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Abstract

Actin dynamics have been implicated in a variety of developmental processes during the malaria parasite lifecycle. Parasite
motility, in particular, is thought to critically depend on an actomyosin motor located in the outer pellicle of the parasite cell.
Efforts to understand the diverse roles actin plays have, however, been hampered by an inability to detect microfilaments
under native conditions. To visualise the spatial dynamics of actin we generated a parasite-specific actin antibody that shows
preferential recognition of filamentous actin and applied this tool to different lifecycle stages (merozoites, sporozoites and
ookinetes) of the human and mouse malaria parasite species Plasmodium falciparum and P. berghei along with tachyzoites
from the related apicomplexan parasite Toxoplasma gondii. Actin filament distribution was found associated with three core
compartments: the nuclear periphery, pellicular membranes of motile or invasive parasite forms and in a ring-like distribution
at the tight junction during merozoite invasion of erythrocytes in both human and mouse malaria parasites. Localisation at
the nuclear periphery is consistent with an emerging role of actin in facilitating parasite gene regulation. During invasion, we
show that the actin ring at the parasite-host cell tight junction is dependent on dynamic filament turnover. Super-resolution
imaging places this ring posterior to, and not concentric with, the junction marker rhoptry neck protein 4. This implies motor
force relies on the engagement of dynamic microfilaments at zones of traction, though not necessarily directly through
receptor-ligand interactions at sites of adhesion during invasion. Combined, these observations extend current
understanding of the diverse roles actin plays in malaria parasite development and apicomplexan cell motility, in particular
refining understanding on the linkage of the internal parasite gliding motor with the extra-cellular milieu.
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Introduction

Malaria constitutes a huge health and economic burden on

humanity [1]. The disease is caused by obligate intracellular

parasites from the genus Plasmodium, a group of protozoa whose

developmental lifecycle is completed between mosquito and human

hosts. During this complex journey the parasites navigate a variety

of tissues and infects several distinct cell types [2,3,4]. Three motile

and/or invasive forms define this journey: ookinete, sporozoite and

merozoite. The ookinete traverses the mosquito midgut [4]. The

sporozoite establishes salivary gland infection in the mosquito along

with subsequent transmission to the human host and infection of the

liver [3]. Finally, the merozoite, the smallest form, infects circulating

erythrocytes in the bloodstream and is responsible for initiating all

pathology associated with malaria disease [2]. Despite gross

morphological differences and disparate environmental niches,

each of these developmental forms retain the classical cytoskeletal

architecture and organelle repertoire (with the exception of the
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ookinete) of apicomplexan parasites [5,6], the phylum to which

malaria parasites belong. Furthermore, each retains a conserved

way of moving and invading cells based on actin and myosin,

termed gliding motility [7].

The current model for the gliding motor [8] is centred on a short

single-headed myosin that is attached to a double membrane bound

complex of organelles called the inner membrane complex (IMC),

which lies directly under the plasma membrane [9]. Microfilaments

of actin are then thought to form in the intervening space, called the

supra-alveolar space, between IMC and plasma membrane [10].

On polymerisation these actin filaments are thought to provide the

key rigid element upon which myosin bears to create the required

rearward traction force for movement. The myosin stroke is then

conveyed, via the actin filament, to surface bound adhesins from the

thrombospondin-related anonymous protein (TRAP) family [11].

Coupling of TRAP to surface receptors in the extra-cellular milieu,

transmits the internal rearward force, driving the parasite forwards

[12]. The topology of this motor model is largely based on

immunoprecipitation data along with immunofluorescence imaging

of several core components in malaria parasites and the related

apicomplexan parasite Toxoplasma gondii [8,11,13,14].

According to the current model for gliding motility, actin

filaments only form transiently at sites where the gliding motor is

engaged – in other words, sites where traction is being applied

between the parasite motor and the substrate surface or host cell

[15]. In parasites that are focussed primarily on movement in the

absence of true invasion, for example the ookinete [4], this could be

anywhere along the length of the cell where the stage-specific

TRAP-like adhesin is linked to the extra-cellular environment. For

parasites that actively invade host cells, such as the sporozoite and

merozoite, this would presumably be restricted to the tight junction

– an electron dense interface formed between the invading parasite

and its host cell [16]. Whilst the molecular architecture of the

junction has been elucidated in great detail recently [17], its linkage

to the actomyosin motor is currently unknown. Indeed, to date, and

despite its essential role in motility, no study has provided direct

visual evidence for the placement of actin filaments in the parasite

pellicle of any moving apicomplexan cell [18,19,20,21].

The evidence in support of actin’s role in motility comes largely

from actin inhibitors that disrupt parasite gliding and host cell

invasion [15,22,23,24]. Of these, the marine sponge cyclodepsipep-

tide Jasplakinolide (JAS) has proven particularly useful, binding to

and stabilising formed filaments preventing disassembly [25]. Use of

JAS has facilitated the demonstration of high concentrations of

dynamic actin at the apex of free Plasmodium merozoites, ookinetes

and T. gondii tachyzoites [21,24,26,27]. Microfilament structures,

presumed to be actin, have also been seen lying under the plasma

membrane of motile tachyzoites following JAS treatment [28].

Complementing these studies, electron and cryo-electron micros-

copy studies have observed structures with dimensions consistent

with filamentous actin in this pellicular compartment under native

conditions [19,20]. Beyond these encouraging observations, how-

ever, no study has unambiguously demonstrated microfilament

spatial organisation during zoite movement under native conditions.

This likely derives from the intrinsic short length of apicomplexan

actin filaments (,100 nm), their instability, dynamic and transient

nature and the poor utility of conventional filament markers such as

phalloidin with apicomplexan cells [29,30,31,32].

Aside from motility actin likely plays several additional roles in

parasite development, including roles in haemoglobin uptake [33]

and general vesicular trafficking [34] along with several possible

functions in the nucleus [35]. However, like motility, these roles

have remained incompletely explored because of difficulties in

decisively localising actin and its microfilaments within parasite

cells. To visualize the spatial dynamics of malaria parasite actin we

generated mouse and rabbit parasite-specific antibodies towards

actin I (the conserved isoform implicated in most actin-dependent

processes across Apicomplexa [36]) that recognises filamentous

actin in preference to monomeric actin. We employed these tools

on mouse and human malaria parasites to gain access to the three

major motile or invasive lifecycle forms (ookinete, sporozoite and

merozoite) along with asexual blood stages and tachyzoites from T.

gondii to provide a map for dynamic actin filament formation. We

demonstrate actin concentrates in discrete zones in the nuclear

compartment during development, within the supra-alveolar space

during motility, and at sites predicted to be core regions of traction

during host cell invasion. These results point to new functions for

actin in parasite development and refine current understanding of

the role of microfilaments during key stages of parasite infection.

Results

Generation of a malaria parasite actin-specific antibody
Conventional antibodies against mammalian actin have been

used successfully to label the entire actin pool in Toxoplasma gondii

tachyzoites [37] and Plasmodium merozoites and ookinetes [22,38].

However, these antibodies cannot differentiate monomeric (G)-

from filamentous (F)- actin and have the added drawback of also

recognising host cell actin with equal or greater affinity. Serum

generated against a short peptide corresponding to amino acids

237–251 of non-muscle mammalian actin, anti-Gly245 [39] (Fig. 1A),

has been reported to preferentially recognise short actin filament

ends associated with vesicle transport in human fibroblasts [40].

This epitope, on sub-domain 4 of the actin monomer, is exposed in

free actin monomers and at the end of the filamentous form

(Fig. 1B). The specificity for short filament ends is thought to result

from the epitope being hidden in the body of filaments (from subunit

contact), long filament ends (as a result of capping) and in free

monomers either by virtue of the topology of the epitope in

monomers versus filaments (Fig. 1B) or because of association with

actin binding proteins in the cell cytosol [40]. We raised antiserum

in rabbits and mice to the homologous epitope of P. falciparum actin I

(PFL2215w, amino acids 239–253), which is conserved across most

Apicomplexa (Plasmodium, Toxoplasma, Theileria and Babesia spp.) but

not outside of the apicomplexan phylum. Of note, this sequence

diverges at three residues from mammalian beta-actin (Fig. 1A,B).

We recently reported that rabbit serum against this peptide, which

we refer to as anti-Act239–253, reacted specifically with cell lysate

from P. falciparum asexual stages, but showed poor reactivity with

erythrocyte actin (reported in [41]). Immunoblots with rabbit and

mouse antisera confirmed the specificity of this reactivity against

human parasite lysate, and extended the observation to lysates of

mouse malaria parasites and T. gondii (recognising a specific product

of ,40 kD consistent with the predicted masses of the respective

actins: 41.8, 41.9 and 41.7 kD (Fig. 1C). When compared to

conventional vertebrate actin antibodies the antiserum showed

minimal cross-reactivity with mouse erythrocyte, human erythro-

cyte or human fibroblast actin (Fig. 1D). Thus, based on only a few

divergent residues, an antibody that differentiates between human

and parasite actin has been generated.

Actin dynamics localise to pellicular and apical regions of
motile or invasive zoites

To explore the general utility of anti-Act239–253 against all

motile or invasive lifecycle stages and beyond P. falciparum [41,42],

we used the mouse malaria parasite P. berghei, which greatly

facilitates generation of each zoite form: merozoite, ookinete and

sporozoite. Actin labelling by immunofluorescence was seen to

Actin Filaments in Plasmodium Development
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concentrate broadly at the pellicular regions of free merozoites,

ookinetes and salivary gland sporozoites (Fig. 2A–C, upper panels).

Pellicular labelling in merozoites was further supported by serial

section immunoelectron microscopy of free P. falciparum merozo-

ites (Fig. S1A). When treated with the cyclodepsipeptide

Jasplakinolide (JAS), which arrests actin filament turnover [25],

labelling became even more pronounced in pellicular and apical

regions highlighting these areas as foci for actin turnover (Fig. 2A–

C, lower panels). Prominent structures, reminiscent of an

acrosomal process described in JAS treated T. gondii tachyozites

[26,28] and P. falciparum merozoites [24], could be seen in all three

motile or invasive stages (Fig. 2A–C, lower panels). In sporozoites,

labelling was generally greatest in apical and posterior regions,

known sites of substrate attachment in these cells [15] (Fig. 1B,

Movie S1). In ookinetes, labelling along the flanks post-JAS

treatment remained associated with the pellicular region and was

frequently strongest at the flexed portion of the parasite cell

(Fig. 2C), which may represent a key point of traction in line with

recent observations using ookinetes that express constitutive GFP-

actin [21]. In ookinetes where apical or basal concentrations of

labelling were strongest, three-dimensional reconstruction of

fluorescent images demonstrated clear capping of the ookinete

poles (Fig. 2D, Movie S2). We explored this further by three-

dimensional structured illumination microscopy (3D-SIM), a

technique able to resolve structures beyond the normal resolution

limits of conventional fluorescence microscopy [43]. Untreated

ookinetes demonstrated broad cytosolic localisation of actin with

variable pellicular concentrations under 3D SIM conditions

(Fig. 2E, Movie S3). Following JAS treatment, actin labelling

again redistributed to polar regions with capping structures

resolved into branched rod-like fibres, frequently with three or

more arms (Fig. 2F, Movie S4) [21,27]. Why these actin-rich

structures should be so uniform is unclear, but they are similar to

bundles of actin seen following JAS treatment by electron

microscopy in Toxoplasma tachyzoites [26]. Electron microscopy

of untreated versus JAS-treated ookinetes was unable to resolve

directly the nature of these structures (Fig. S2A–B).

Pellicular actin is concentrated in the supra-alveolar
space and associates with membranes

Broad cortical localisation of actin in each lifecycle stage is

suggestive of an association of actin with membranes in the

parasite pellicle. Entirely consistent with this, carbonate extraction

of P. falciparum schizont lysate (to separate membrane associated

from cytosolic proteins) indicated a substantial portion of the actin

pool does associate strongly with membranes when compared to

cytosolic controls (Fig. S3A). Immunoelectron microscopy of

ookinetes, labelled with anti-Act239–253, was consistent with a

pellicular association, demonstrating strong associations of gold

labelling in both apical and supra-alveolar compartments (Fig. 3A).

Attempts to define conclusively the pellicular membrane associ-

ated with actin using Clostridium septicum alpha toxin, which has

been used extensively to separate the plasma membrane away

from IMC in T. gondii tachyzoites [9], were unsuccessful with all

malaria parasite zoite forms (data not shown). Given the

conservation of the reactive actin 239–253 epitope in T. gondii

(Fig. 1A, C, Fig. S3B), we undertook immunofluorescence assays

with extracellular tachyzoites treated with the pore forming toxin.

Tachyzoites labelled with anti-Act239–253 demonstrated broad

pellicular association of actin with marked redistribution following

JAS treatment to apical and cortical regions (Fig. 3B–C) [28].

Using markers for the plasma membrane (SAG1) and IMC

(IMC4ty, Bradin and Tonkin, unpublished data), alpha-toxin

treatment defined labelling to this compartment as within the

supra-alveolar space (Fig. 3D). Combining toxin treatment with

JAS, labelling shifted from within the supra-alveolar space to the

Figure 1. An apicomplexan parasite-specific anti-actin antibody. A) Sequence comparison between human non-muscle actin amino acids
237–251 (the basis of anti-Gly245 [39]) and apicomplexan actin I orthologues over the amino acids 239–253 (the basis for anti-Act239–253). B) Surface
representation of the structures of rabbit G-actin (PDB:1J6Z; A) and a protomer in rabbit F-actin (PDB:3G37; B) showing anti-Gly245 epitope. Residues
in yellow indicate polymorphisms between mammalian and P. falciparum actin. C) Representative immunoblot showing reactivity of rabbitH anti-
Act239–253 serum with human erythrocytes (hRBC), asexual P. falciparum (3D7), mouse erythrocytes (mRBC), asexual P. berghei (ANKA), human foreskin
fibroblasts (HFF) and T. gondii tachyzoites (RH). Lower panel shows same hRBC and 3D7 sample probed with mouse (m) anti-Act239–253 serum. D) As C
but using generic anti-actin monoclonal C4.
doi:10.1371/journal.pone.0032188.g001
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bounding membranes of the IMC (Fig. 3E). In conjunction with

differential solubilisation (Fig. S3A) this distribution supports an

affinity of the dynamic actin filament pool for the pellicular

membranes that bound the supra-alveolar space (Fig. 3F).

Combined, the intensity and restriction of fluorescence labelling

(following JAS treatment in particular) and lack of cross reactivity

with a variety of host cells used corroborates the specificity of the

anti-Act239–253 serum for parasite actin. Furthermore, the data

provide clear support that microfilament dynamics are focussed at

the apex and pellicle of motile or invasive parasite stages, likely

associated with membranes of the supra-alveolar space. These

observations are entirely in line with current models for actin’s

proposed function in apicomplexan parasites and its dominant role

in driving motility through the IMC immobilised gliding motor [12].

Figure 2. Spatial distribution of actin in free malaria parasite zoites. A) Widefield IFA of P. berghei merozoites with and without 1 mM JAS,
labelled with rabbit anti-Act239–253 (Green) and the nuclear marker DAPI. Scale bar = 2 mm. B) Widefield IFA of P. berghei sporozoites with and without
1 mM JAS, labelled with rabbit anti-Act239–253 (Green), surface marker PbCSP (Red) and DAPI (Blue). Scale bar = 5 mm. See also Movie S1 C) Widefield
IFA of P. berghei ookinetes with and without 1 mM JAS, labelled with rabbit anti-Act239–253 (Green), surface marker Pbs28 (Red) and DAPI (Blue). Scale
bar = 5 mm. D) 3D reconstruction of widefield IFA with deconvolution of 1 mM JAS treated P. berghei ookinete, labelled with rabbit anti-Act239–253

(Green), Pbs28 (Red), and DAPI (Blue). Scale bar = 5 mm. See also Movie S2. E–F) 3D structured illumination microscopy (3D SIM) of P. berghei
ookinetes labelled with rabbit anti-Act239–253 (Green), surface marker Pbs28 (Red) and DAPI (Blue) in the absence (E) and presence of 1 mM JAS (F).
Scale bar = 2 mm. See also Movie S3, S4. Gamma settings were altered in 3D reconstructions.
doi:10.1371/journal.pone.0032188.g002
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Actin filament dynamic also localise to the nuclear
periphery in multiple lifecycle stages

In several instances, immunofluorescence assay of ookinetes

and sporozoites revealed a sizable proportion of actin localised at

the nucleus or around the nuclear periphery (Fig. 4A, B, Movie

S5). This may suggest that actin dynamics function in nuclear

architecture or gene regulation, as is seen in other eukaryotes [35].

To explore the generality of this observation in other lifecycle

stages (in particular those in which nuclear activity is high)

early ring stage asexual parasites were labelled with anti-actin and

the nuclear marker DAPI. Very early rings demonstrated a

consistent punctate labelling of actin within DAPI staining of

the nucleus (Fig. 4C). Treatment with JAS transformed this

punctate pattern into a clear ring surrounding the nucleus

Figure 3. Location of anti-PfAct239–253 labelling to supra-alveolar membranes. A) Transmission electron micrographs with anti-Act239–253

(rabbit) immunogold labelling (arrowheads) of P. berghei ookinetes (including inset and independent ookinete apical end). B–E) Widefield IFA of free
T. gondii tachyzoites under various treatments probed with anti-PfAct239–253 (Green) versus anti-TgSAG1 (a plasma membrane marker) or anti-Ty
(IMC4, and IMC marker) (Red). DAPI (Blue) and Scale bar = 5 mm. B) Untreated. C) Following treatment with 5 mM JAS. D) Following treatment with C.
septicum a toxin 1/100. E) Following treatment with 5 mM JAS and a-toxin. F) Schematic for labelling seen following treatment with a toxin alone or
in combination with 5 mM JAS localising actin filaments.
doi:10.1371/journal.pone.0032188.g003
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(Fig. 4D). The concentration of stabilised actin filaments at

the nuclear periphery was confirmed using ERD2, a cis-Golgi

marker that localises to defined sites adjacent to the nucleus [44]

(Fig. 4E). Demonstration of actin in the nucleus, specifically its

dynamic nature at the nuclear periphery, is consistent with

emerging understanding of the roles of actin and myosin in

movement of chromosome ends to the nuclear periphery [45,46].

Indeed, two recent studies have corroborated just such a role for

actin in gene regulation during P. falciparum ring stage develop-

ment [47,48].

The association of actin with the tight junction during
merozoite and sporozoite invasion of host cells

We have recently shown that rabbit serum against Act239–253

labels a ring of actin at the merozoite-erythrocyte tight junction

during P. falciparum merozoite invasion [41,42]. We confirmed the

presence of a concentration of actin at the electron dense junction

by immunoelectron microscopy using rabbit antiserum (Fig. 5A)

and by immunofluorescence with new antiserum raised in mice

(Fig. 5B). To explore the generality of this observation in other

species, we undertook immunofluorescence imaging with mero-

zoites and salivary gland sporozoites from P. berghei. Invading P.

berghei merozoites showed a consistent ring of actin at the junction

during invasion (Fig. 5C). Sporozoite invasion of hepatocytes is

notoriously hard to capture [49]. Furthermore, sporozoites are

actively involved with gliding as well as invasion (for example

traversing cells in the absence of true invasion [50]) and

differentiating between the two can be challenging. Sporozoites

dissected from mosquito salivary glands and applied to cultured

HepG2 liver cells showed a consistent, seemingly structured,

concentration of actin in the internalised portion of the entering

sporozoite (as marked by restriction of CSP to the exterior)

(Fig. 5D, inset). In some instances patterns of labelling included a

distinct band of actin associated with a tight junction constriction

Figure 4. Concentration of actin labelling in the nucleus and around the nuclear periphery. Widefield IFA of representative P. berghei A)
ookinetes and B) sporozoites that show pronounced nuclear labelling using rabbit anti-Act239–253 (Green) surface markers Pbs28 or PbCSP (Red) and
DAPI (Blue). Scale bar = 5 mm. See also Movie S5. C) Widefield IFA of P. falciparum rings labelled with rabbit anti-Act239–253 (Red) and DAPI (Blue). D) As
C but following 6 hour JAS treatment. E) Two colour widefield IFA using rabbit anti-Act239–253 (Red), rat anti-ERD2 (Green) and DAPI (Blue) in absence
or presence of 1 mM JAS. All scale bars = 5 mm.
doi:10.1371/journal.pone.0032188.g004
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(Fig. 5D). However, exclusive labelling showing a ring of actin at

the sporozoite junction was not seen. Whilst these data suggest that

concentration of actin in a ring at the host-parasite tight junction is

a clear feature of merozoite invasion across species, its conserva-

tion in other zoite forms is still uncertain, likely confounded by the

presence of traversal and general gliding in addition to invasion in

these forms.

Anti-Act239–253 shows preferential labelling for actin
filaments

Given the unusual reactivity of the parent anti-Gly245 antibody,

we sought to explore the filament labelling preferences of the anti-

Act239–253 antibody using quantitative imaging of sporozoites

treated with either JAS (to stabilise filaments), cytochalasin D (in

which filaments are capped and will be less prevalent) or left

Figure 5. The spatial distribution of actin in invading merozoites and sporozoites. A) Transmission electron micrograph with anti-Act239–

253 (rabbit) immunogold labelling (arrowheads) of invading P. falciparum merozoite. Arrows show direction of invasion. B) Widefield IFA with
deconvolution of invading P. falciparum merozoites labelled with mouse anti-Act239–253 (Red) or rabbit PfRON4 (Green) and DAPI (Blue). Scale
bar = 2 mm. C) Widefield IFA with deconvolution of invading P. berghei merozoites labelled with rabbit anti-Act 239–253 (Green) and DAPI (Blue). Scale
bar = 2 mm. Gamma settings were altered in 3D reconstruction. D) Widefield IFA with deconvolution of invading P. berghei sporozoites labelled with
rabbit anti-Act239–253 (Green), anti-PbCSP (Red, exterior only) and DAPI (Blue). Scale bar = 5 mm, arrowhead shows presumed site of tight junction.
doi:10.1371/journal.pone.0032188.g005

Actin Filaments in Plasmodium Development
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untreated (Fig. 6A). We reasoned that if the antibody recognises

filament ends, fluorescence intensity should increase in cells that

have more filaments. In agreement with this, maximum fluores-

cence intensity for JAS treated sporozoites (where the number of

normally transient filament ends is stabilised and concentrates in

areas of dynamic actin) was significantly higher (p,0.005, unpaired

t-test), whereas that for cytochalasin D treated parasites (having

reduced F-actin) was significantly lower (p,0.05, unpaired t-test)

than untreated controls (Fig. 6B). Total fluorescence decreased for

both treatments (Fig. 6B). This decrease in maximal fluorescence

intensity would be expected for cytochalasin D. Following JAS-

treatment, the reduction likely results from two contributing factors.

First, since JAS treatment elongates filaments, the total number of

filament ends may be reduced. Second, whilst sporozoites that were

relatively flat in the plane of view were selected for observation, 3D

reconstructions demonstrated that a significant proportion have

fluorescence that frequently lies outside the plane of imaging

therefore removing a major proportion of actin labelling from

quantification (Fig. S4). As further evidence, we re-visited P.

falciparum merozoite invasion, reasoning that since actin filaments

are required for invasion, the tight junction is likely filamentous in

nature whilst non-polymerised actin (recognised by a generic anti-

Actin antibody) would be cytosolic. Fluorescent labelling with anti-

Act239–353 was again concentrated to the junction (co-labelling with

RON4) (Fig. 6C), whereas that seen when using a generic anti-Actin

monoclonal (C4) showed a broad cytosolic distribution not

Figure 6. Anti-Act239–253 shows preferential labelling of actin filaments. A) Widefield IFA with deconvolution of sporozoites treated with
DMSO control, 1 mM cytochalasin D or 1 mM JAS labelled with rabbit anti-Act239–253 (Green), PbCSP (Red) and DAPI (Blue). Scale bar = 2 mm. Mask
determined by anti-PbCSP labelling (see Materials and Methods). B) Maximum and total fluorescence levels of sporozoites treated with 1 mM JAS,
1 mM cytochalasin D and DMSO control. Significance as shown, unpaired t-test. C) Widefield IFA with deconvolution of invading P. falciparum
merozoite labelled with rabbit anti-Act239–253 (Red) mouse anti-PfRON4 (Green) and DAPI (Blue). Scale bar = 2 mm. Arrows show direction of invasion.
D–E) Widefield IFA with deconvolution of invading P. falciparum merozoites labelled with mouse anti-Actin (C4, Red) co-labelled with rabbit anti-
PfRON4 (Green) (D) or rabbit anti-Act239–253 (Green) (E). DAPI (Blue) and Scale bar = 2 mm.
doi:10.1371/journal.pone.0032188.g006

Actin Filaments in Plasmodium Development
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restricted to the junction or to regions of anti-Act239–353 labelling

(Fig. 6D, E). Combined, this evidence would support anti-Act239–253

having a strong affinity and potential preference for actin in a

filamentous over monomeric state and the existence of actin

filaments at the tight junction. By extension, this also implies that

pellicular and apical actin labelling in free motile and invasive zoite

forms (Fig. 2–3) and peripheral nuclear actin labelling across

development stages (Fig. 4) is likely of a filamentous nature.

Imaging of actin filament-like structures at the tight junction
It has previously been shown that treatment of merozoites with

actin inhibitors arrests invasion subsequent to tight junction

formation [23,41]. To further explore the nature of actin at the

tight junction, we compared untreated merozoites with those

treated with high concentrations of JAS (post-attachment) to

prevent complete invasion (see Materials and Methods). When

compared to untreated controls (Fig. 7A, upper panel), P. berghei

merozoites incubated with erythrocytes but treated with JAS

following attachment showed a breakdown of anti-Act239–253

labelling (Fig. 7A, lower panel). Instead of a clear ring of actin,

labelling appeared in elongated furrows surrounding the invading

parasite (Fig. 7B). Similar results were seen with P. falciparum

merozoites (data not shown). Given the greater numbers of invading

merozoites seen with P. berghei, we attempted quantification of

actin labelling under different treatments. Whilst circumferential

(i.e. pellicular) actin labelling of merozoites associated with

Figure 7. The tight junction is composed of dynamic actin filaments that localise posterior to the junction during invasion. A)
Widefield IFA with deconvolution and B) 3D reconstruction of P. berghei merozoites incubated with and without 1 mM JAS and labelled with anti-
Act239–253 (Green) and DAPI (Blue). Scale bar = 2 mm. Arrows show direction of invasion. C) Graphic representation of actin labelling in P. berghei
merozoites with and without the addition of JAS. n = 124 merozoites for each of three replicates, mean is shown. D) 3D structured illumination
microscopy (3D SIM) of three separate invading P. falciparum merozoites labelled with rabbit (upper row) and mouse (lower row) anti-Act239–253.
Labelling shows actin (Red), RON4 (Green) and DAPI (Blue). See also Movie S6. Gamma settings were altered in 3D reconstructions.
doi:10.1371/journal.pone.0032188.g007
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erythrocytes (as seen in free merozoites in Fig. 2A) was found to be

similar for both treatments, no actin ring labelling was seen for any

merozoite following JAS treatment (Fig. 7C). These data

demonstrate that the ring like formation of actin at the tight

junction, and its maintenance through invasion [41], is not a static

structure but instead is dependent on filament turnover.

To resolve the architecture of the actin ring at the junction

further, P. falciparum merozoites labelled with both rabbit (r) and

mouse (m) anti-Act239–253 serum were imaged using three-

dimensional 3D-SIM, an approach that we have recently used to

provide insight into the structures formed during P. falciparum

erythrocyte infection [41]. In all instances Anti-Act239–253 labelling

was concentrated in a ring lying posterior to the tight junction

during merozoite invasion, defined as the edge of the junction

towards the posterior of the parasite (Fig. 7D, Movie S6). However,

labelling was rarely seen overlapping with the junction plane.

Furthermore, on occasion the distribution of fluorescent signal

clearly showed short filament-like structures around the circumfer-

ence of the tight junction, with each fibre running approximately

parallel to the plane of merozoite invasion. Although accurate sizing

of these filaments is beyond the resolution limits of 3D-SIM, their

size (less than 500 nm, Fig. 7D, Movie S6) is entirely consistent with

the in vitro determined length of actin filaments from apicomplexan

parasites [31,32,33]. These images may represent the first time that

actin filaments (or bundles thereof) have been seen under

conventional and drug free imaging conditions in motile apicom-

plexan parasites. Combined with the results following JAS

treatment, these data suggest dynamic actin filaments are a critical

component of the tight junction. However, contrary to expectations,

filaments reside behind and not directly in the plane of the junction,

in contrast with labelling of apical membrane antigen (AMA) 1 [41].

This suggests that the driving force for motility (via actin-myosin)

and the architecture of the tight junction (via AMA1-RON complex

interaction) are discrete entities during invasion.

Discussion

Understanding of the role of actin in malaria parasite

development has focussed in the most part on its core function

during motility, though other auxiliary roles in development are

being increasingly explored [33,34,47,48]. The current accepted

model for apicomplexan motility and the role actin plays in cell

movement [8] draws much of its support from immunoprecipi-

tation of core components of the gliding motor and associated

proteins [8,9,11,13,51,52] with some topological support from

microscopic studies [8,9,11,13,18,28,53]. Although actin filaments

form an essential dynamic component of the active parasite motor

[5,15,22,23,24,26,28,54,55,56], much of the evidence so far has

been based on experiments that lack the ability to dissect, on a fine

scale, precisely where the microfilaments localise in the cell. This is

also true for studies exploring the role of actin in hemoglobin

uptake [33] and vesicle trafficking [34]. Until now, the definitive

localisation of filaments under native imaging conditions has not

been possible [19,20,28]. Here, utilising a parasite specific actin

antibody that demonstrates preferential labelling of actin fila-

ments, we show that F-actin is directly associated with several key

compartments of the parasite indicative of separate functions.

These include the nuclear periphery and F-actin association with

gene regulation, pellicular membranes of zoite forms and cell

motility, and the host-parasite tight junction and the essential role

played by actin in merozoite invasion.

Nuclear localisation of dynamic actin is consistent with recent

studies that have demonstrated a role for actin and myosin in the

movement of chromosome ends to the nuclear periphery in

human cells [45,46]. Movement of active genes to sub-compart-

ments within the nucleus has been shown to function in regulating

antigenic variation in blood stage malaria parasites [57,58].

Indeed, two recent studies have demonstrated a key role of actin in

both the spatial repositioning of genes in the nucleus and in

binding to a regulatory nuclear histone methyltransferase [47,48].

As such, dynamic actin is clearly a key factor involved in mediating

parasite antigenic variation and gene activation. Further investi-

gation of the parasite nucleus in high definition and the effects of

actin inhibitors on gene regulation will likely prove significant

areas of interest for probing this possible function.

Association of actin filaments with the supra-alveolar space and

its association with pellicular membranes is clearly in line with the

current model for gliding motility. At present, however, it is not

clear which, if either, pellicular membrane provides the native

binding surface. A compelling model would be for filaments of

actin to directly associate with the plasma membrane. In other

systems membrane bound glycosyl-phosphatidylinositol anchored

proteins play a key role in linking F-actin directly to cortical

membranes [59]. If validated in an apicomplexan cell, such a

scenario would negate the need for a linear relationship linking

actin filaments to the surface via tetrameric aldolase and the

cytoplasmic tails of secreted thrombospondin related anonymous

protein (TRAP)-family adhesins [11]. Of note, two-dimensional

rafts of actin filaments associated with positively charged lipid

layers form an ordered array when mixed with aldolase in vitro

[60,61]. Indeed, were such an organisation to exist underlying the

plasma membrane (as might be suggested by EM data [20,28]),

this would directly provide the key rigid element upon which

myosin bears its traction, transferring the entire plasma membrane

raft rewards. External adhesins/invasins that cluster to this raft,

perhaps anchored through interactions with aldolase [11,13],

would then also be drawn rearwards. This might also imply that

no singular adhesin/invasin-host receptor interaction necessarily

mediates motility but instead it is the movement of the entire

cluster of proteins through the membrane, and its interaction with

the external milieu that moves an apicomplexan cell. The

behaviour of sporozoite adhesion foci during motility would

certainly favour the existence of raft- or patch-like traction [15].

Such a raft-like model linking the IMC bound motor with external

adhesins is consistent with current data, and would only challenge

the terminal link between actin and the extra-cellular milieu [11].

An important refinement to our current model of gliding

mechanics during invasion may be required in light of the

placement of actin filaments behind the tight junction and not

directly beneath it. Recent evidence for the in vitro interaction of

AMA1 with aldolase has been used to argue that AMA1 may

interact directly with the gliding motor, leading to the notion that

force generation and attachment are one contiguous structure

[62,63]. Our imaging evidence supports an alternative model

where force from the actomyosin motor is transmitted indirectly to

the tight junction [64] (Fig. 8). If verified, such a model would raise

several key questions. First, how is actin polymerisation spatially

restricted to such a localised site? Since apicomplexan parasites

possess a markedly reduced repertoire of identifiable actin

regulators [12] this dramatically shortens the list of potential

actin-binding proteins that might govern filament spatiotemporal

localisation. A likely factor may be Formin1, which in malaria

parasites has been tentatively localised to the tight junction [38].

However, this does not entirely agree with recent work in T. gondii,

which demonstrates that of the two conserved formins (Formin1

and 2) both localise to the pellicle of the motile or invasive zoite

but not specifically to the junction during invasion [65].

Discrepancies between the focussed ring of actin seen during
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merozoite invasion but not sporozoites invasion (Fig. 5) (nor that of

tachyzoites, data not shown) may reconcile these conflicting

observations. Recently, we have demonstrated that P. falciparum

actin depolymerising factor 1 (ADF1) has a broad cytosolic

localisation but is excluded from the tight junction during

merozoite invasion [42]. As such it may be a combination of

nucleation, stabilisation and depolymerisation factors that ulti-

mately dictates the restricted localisation of actin to the tight

junction zone. A second question is what links the actin (and

possibly aldolase) raft along with its associated surface bound

adhesins to the tight junction RON-AMA1 complex? Proteins

responsible for this linkage would be of great interest.

Ultimately, precise imaging of each individual component of the

motility and invasion machinery by fixed and live imaging

approaches is required to resolve current models for the molecular

basis of gliding. Live imaging of dynamic actin in particular, and the

development of tools for this purpose, would be a major step

towards this goal. Furthermore, increased efforts in understanding

the regulation of actin’s spatiotemporal localisation, filament

turnover, and association with the plasma membrane may help

explain how motility is regulated. More broadly, efforts to

understand the repertoire of functions played by actin in malaria

parasite development and movement should reveal potent chemo-

therapeutic targets that transcend stage specificity and may work as

the basis for treatment and also transmission blocking drugs.

Materials and Methods

Ethics statement
The culture of P. falciparum parasites using donated blood and

serum from the Australian Red Cross Society and use of mice for

growing P. berghei have been approved by The Walter and Eliza

Hall Institute Human Ethics (HEC 86/17) and Animal Ethics

Committees (AEC Project 2009-023).

Antibody production
A synthetic peptide spanning amino acids 239–253 of PfActin

(PlasmoDB ID: PFL2215w) was used to raise polyclonal rabbit

antisera (Genscript, USA) and mouse antisera against malaria

actin (anti-Act239–253).

Parasite culture and maintenance and immunoblot analysis
P. falciparum (3D7 and D10 strains), P. berghei (ANKA strain) and T.

gondii (RH strain) parasites were each maintained using standard

procedures. P. falciparum cultures were grown in human O+eryth-

rocytes at 4% hematocrit with 0.5% Albumax II (Invitrogen). 3D7 is

a cloned line derived from NF54, obtained from the late David

Walliker at Edinburgh University, UK. P. berghei lines were

maintained in Balb/c mice as described previously [66]. In vitro

conversion to ookinetes followed Moon et al. [67]. T. gondii was

propagated in human foreskin fibroblasts (HFF) grown in Dulbecco’s

modified Eagle’s medium (DMEM) with 1% fetal calf serum

(GIBCOBRL). For a-toxin treatment, needle passaged IMC4-ty

transfectant tachyzoites (C. H. Bradin and C. J. Tonkin, unpub-

lished) were incubated in 50 ml of Clostridium septicum culture

supernatant. Lysates from saponin-treated schizont stage in vitro

cultures of both P. falciparum and P. berghei along with tachyzoites

were harvested by centrifugation, resuspended in reduced sample

buffer and analysed by Western blot probing with rabbit or mouse

anti-Act239–253 antisera at 1:1000 and 1:200, with anti-Actin (clone

C4, Millipore) at 1:1000. Signal was detected by anti-rabbit or mouse

IgG horseradish peroxidase conjugate (HRP) (Millipore), and

visualised via enhanced chemiluminescence (ECL, Amersham

Biosciences). For solubility analysis, isolated 3D7 strain P. falciparum

merozoites resuspended in water (Complete Protease Inhibitors,

Roche) were snap frozen and incubated on ice for 10 min to release

the cell content. Water soluble and insoluble proteins were separated

by ultracentrifugation at 100,0006g for 30 min at 4uC (TLA100.2

rotor, Beckman Optima TL Ultracentrifuge, Beckman Coulter).

Water insoluble fractions were further treated with Na2CO3

pH 11.5 for 1 hour at 4uC. Carbonate soluble and insoluble

fractions were isolated by further ultracentrifugation. Samples were

subject to SDS-PAGE and immunoblot analysis. Membranes were

incubated with antisera (rabbit anti-Act239–253 [1:500], rabbit anti-

PfADF1 [1:1000] [42] and rabbit anti-MTRAP [1:200] [13]).

Zoite invasion preparation
Blood stage P. falciparum parasites and P. berghei (ANKA) were

cultured through to schizogony and prepared for merozoite

invasion following Boyle et al [68]. For sporozoite invasion P.

berghei sporozoites were dissected from infected Anopheles stephensi

salivary glands and kept on ice in HepG2 culture media

(Advanced MEM (GibcoH) supplemented with 10% foetal calf

serum (Bovogen), 1% L-Glutamin (Thermo Scientific), 1%

Penicillin/Streptomycin (Thermo Scientific), 0.1% Amphotericin

B (Thermo Scientific) until dissection was completed. Sporozoites

were added to 16105 HepG2 cells per well in a 24 well plate. The

plate was spun at 800 rpm at 4uC for 4 min to facilitate sporozoite

– HepG2 cell interaction. The plate was put at 37uC and 5% CO2

for 5 or 10 min, carefully washed once with PBS and invasion

Figure 8. A refined model for the apicomplexan host-cell
invasion. An apicomplexan zoite during host-cell invasion. Abbrevia-
tions: ama1, apical membrane antigen 1; F-actin, actin filaments
(turning over); hpm, host plasma membrane; imc, inner membrane
complex; myoA, myosin A; ppm, parasite plasma membrane; ron-
complex, rhoptry neck protein complex; trap, thrombospondin related
anonymous protein. Question mark indicates unknown linkage
between motor complex (actin and myosin) and tight junction complex
(ama1-ron complex). Red arrow indicates movement of actin filaments
rearwards by myoA driving motility. Movement of actin drives trap-like
adhesin (Blue arrow). Green arrow marks movement of traction point
complexes (light green) during gliding or invasion.
doi:10.1371/journal.pone.0032188.g008
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stopped by fixation with 4% paraformaldehyde. Labelling with

antibodies against PbCSP (see below) preceded Triton X-100

permiabilisation [69] to identify sporozoites mid way through

invasion, followed by re-fixation and permiabilisation for intra-

cellular actin labelling. T. gondii tachyzoite invasion was captured

using a potassium shift protocol (Kafsack et al., 2004). For JAS

treatment of invasion, filtered P. falciparum and P. berghei merozoites

were allowed to invade erythrocytes shaking at 37uC for 1.5 and

2 min respectively before treatment with 5 mM JAS then returned

to invasion assay conditions for a further 1.5 or 2 min.

Indirect immunofluorescence assay (IFA), electron
microscopy and 3D SIM imaging

Immunofluorescence microscopy (IFA). P. falciparum

merozoites, P. berghei merozoites or sporozoites allowed to invade

were fixed in solution and prepared for IFA as described [69] using

0.0075% glutaraldehyde/4% paraformaldehyde (ProSciTech,

Australia) in PBS for merozoites, 4% paraformaldehyde in PBS for

sporozoites, or (for ring stages) by cold methanol fixation [13]. For

JAS treatment of rings P. falciparum late stage cultures were allowed to

invade erythrocytes before commencing treatment with 1 mM JAS for

6 hours prior to imaging. Primary antisera in 3% BSA/PBS included

rabbit anti-Act239–253 [1:300]; mouse anti-Act239–253 [1:100]; mouse

anti-PfRON4 [70]; mouse anti-PbCSP [1:5000] [71]; mouse anti-

Pb28 [72] [1:10,000]; rat anti-ERD2 [1:200] (MR4, ATCC

Manassas Virginia); mouse anti-TgSAG1 (DG52) (Morisaki et al.,

1995) [1:5,000] (a kind gift from L. D. Sibley, Washington University

School of Medicine, USA); and mouse anti-Ty (Bastin et al., 1996)

[1:1000]. Following washes appropriate secondary antibodies (Alexa

Fluor-488, 594, Invitrogen) were at 1:500 before mounting in

VectaShieldH (Vector Laboratories) with 0.1 ng/mL 49,6-diamidino-

2-phenylindole, DAPI (Invitrogen). Fluorescence images were

obtained using a Plan-Apochromat 1006/1.40 oil immersion Phase

contrast lens (Zeiss) on an AxioVert 200 M microscope (Zeiss)

equipped with an AxioCam Mrm camera (Zeiss). Z-stacks were taken

well above and below parasites and processed using the Axiovision

release 4.7 or 4.8 deconvolution software package.

Ultrastructural electron microscopy. P. berghei ookinetes

(untreated or 1 mM JAS treated) were fixed in suspension with a

freshly prepared solution of 2.5% glutaraldehyde in 0.1 M

phosphate buffer (PB) (pH 7.4) for 1 hr on ice. These were

washed (63) and fixed in 1% osmium tetroxide (ProSciTech,

Australia) in 0.1 M phosphate buffer for 1 hr. Following extensive

rinsing in distilled water samples were stained with 2% uranyl

acetate (SPI-Chem, Australia) in water for 1 hr. Washed samples

were dehydrated with ethanol and embedded in LR Gold Resin

(ProSciTech,Australia). Following polymerisation by benzoyl

peroxide (SPI-Chem, USA) ultrathin sections (80–90 nm) were

cut on a Leica Ultracut R ultramicrotome (Wetzlar). After double

contrasting with uranyl acetate and lead citrate sections were

examined at 120 kV on a Philips CM120 BioTWIN Transmission

Electron Microscope.

Immunoelectron microscopy. Free or invading P.

falciparum merozoites [41] or P. berghei ookines were fixed in 1%

glutaraldehyde (ProSciTech, Australia) on ice for 30 min. Samples

were pelleted in low-melt agarose before being transferred into

water. Dehydration and sectioning was as above. For labelling,

sections were blocked in PBS containing 0.8% (wt/vol) bovine

serum albumin and 0.01% (wt/vol) Tween 80 and then incubated

in anti-Act239–253 diluted in the above-mentioned solution.

Samples were washed and incubated with secondary antibodies

conjugated to 10 nm diameter gold particles (BioCell). Post-

staining with 2% aqueous uranyl-acetate and 5% triple lead prior

to imaging.

3D structured illumination microscopy (3D SIM). Samples

were prepared as for IFA mounted in VectaShieldH (Vector

Laboratories). Imaging was performed using a DeltaVision OMX

3D Structured Illumination Microscopy SystemH (OMX 3D-SIM,

Applied Precision Inc, Issaquah, USA) as described [41].

Image processing and actin quantification
Deconvolved Z-stacks were reconstructed in 3D, with interpo-

lation, using Imaris version 7.1.0 (Bitplane Scientific). For clarity of

display, gamma settings were altered on 3D reconstructions after

deconvolution, however no comparisons of labelling levels were

made from such altered images. Maximum and total actin

fluorescence calculations were performed in Metamorph version

7.7.0 (Molecular Devices), within masked regions determined

using the ‘‘auto threshold for light objects’’ function on the CSP

labelling channel of sporozoites. Statistics were calculated using a

student’s t-test in Prism version 5 (GraphPad). General image

handling was undertaken using either Image J or Adobe Photo-

shop CS4. Final images were assembled in Adobe Illustrator CS4

for figure generation.

Supporting Information

Figure S1 Serial section, transmission electron micrographs with

anti-Act239–253 (rabbit) immunogold labelling (arrowheads) of free

P. falciparum merozoite. Scale bar = 0.2 mm.

(TIF)

Figure S2 Transmission electron micrographs of untreated and

1 mM JAS treated P. berghei ookinetes. Scale bar = 0.5 mm.

(TIF)

Figure S3 A) Western blot of P. falciparum schizont lysate

fractionated by hypotonic lysis with subsequent carbonate

extraction: labelling with anti-MTRAP (a membrane bound

control) and PfADF1 (a cytosolic control). P = pellet fraction;

S = supernatant fraction. B) Widefield IFA of intracellular T. gondii

tachyzoites within HFF cells labelled with rabbit anti-Act239–253.

Scale bar = 5 mm.

(TIF)

Figure S4 3D reconstruction of widefield IFA with deconvolu-

tion of independent sporozoites treated with 1 mM JAS and

labelled with PbCSP (Red), rabbit anti-Act239–252 (Green) and

DAPI (Blue). Grid = 1 mm. Asterisk marks parasite apex. See also

Movie S1. Gamma settings were altered in 3D reconstructions.

(TIF)

Movie S1 Rotation of immunofluorescence imaging of 1 mM

JAS treated P. berghei sporozoite, labelled with anti-PbCSP (Red),

rabbit anti-Act239–253 (Green) and DAPI (Blue). See Figure 2.

(MOV)

Movie S2 Rotation of immunofluorescence imaging of 1 mM

JAS treated P. berghei ookinete, labelled with Pbs28 (Red), rabbit

anti-Act239–253 (Green) and DAPI (Blue). See Figure 2.

(MOV)

Movie S3 Rotation of 3D-SIM imaging of P. berghei ookinete,

labelled with Pbs28 (Red), rabbit anti-Act239–253 (Green) and

DAPI (Blue). See Figure 2.

(MOV)

Movie S4 Rotation of 3D-SIM imaging of P. berghei ookinete

following 1 mM JAS treatment, labelled with Pbs28 (Red), rabbit

anti-Act239–253 (Green) and DAPI (Blue). See Figure 2.

(MOV)
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Movie S5 Rotation of immunofluorescence imaging of P. berghei

ookinete, labelled with Pbs28 (Red), rabbit anti-Act239–253 (Green)

and DAPI (Blue) highlighting labelling at nuclear periphery and

pellicle. See Figure 3.

(MOV)

Movie S6 Rotation of 3D-SIM imaging of P. falciparum

merozoite invading, labelled with RON4 (Green), rabbit anti-

Act239–253 (Red) and DAPI (Blue). See Figure 6.

(MOV)

Acknowledgments

We thank the Australian Red Cross for supplying human red blood cells,

the Walter & Eliza Hall Institute Monoclonal Facility for antibody

generation and D. Goodman (University of Melbourne, Victoria, Australia)

and M. Yuda (Mie University School of Medicine, Mie, Japan) for

experimental help and parasite lines. We would also like to thank D. Lyras

and A. Chakravorty (Monash University, Victoria, Australia) for providing

C. septicum alpha toxin and MR4 for providing us with ERD2 antibodies.

Author Contributions

Conceived and designed the experiments: FA MJD PWG SAR RES GIM

JB. Performed the experiments: FA AS DTR JCV MJD ESZ LT MAO

CD DSM WW VM CHB JB. Analyzed the data: FA AS DTR JCV MJD

ESZ LT CJT PWG SAR CBW RES AFC GIM JB. Contributed reagents/

materials/analysis tools: CJT CBW RES AFC GIM JB. Wrote the paper:

FA DTR PWG SAR RES GIM JB.

References

1. WHO (2010) World Health Report. Geneva: World Health Organization.

2. Cowman AF, Crabb BS (2006) Invasion of red blood cells by malaria parasites.

Cell 124: 755–766.

3. Prudencio M, Rodriguez A, Mota MM (2006) The silent path to thousands of
merozoites: the Plasmodium liver stage. Nat Rev Microbiol 4: 849–856.

4. Vlachou D, Schlegelmilch T, Runn E, Mendes A, Kafatos FC (2006) The

developmental migration of Plasmodium in mosquitoes. Curr Opin Genet Dev
16: 384–391.

5. Morrissette NS, Sibley LD (2002) Cytoskeleton of apicomplexan parasites.
Microbiol Mol Biol Rev 66: 21–38.

6. Baum J, Gilberger T-W, Frischknecht F, Meissner M (2008) Host-cell invasion

by malaria parasites: insights from Plasmodium and Toxoplasma. Trends
Parasitol 24: 557–563.

7. Daher W, Soldati-Favre D (2009) Mechanisms controlling glideosome function

in apicomplexans. Curr Opin Microbiol 12: 408–414.

8. Frenal K, Polonais V, Marq JB, Stratmann R, Limenitakis J, et al. (2010)

Functional dissection of the apicomplexan glideosome molecular architecture.

Cell Host Microbe 8: 343–357.

9. Gaskins E, Gilk S, DeVore N, Mann T, Ward G, et al. (2004) Identification of

the membrane receptor of a class XIV myosin in Toxoplasma gondii. J Cell Biol
165: 383–393.

10. Raibaud A, Lupetti P, Paul RE, Mercati D, Brey PT, et al. (2001) Cryofracture

electron microscopy of the ookinete pellicle of Plasmodium gallinaceum reveals
the existence of novel pores in the alveolar membranes. J Struct Biol 135: 47–57.

11. Jewett TJ, Sibley LD (2003) Aldolase forms a bridge between cell surface

adhesins and the actin cytoskeleton in apicomplexan parasites. Mol Cell 11:
885–894.

12. Baum J, Papenfuss AT, Baum B, Speed TP, Cowman AF (2006) Regulation of

apicomplexan actin-based motility. Nat Rev Microbiol 4: 621–628.

13. Baum J, Richard D, Healer J, Rug M, Krnajski Z, et al. (2006) A conserved

molecular motor drives cell invasion and gliding motility across malaria lifecycle
stages and other apicomplexan parasites. J Biol Chem 281: 5197–5208.

14. Nebl T, Prieto JH, Kapp E, Smith BJ, Williams MJ, et al. (2011) Quantitative in

vivo analyses reveal calcium-dependent phosphorylation sites and identifies a
novel component of the Toxoplasma invasion motor complex. PLoS Pathog 7:

e1002222.

15. Munter S, Sabass B, Selhuber-Unkel C, Kudryashev M, Hegge S, et al. (2009)
Plasmodium sporozoite motility is modulated by the turnover of discrete

adhesion sites. Cell Host Microbe 6: 551–562.

16. Aikawa M, Miller LH, Johnson J, Rabbege J (1978) Erythrocyte entry by
malarial parasites. A moving junction between erythrocyte and parasite. J Cell

Biol 77: 72–82.

17. Besteiro S, Dubremetz JF, Lebrun M (2011) The moving junction of
apicomplexan parasites: a key structure for invasion. Cell Microbiol 13: 797–805.

18. Dobrowolski JM, Niesman IR, Sibley LD (1997) Actin in the parasite
Toxoplasma gondii is encoded by a single copy gene, ACT1 and exists

primarily in a globular form. Cell Motil Cytoskeleton 37: 253–262.

19. Kudryashev M, Lepper S, Baumeister W, Cyrklaff M, Frischknecht F (2010)
Geometric constrains for detecting short actin filaments by cryogenic electron

tomography. PMC Biophys 3: 6.

20. Schatten H, Sibley LD, Ris H (2003) Structural evidence for actin-like filaments
in Toxoplasma gondii using high-resolution low-voltage field emission scanning

electron microscopy. Microsc Microanal 9: 330–335.

21. Angrisano F, Delves MJ, Sturm A, Mollard V, McFadden GI, et al. (2012) A
GFP-Actin reporter line to explore microfilament dynamics across the malaria

parasite lifecycle. Mol Biochem Parasitol;doi:10.1016/j.molbiopara.
2011.11.008.

22. Siden-Kiamos I, Pinder JC, Louis C (2006) Involvement of actin and myosins in

Plasmodium berghei ookinete motility. Mol Biochem Parasitol 150: 308–317.

23. Miller LH, Aikawa M, Johnson JG, Shiroishi T (1979) Interaction between

cytochalasin B-treated malarial parasites and erythrocytes. Attachment and

junction formation. J Exp Med 149: 172–184.

24. Mizuno Y, Makioka A, Kawazu S, Kano S, Kawai S, et al. (2002) Effect of

jasplakinolide on the growth, invasion, and actin cytoskeleton of Plasmodium

falciparum. Parasitol Res 88: 844–848.

25. Bubb MR, Senderowicz AM, Sausville EA, Duncan KL, Korn ED (1994)

Jasplakinolide, a cytotoxic natural product, induces actin polymerization and

competitively inhibits the binding of phalloidin to F-actin. J Biol Chem 269:

14869–14871.

26. Shaw MK, Tilney LG (1999) Induction of an acrosomal process in Toxoplasma

gondii: visualization of actin filaments in a protozoan parasite. Proc Natl Acad

Sci U S A 96: 9095–9099.

27. Siden-Kiamos I, Louis C, Matuschewski K (2012) Evidence for filamentous actin

in ookinetes of a malarial parasite. Mol Biochem Parasitol 181: 186–189.
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