transfectants, which may also have been

due to plasmid copy number in the latter, the DD24 tagged line

consistently showed the highest fold induction (difference between

induced and non-induced state) in each test when either 0.5 mM

(3.2–4.1 x) or 1.0 mM (4.4–5.3 x) Shld-1 was used. DD had the

second best induction followed by DD29 (Fig. 2B-D, Table 1).

Notably, the plasmid copy numbers as evaluated by quantitative

PCR reactions using equally performing primers for a single copy

gene (seryl-t-RNA synthetase, PlasmoDB PF07.0073) and lucifer-

ase showed a comparable number of plasmid equivalents in the

transfectants (Fig. S4). Assuming that the copy number of plasmids

is not decreasing dramatically during Shld-1 removal/addition,

our results indicate that the observed differences between the

different DD mutants occurred as a consequence of the differing

DD domain sequences and not due to transcriptional differences

caused by vastly differing plasmid copy numbers in transfectants.

Performance of the DD Mutants for N-terminal Tagging
Considering the reproducibly improved regulation of protein

levels achieved with DD24 when expressed at the C-terminal of

the reporter proteins, the regulation of N-terminal tagging was also

investigated. Since the reporter activity obtained in P. falciparum

transient transfections is somewhat low and DD degrades proteins

more efficiently when fused to its N-terminus (Fig. S1), reporter

plasmids were constructed based on the pPf86 vector [23], where

luciferase is under the control of the HSP86 promoter, which is

about ten times stronger than the EF1-a promoter (Fig. 3A).

The N-terminal DD reduced luciferase activity 10 fold,

confirming the more efficient protein destabilization (Fig. 3B).

Shld-1 partially prevented the degradation restoring the activity to

Figure 1. Effect of Shld-1 on parasite development. P. falciparum
3D7 blood stage parasites were incubated with or without the indicated
concentrations of Shld-1 and the parasitemia monitored for 4 days by
flow cytometry.
doi:10.1371/journal.pone.0040981.g001

Performance of FKBP Variants in P. falciparum
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29% and 30% when cultures were kept on 0.5 mM and 1.0 mM

Shld-1, respectively (3 fold induction). The triple mutant DD24

destabilized luciferase as efficiently as DD, but reporter activity

was poorly reverted by Shld-1, 18% and 16%, respectively (,1.5–

1.6 fold induction). DD29 was an even more efficient destabiliser,

reducing reporter activity even further to about 6%, but similarly

Figure 2. Regulation with C-terminal DD. (A) Maps of inducible expression vectors. (B) To measure expression in transiently transfected parasites
ring stage parasites were transfected and the indicated Shld-1 concentrations were added the next day and maintained for 24 hours. Luciferase
expression is represented relative to the positive control pEF-Luc kept without Shld-1. Results indicate the average of 4 experiments and error bars
show the standard deviation. (C) Luciferase activity on stably transfected parasites. Ring stage parasites of stable transfected lines were incubated for
one day with the indicated Shld-1 concentrations. The measured luciferase activity was normalized by the number of parasites and expressed as
percentages to the control line 3D7 transfected with Luc-GFP kept without Shld-1. (D) GFP fluorescence of the parasites described in (C) was
measured by flow cytometry and is expressed relative to the control line Luc-GFP kept without Shld-1. RLU – relative light units, FI – fold induction of
reporter expression, MFI – mean fluorescence intensity.
doi:10.1371/journal.pone.0040981.g002

Performance of FKBP Variants in P. falciparum
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to DD24, reporter expression poorly recovered when Shld-1 was

added, increasing to 10% and 9%, respectively.

DD System can Regulate the Expression of Exported
Proteins

While proteins localized in the parasite cytoplasm have been

successfully regulated by Shld-1, it was uncertain whether proteins

that are secreted via the ER or exported to the red blood cell could

still be destabilized. In order to investigate the efficacy of the

system to regulate an exported protein, RESA was tagged with

GFP-HA-DD24 at its C-terminus (Fig. 4A). Parasites were

transfected and then kept in 0.5 mM Shld-1 and the transfected

cultures were intermittently subjected to WR99210 withdrawal to

select for plasmid integration. The resulting parasites were then

analysed by PCR using oligonucleotides that could only amplify a

product if integration had occurred (Fig. 4B). Images of

fluorescence live microscopy confirmed that RESA was expressed

in fusion with the tag at its expected localization, associated to the

host cell membrane (Fig. 4C, Fig. S2).

We then monitored the regulation removing the Shld-1 from

ring stage cultures for 2 days after which ghosts of infected RBC

were fractionated and proteins extracted with SDS. Western blots

probed with anti-HA antibody showed greatly reduced levels of

RESA-GFP-HA-DD24 in parasites where Shld-1 had been

removed (Fig. 4D). Importantly, loading controls with EXP2 (a

component of the putative parasite export machinery co-purifying

with IRBC membranes [24]) demonstrated the reduction of

RESA-GFP-HA-DD24 was due to its DD-mediated degradation

and not due to whether cultures were subjected to Shld-1 (Fig. 4D).

Densitometry analysis of the bands detected in the Western blot

suggests that removal of Shld-1 resulted in about 4 fold less tagged

RESA protein (data not shown). Fluorescent live microscopy

imaging also showed reduction in RESA-GFP-HA-DD24 expres-

sion in parasites where Shld-1 had been removed. Moreover, GFP

fluorescence was more intense inside the parasite, suggesting a

partial degradation prior to insertion in the endoplasmic reticulum

although the resolution does not permit more specific affirmations

(Fig. S2).

Discussion

The two main approaches applying inducible systems to

understand gene function are i) the conditional knockdown and

ii) the expression of proteins that produce a dominant negative

phenotype. In the former, the proteins of interest must be

stabilized during selection, such as with tolerant Shld-1 concen-

trations, for periods up to many months. In the second strategy,

the expression of proteins or peptides, supposed to be toxic or

deleterious, must be kept silent, so Shld-1 has to be added to

parasites already selected for the presence of the plasmids in the

form of episomes. The conditional knockouts of a protease [19]

and a kinase [18] have been conducted this way, selecting parasites

on 0.5 mM Shld-1. This enabled the generation of cloned cell lines

where the target proteins were regulated at sufficient levels to

Table 1. Reporter proteins - regulation summary.

Shld-1 induction (fold change)

Transient - Luc Stable - Luc Stable - GFP Average

Reporter 0.5 mM 1.0 mM 0.5 mM 1.0 mM 0.5 mM 1.0 mM 0.5 mM 1.0 mM

C-DD 2.28 2.71 2.46 2.68 3.12 3.87 2.62 3.08

C-DD24 3.16 4.41 3.75 4.37 4.11 5.34 3.67 4.70

C-DD29 1.90 2.63 2.01 2.53 1.84 2.64 1.91 2.60

N-DD 2.90 3.00 ND ND ND ND ND ND

N-DD24 1.63 1.45 ND ND ND ND ND ND

N-DD29 1.66 1.50 ND ND ND ND ND ND

C- refers to Luc-GFP-HA fused to the indicated DD mutant at its C-terminus and N- to Luc fused to DD at its N-terminus. Fold change represents the means of the
expression of the Shld-1 induced related to the basal (non induced) expression. See figure 2 for relative expression values.
doi:10.1371/journal.pone.0040981.t001

Figure 3. Regulation with N-terminal DD. (A) Maps of reporter
plasmids tested. (B) Reporter expression of transiently transfected
parasites. Parasite transfection and Shld-1 incubation was performed as
indicated in Figure 2. Luciferase activity is represented relative to pPf86
kept without Shld-1. Results are the average of 3 experiments and the
error bars show the standard deviation.
doi:10.1371/journal.pone.0040981.g003
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produce inducible and reversible deleterious phenotypes providing

important clues of their respective functions. According to our

results, the concentration of 0.5 mM Shld-1 is slightly toxic to the

parasites, reducing their growth to about 11% per reinvasion

cycle. We also showed that although parasites tolerate up to 1 mM

of Shld-1, their development is delayed and this must be taken in

account when interpreting inducible phenotypes. We could not

assign the Shld-1 growth defect phenotype to the inhibition of a

specific intraerythrocytic stage or to RBC invasion (Fig. S3).

Therefore, it remains to be shown whether unique or multiple

parasite proteins are natural targets for Shld-1. A Plasmodium

FKBP homologue is expressed throughout the life cycle and it is

sensitive to the Shld-1 analogue Rapamycin [25], but whether

Shld-1 targets PfFKBP is unknown.

In this study we present an in depth-analysis of the most useful

system currently available to achieve controlled protein expression

in Plasmodium. While regulation of protein levels by the DD system

in P. falciparum has been demonstrated using a small number of

proteins, we show here the potential of the technique using

transiently, stable and integrated plasmid constructs containing

three different variants of the original FKBP (DD) domain. Similar

to what has been characterized for NIH3T3 cells [22], data from

transiently and stably transfected parasites, using either Luc or

GFP as reporters, suggested that DD24, and possibly DD29, are

more efficient than the original DD in the destabilization of

proteins when fused to their C-terminus. Also, at Shld-1

concentrations which are tolerated by P. falciparum cultures,

DD24 has the greatest dynamic range of the three DDs tested.

While our data generally agree with what has been described for

the DD mutants in other cell types, the destabilization efficiency

and the dynamic range of induction observed in P. falciparum are

quite low compared to what Chu et al. [22] measured. It was

shown that in NIH3T3 cells the DD24 or DD29-tagged reporter

proteins were reduced to about 5% of the control lines; however,

in P. falciparum, the reduction was to about 10–20% depending on

the control used. In the same way, induction with 1 mM Shld-1

Figure 4. DD can be used to regulate exported proteins. (A) Diagram of DNA integrations into the RESA locus to produce the transgenic line.
After integration in the presence of Shld-1, RESA was expressed in fusion with the GFP-HA-DD24 under the control of the native RESA promoter. (B)
Integration of the plasmid in the RESA endogenous locus is confirmed by PCR. The oligonucleotides used are indicated by arrows in (A). (C)
Fluorescent microscopy of live parasites labelled with DAPI showing RESA-GFP-HA-DD24 is exported to the RBC membrane. (D) Western blot analysis
of RESA-GFP-HA-DD24 transfectants showing that RESA levels decrease after the removal of Shld-1. Parasites integrated in the presence of Shld-1 at
ring stage were split and kept either with 0.5 mM or no Shld-1 for 2 days when RBC ghosts were collected and protein were fractionated by SDS-PAGE.
The western blot was probed with anti-HA mAb to detect RESA-GFP-HA-DD24. As the loading control, the western blot probed with polyclonal rabbit
anti-Exp2 [31].
doi:10.1371/journal.pone.0040981.g004
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increased protein levels about 20 fold against 4–5 fold in P.

falciparum. Importantly, our values were obtained in quantifications

using two different reporter proteins, and both showed similar

induction performance. This suggests that the regulation provided

by the DD system, despite evidence for a considerable regulation,

is generally lower in P. falciparum. Longer Shld-1 incubations were

tried, but resulted in only slightly better induction and no more

than 6 fold in 4 days was attained. Higher Shld-1 concentrations

were tested, but they were too toxic to the parasite. It is not clear

whether these differences are due to less active protein degradation

in parasites compared to NIH3T3 cells.

Although DD24 seems to be the mutant with the best

regulation, DD29 has been successfully applied in the CDPK5

conditional knockout [18], indicating the regulation obtained with

this mutant can be sufficient to cause an inducible lethal

phenotype. It is possible though, that DD24 could be successfully

used to regulate proteins that cannot be targeted with DD29

because they need to be expressed at higher levels to guarantee the

survival of parasites.

Tagging the proteins with DD at the N-terminus had been

reported to produce more efficient protein destabilization both for

the apicomplexan parasites P. falciparum [17] and Toxoplasma gondii

[15] and also for other eukaryotic cell lines [14]. We investigated

whether the triple mutants would allow the protein to be further

degraded. While the reporter activity was equally (DD24) or more

efficiently (DD29) reduced than with the classic DD, expression

was poorly restored with Shld-1, suggesting the triple mutants are

not suitable for N-terminal tagging, probably by rendering the

reporter protein unstable.

Plasmodium parasites have unique cellular compartments where

DD tagged proteins might not be as efficiently targeted for

degradation as those that reside in cytosolic environments. For

example, it is unclear if proteins directed to the nucleus or to the

apicoplast can be efficiently DD-tagged and degraded which may

depend on specific functional features of the target proteins. It is

possible that proteins become non-functional despite of being

normally transported to their target organelle in the presence of a

stabilized DD domain. On the other hand, C-terminally tagged

proteins with co-translational insertion in the endoplasmic

reticulum may escape from proteasome degradation in the

absence of Shld-1. Since a number of potential virulence factors

are exported from the parasite, we addressed the feasibility of

regulating RESA, a protein that is exported to the host cell

membrane during erythrocytic stages. Removal of Shld-1 from

parasites caused a clearly visible reduction in the levels of RESA

present in the RBC compartment. Since the period from which

Shld-1 was removed until protein samples were acquired was

about one reinvasion, it seems that proteins synthesized in the

absence of Shld-1 are sensitive to degradation and it is probable

that the punctuate weak fluorescent signal inside the parasite was

caused by GFP en route to degradation. It still remains to be

determined what happens to tagged RESA that has already been

exported and if it is sensitive to degradation. Recently, the 20S

proteasome subunit was identified in human mature erythrocytes

[26], turning possible that even exported destabilized proteins may

be degraded by the erythrocyte proteasome.

Conclusion
In conclusion, our study demonstrates the possibilities and limits

in which proteins can be modulated using the FKBP-mutants DD,

DD24 and DD29 and establishes the groundwork for experimen-

tation using this system on virtually any target in the Plasmodium

proteome. This includes the many proteins resident in organelles

or which function in pathways that lead to the secretion of proteins

to the host cell and which may prove novel targets for intervention

against malaria disease.

Materials and Methods

Plasmid Construction
The plasmid pTGFP [27] was digested with Xho I and re-ligated

to delete the transactivator and its 39UTR. GFP was PCR

amplified from the same plasmid with the oligonucleotides 59-

ctcgagctgcagaaaaaatggctacacgtgca and 59-actagtacgcgttgctttgta-

tagttcat and cloned back in the vector digested with Xho I and

Spe I, generating the plasmid pRM2-GFP. This plasmid incorpo-

rates the rep20 element for efficient segregation during mitosis

[28] and has the selection and expression cassettes cloned back to

back, where GFP is under the control of the MSP2 promoter.

Plasmid templates for DD variants were kindly provided by

Thomas Wandless (Stanford University, USA). DD combined with

a PCR amplified triple haemagglutinin (HA) tag were fused by

PCR using the oligonucleotides 59-acgcgtccgtacgacgtc and 59-

actagtttattccggttttagaagc and cloned in pRM2-GFP digested with

Mlu I and Spe I, generating pRM2-GFP-DD. DD24 and 29 were

amplified from plasmids pYFP-E31G-R71G-K105E (24) and

pYFP-D79G-P93S-D100R (29), using the forward oligonucleotide

59-gctagcatgggagtgcaggtggaaac and the reverse oligonucleotides

59-actagttattccagttctagaagctccac (24) or 59-actagttattccagtttta-

gaagctccac (29) and cloned in pRM2-GFP-DD, generating

pRM2-GFP-DD24 and pRM2-GFP-DD29. Both promoters and

the Rep20 sequences of these plasmids were replaced with the

bidirectional P. berghei EF1a promoter, which was PCR amplified

from P. berghei gDNA using the oligonucleotides 59-gctctagag-

gatccttttataaaatttttatttatttataagca and 59-ctcgagttttataaaatttttatt-

tatttataagca and cloned in pBluescript (Stratagene). The restriction

sites Spe I and Hind III were destroyed by digesting the plasmid

with these enzymes and then filling the ends with Klenow and re-

ligating them. The promoter was then digested with Bam HI and

Hind III and cloned in pRM2-GFP-DD/24/29, generating pEF-

GFP-DD/24/29. Luciferase was amplified from pGL3 (Promega)

with oligonucleotides 59-ctcgaggtcccatggaagacgccaaaaaca and 59-

actagttgctgcagccacggcgatctttccgc and cloned in pEF-GFP-DD/

24/29 digested with Xho I and Spe I or Pst I, generating pEF-Luc

and pEF-Luc-GFP-DD/24/29 respectively. The GFP-HA-DD

sequence of pEF-Luc-GFP-DD was replaced with GFP-HA

digesting the vector with Pst I and Spe I and the insert retrieved

from pRM2-GFP-DD digested with Pst I and Nhe I, generating

pEF-Luc-GFP-HA.

The DD-Luc was fused by PCR with oligonucleotides 59-

ccatgggagtgcaggtggaa and 59-gcgtcttcctgcagttccggttttagaagctcca

(DD) and 59-accggaactgcaggaagacgccaaaaacataaaga and 59-ac-

cggaactgcaggaagacgccaaaaacataaaga (Luc), digested with NcoI and

SpeI and cloned in pPf86 digested with NcoI and XbaI to make

pPf86-DD-Luc. DD24 and DD29 were amplified by PCR with

oligonucleotides 59-ccatgggagtgcaggtggaaacca and 59-ctgcagttc-

cagttctagaagctccaca (DD24) or 59-ctgcagttccagttttagaagctccacac

(DD29), digested with NcoI and PstI and cloned in pPf86-DD-Luc

to make pPf86-DD24/29-Luc.

P. falciparum Culture and Transfection
Parasites were transfected as previously described [3], using the

electroporation conditions established elsewhere [29]. Briefly, P.

falciparum 3D7 was cultured in 4% hematocrit in RPMI-HEPES

supplemented with 0.5% Albumax 1 (Invitrogen). Ring state

parasites at 5–8% parasitemia were transfected with 75 mg

(transient) or 150 mg (stable) of plasmid. The culture media were

changed on the second day and parasites were harvested for
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reporter assays (transient) or submitted to drug pressure with

2.5 nM WR99210 (stable) on the third day. Stably transfected

parasites were cultured in standard conditions until parasites re-

appeared and normal growth was re-established.

Shld-1 Incubation
Shld-1 was diluted in ethanol to a stock concentration of 1 mM

and stored in –20uC. Immediately prior to use, it was diluted in

RPMI to the indicated concentration. For the transient transfec-

tions, parasites were split and Shld-1 added one day after the

electroporation. Unless specified, parasites were kept under Shld-1

for one day.

Luciferase Assays
Parasites were saponin lysed and the pellet washed twice in PBS.

After resuspension in 1 x lysis buffer (Promega), the lysed cells were

mixed with luciferase assay reagent (Promega) and luciferase

activity was measured in the Lumat LB 9507 luminometer (EG &

G Berthold). For each experiment, the reporter activity was

expressed as the percentage of the activity measured in the positive

control, usually parasites transfected with similar luciferase

plasmids without DD. The results are the average of at least

three independent experiments for transient transfections and of a

representative experiment with stable transfected parasites, done

in duplicates.

Detection of Parasitemia by Flow Cytometry
Parasites were labeled with 10 mg/ml ethidium bromide as

described previously [30], washed once in PBS and analysed on a

Guava cytometer (General Electric).

Supporting Information

Figure S1 Efficient Shld-1 regulation of N terminally
tagged DD (original) tagged proteins in P. falciparum.
(A) Plasmid derived from pRM2-GFP for N terminal DD tagging

of a reporter gene - here a triple HA tag fused to GFP. This

plasmid contains the strong and schizont-specific msp2 promoter.

B) Western blot of synchronous schizont lysates transformed with

pRM2-DD-3HA-GFP with anti-GFP (1:1000, Roche) demon-

strates efficient Shld-1 dependent regulation by addition of either

0.5 mM or 0.1 mM to parasite ring stages. An asterisk marks a GFP

breakdown product. Note that we used a smaller Shld-1

concentration in order to avoid the delay in intraerythrocytic

development observed with higher Shld-1 concentrations which

would lead to an overall decreased signal due to weaker promoter

activity in earlier than schizont stages.

(TIF)

Figure S2 Fluorescent microscopy of RESA-GFP-HA-
DD24 parasites cultured in the presence of Shld-1 (left)
or when the ligand had been removed for 2 days (right).
(TIF)

Figure S3 Plasmodium falciparum D10 parasites were
highly synchronized by sorbitol and heparin treatment.
Shld-1 (1 mM) was added to either early ring stage (t = 0 h) or

trophozoite stage parasites (t = 24 h). Parasite development was

monitored by Giemsa-stained blood smears taken every 8 hours

for 48 hours.

(JPG)

Figure S4 Parasites from transfectants had their geno-
mic DNA extracted by standard methods [32] and the
following oligonucleotides were employed to amplify
either plasmodial seryl-t-RNA synthetase (PF07_0073,
59-AAGTAGCAGGTCATCGTGGTT, 59-TTCGGCA-
CATTCTTCCATAA) or Photinus luciferase (59-
CGTCGCCAGTCAAGTAACAA, 59-
TTTCTTGCGTCGAGTTTTCC) by standard qPCR us-
ing Fermentas SYBR realtime PCR mix in an Eppendorf
realplex2 thermocycler. Equal primer performance was tested

beforehand using plasmids with cloned target sequences. The

differences in copy numbers were expressed as 22DCt values (y-

axis) which indicate how many times more luciferase target

molecules are in the sample in relation to the genomic control

seryl-t-RNA synthetase [33]. The four indicated gDNA samples

were analysed in three independent experiments using triplicates

for each gDNA sample and primer pair and the standard deviation

between the experiments is shown.

(TIF)

Acknowledgments

The authors thank the Blood Center from Hospital Sı́rio-Libanês in São

Paulo for the donation of human blood.

Author Contributions

Conceived and designed the experiments: MFA PRG GW. Performed the

experiments: MFA HBG RFS FA. Analyzed the data: MFA PRG JB GW.

Contributed reagents/materials/analysis tools: PRG FA JB BSC. Wrote

the paper: MFA PRG GW.

References

1. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global

distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434:

214–217.

2. Baum J, Papenfuss AT, Mair GR, Janse CJ, Vlachou D, et al. (2009) Molecular

genetics and comparative genomics reveal RNAi is not functional in malaria

parasites. Nucleic acids research 37: 3788–3798.

3. Wu Y, Sifri CD, Lei HH, Su XZ, Wellems TE (1995) Transfection of

Plasmodium falciparum within human red blood cells. Proc Natl Acad Sci U S A

92: 973–977.

4. Crabb BS, Cowman AF (1996) Characterization of promoters and stable

transfection by homologous and nonhomologous recombination in Plasmodium

falciparum. Proceedings of the National Academy of Sciences of the United

States of America 93: 7289–7294.

5. Balu B, Adams JH (2007) Advancements in transfection technologies for

Plasmodium. Int J Parasitol 37: 1–10.

6. Crabb BS, Cooke BM, Reeder JC, Waller RF, Caruana SR, et al. (1997)

Targeted gene disruption shows that knobs enable malaria-infected red cells to

cytoadhere under physiological shear stress. Cell 89: 287–296.

7. Duraisingh MT, Triglia T, Cowman AF (2002) Negative selection of

Plasmodium falciparum reveals targeted gene deletion by double crossover

recombination. Int J Parasitol 32: 81–89.

8. Maier AG, Rug M, O’Neill MT, Brown M, Chakravorty S, et al. (2008)

Exported proteins required for virulence and rigidity of Plasmodium falciparum-

infected human erythrocytes. Cell 134: 48–61.

9. Cowman AF, Crabb BS (2006) Invasion of red blood cells by malaria parasites.

Cell 124: 755–766.

10. Ishino T, Chinzei Y, Yuda M (2005) Two proteins with 6-cys motifs are required

for malarial parasites to commit to infection of the hepatocyte. Molecular

microbiology 58: 1264–1275.

11. van Dijk MR, Douradinha B, Franke-Fayard B, Heussler V, van Dooren MW,

et al. (2005) Genetically attenuated, P36p-deficient malarial sporozoites induce

protective immunity and apoptosis of infected liver cells. Proceedings of the

National Academy of Sciences of the United States of America 102: 12194–

12199.

12. van Dijk MR, Janse CJ, Thompson J, Waters AP, Braks JA, et al. (2001) A

central role for P48/45 in malaria parasite male gamete fertility. Cell 104: 153–

164.

13. de Koning-Ward TF, Gilson PR (2009) Keeping it simple: an easy method for

manipulating the expression levels of malaria proteins. Trends Parasitol 25: 4–7.

14. Banaszynski LA, Chen LC, Maynard-Smith LA, Ooi AG, Wandless TJ (2006) A

rapid, reversible, and tunable method to regulate protein function in living cells

using synthetic small molecules. Cell 126: 995–1004.

Performance of FKBP Variants in P. falciparum

PLoS ONE | www.plosone.org 8 July 2012 | Volume 7 | Issue 7 | e40981



15. Herm-Gotz A, Agop-Nersesian C, Munter S, Grimley JS, Wandless TJ, et al.

(2007) Rapid control of protein level in the apicomplexan Toxoplasma gondii.
Nature methods 4: 1003–1005.

16. Madeira da Silva L, Owens KL, Murta SM, Beverley SM (2009) Regulated

expression of the Leishmania major surface virulence factor lipophosphoglycan
using conditionally destabilized fusion proteins. Proc Natl Acad Sci U S A 106:

7583–7588.
17. Armstrong CM, Goldberg DE (2007) An FKBP destabilization domain

modulates protein levels in Plasmodium falciparum. Nat Methods 4: 1007–1009.

18. Dvorin JD, Martyn DC, Patel SD, Grimley JS, Collins CR, et al. A plant-like
kinase in Plasmodium falciparum regulates parasite egress from erythrocytes.

Science 328: 910–912.
19. Russo I, Oksman A, Vaupel B, Goldberg DE (2009) A calpain unique to

alveolates is essential in Plasmodium falciparum and its knockdown reveals an
involvement in pre-S-phase development. Proc Natl Acad Sci U S A 106: 1554–

1559.

20. Iwamoto M, Bjorklund T, Lundberg C, Kirik D, Wandless TJ (2010) A general
chemical method to regulate protein stability in the mammalian central nervous

system. Chemistry & biology 17: 981–988.
21. Muralidharan V, Oksman A, Iwamoto M, Wandless TJ, Goldberg DE (2011)

Asparagine repeat function in a Plasmodium falciparum protein assessed via a

regulatable fluorescent affinity tag. Proceedings of the National Academy of
Sciences of the United States of America 108: 4411–4416.

22. Chu BW, Banaszynski LA, Chen LC, Wandless TJ (2008) Recent progress with
FKBP-derived destabilizing domains. Bioorg Med Chem Lett 18: 5941–5944.

23. Militello KT, Wirth DF (2003) A new reporter gene for transient transfection of
Plasmodium falciparum. Parasitol Res 89: 154–157.

24. Crabb BS, de Koning-Ward TF, Gilson PR (2010) Protein export in

Plasmodium parasites: from the endoplasmic reticulum to the vacuolar export
machine. International journal for parasitology 40: 509–513.

25. Monaghan P, Bell A (2005) A Plasmodium falciparum FK506-binding protein

(FKBP) with peptidyl-prolyl cis-trans isomerase and chaperone activities. Mol

Biochem Parasitol 139: 185–195.

26. Neelam S, Kakhniashvili DG, Wilkens S, Levene SD, Goodman SR (2011)

Functional 20S proteasomes in mature human red blood cells. Experimental

biology and medicine 236: 580–591.

27. Gilson PR, O’Donnell RA, Nebl T, Sanders PR, Wickham ME, et al. (2008)

MSP1(19) miniproteins can serve as targets for invasion inhibitory antibodies in

Plasmodium falciparum provided they contain the correct domains for cell

surface trafficking. Mol Microbiol 68: 124–138.

28. O’Donnell RA, Freitas-Junior LH, Preiser PR, Williamson DH, Duraisingh M,

et al. (2002) A genetic screen for improved plasmid segregation reveals a role for

Rep20 in the interaction of Plasmodium falciparum chromosomes. The EMBO

journal 21: 1231–1239.

29. Fidock DA, Wellems TE (1997) Transformation with human dihydrofolate

reductase renders malaria parasites insensitive to WR99210 but does not affect

the intrinsic activity of proguanil. Proc Natl Acad Sci U S A 94: 10931–10936.

30. Wilson DW, Crabb BS, Beeson JG Development of fluorescent Plasmodium

falciparum for in vitro growth inhibition assays. Malar J 9: 152.

31. Bullen HE, Charnaud SC, Kalanon M, Riglar DT, Dekiwadia C, et al. (2012)

Biosynthesis, localisation and macromolecular arrangement of the Plasmodium

falciparum translocon of exported proteins; PTEX. The Journal of biological

chemistry.

32. Ljungström I, Perlmann H, Schlichtherle M, Scherf A, Wahlgren M (2004)

Methods in Malaria Research. Manassas, VA: MR4/ATCC.

33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using

real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:

402–408.

Performance of FKBP Variants in P. falciparum

PLoS ONE | www.plosone.org 9 July 2012 | Volume 7 | Issue 7 | e40981


