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Abstract

Background: Somatic mutation-calling based on DNA frommatched tumor-normal patient samples is one of the
key tasks carried by many cancer genome projects. One such large-scale project is The Cancer Genome Atlas (TCGA),
which is now routinely compiling catalogs of somatic mutations from hundreds of paired tumor-normal DNA
exome-sequence data. Nonetheless, mutation calling is still very challenging. TCGA benchmark studies revealed that
even relatively recent mutation callers from major centers showed substantial discrepancies. Evaluation of the
mutation callers or understanding the sources of discrepancies is not straightforward, since for most tumor studies,
validation data based on independent whole-exome DNA sequencing is not available, only partial validation data for a
selected (ascertained) subset of sites.

Results: To provide guidelines to comparing outputs frommultiple callers, we have analyzed two sets of mutation-
calling data from the TCGA benchmark studies and their partial validation data. Various aspects of the mutation-calling
outputs were explored to characterize the discrepancies in detail. To assess the performances of multiple callers, we
introduce four approaches utilizing the external sequence data to varying degrees, ranging from having independent
DNA-seq pairs, RNA-seq for tumor samples only, the original exome-seq pairs only, or none of those.

Conclusions: Our analyses provide guidelines to visualizing and understanding the discrepancies among the
outputs frommultiple callers. Furthermore, applying the four evaluation approaches to the whole exome data, we
illustrate the challenges and highlight the various circumstances that require extra caution in assessing the
performances of multiple callers.
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Background
Cancer is driven by genomic alterations. Recent advances
in high-throughput sequencing technologies allow iden-
tification of somatic alterations at an unprecedented res-
olution [1-4]. In particular, numerous large-scale cancer
projects scan for somatic mutations in various tumor
types, prior to conducting downstream analyses such as
detecting significantly mutated genes or pathways [5-9],
inferring clonal history [10,11], and characterizing the
landscape of the somatic mutations [12-14].
Nonetheless, accurate somatic mutation-calling using

high-throughput sequence data remains one of the major
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challenges in cancer genomics. For somatic mutation-
calling, one looks for a site in which a variant allele exists
in the tumor sample but not in the normal sample. Even
with the sequence data from a normal sample, variant
calling in high-throughput sequencing data is challeng-
ing due to various sources of errors such as artifacts
occurring during PCR amplification or targeted capture
(eg. exome-capture), machine sequencing errors, incor-
rect local alignments of reads [15-18]. Tumor heterogene-
ity and normal contamination add additional challenges
for the tumor samples.
Understanding mutation-calling errors is constrained

by the availability of the validation data. False positives
can be learned by validating every called site, but exper-
imentally validating all such sites across a whole exome
or genome is laborious and expensive. Learning about
false negatives can be even more difficult. Even indepen-
dent sequencing at a much higher sequencing depth or
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using a different sequencing technology does not guaran-
tee the finding of all true mutations. Comparing outputs
from multiple callers and learning from their discrepan-
cies, however, can be a fast and practical solution to study
calling errors to some extent. False negatives from one
caller could be revealed by mutations detected by other
callers. Calls that are uniquely detected by a certain caller
are likely to reveal at least a partial set of false positives
from that caller.
One such comparison example is the The Cancer

Genome Atlas mutation-calling benchmark study in
which several major analysis centers called mutations on
a set of selected samples. A Venn diagram summarization
of the outputs immediately revealed substantial discrep-
ancies among the calls from different centers, but a more
thorough analysis was necessary for better characteri-
zation and assessments of the callers. Similar exercises
can be easily conceived by anyone who is interested in
performing mutation analysis, since mutation-calling is a
rapidly growing field and there is unlikely to be a single
“best” caller.
To provide guidelines for more illuminating analyses

in comparing multiple callers beyond Venn diagrams, we
present how we have analyzed two datasets generated
for TCGA benchmark studies. One dataset was gener-
ated by applying four mutation-callers to Illumina exome-
seq pairs from 16 lung squamous cell carcinoma (LUSC)
patients. The other dataset was generated by applying
three callers to SOLiD exome-seq pairs from 6 rectum
adenocarcinoma (READ) patients. For each dataset, par-
tial validation data exists. For the LUSC dataset, 76 genes
were independently sequenced at a higher coverage by
the Illumina technology, allowing in-depth investigation
of called sites within the 76 genes. For the READ dataset,
validation information based on the 454 sequencing tech-
nology was available for 721 sites.
We characterized the discrepancies in the two datasets

in various ways. Furthermore, based on the insights
gained by analyzing these data, we introduced four
approaches to comparing the relative performances of
multiple callers. The first is using independent DNA-
sequencing data, available for 76 genes for LUSC patients,
to validate detected mutations. The second utilizes the
tumor RNA-seq data to validate variants in the tumor
samples. The third method uses the variant quality
scores obtained by running a publicly available vari-
ant caller, the GATK UnifiedGenotyper [19], on the
original exome-seq data, to define pseudo-positives (pre-
sumed somatic mutations) and pseudo-negatives. The
last approach estimates the sensitivity and the specificity
of each caller from the observed counts of mutations
classified by the detection status of the multiple callers,
using the statistical method called latent class models
[20,21].

Results
TCGA benchmark studies generated mutation-calling
outputs by applying multiple callers on the same sequence
alignments (BAMs [22]) for a selected list of samples.
We have analyzed two datasets, one based on lung squa-
mous cell carcinoma (LUSC) samples and the other
based on rectum adenocarcinoma (READ) samples. The
callers used and the types of available sequence data are
described below as well as summarized in Additional
file 1: Table S1.
Note that all the mutation-calling outputs were gener-

ated before July 2011, and no current mutation-caller will
be the same as those used in this study, which is a part
of the reason for using anonymized callers. Even though
indels and other structural variants are important kinds
of somatic variants, in this paper we focus on comparing
single nucleotide variant (SNV) type somatic mutations,
which comprise the majority of somatic variants.
LUSC datasetMutation calling was done by four callers

(Caller A, B, C and D) using Illumina exome-seq tumor-
normal pairs from 16 LUSC patients. Two kinds of addi-
tional data exist for the same patients. One is Illumina
RNA-seq data available for the 16 tumor samples. Second
is high-coverage Illumina sequencing data (∼3-fold higher
coverage than the original exome-seqs of ∼80x, and thus
called as ‘deep-sequencing’ data in our manuscript) avail-
able for tumor-normal pairs on a pre-selected set of 76
genes (540 Kb).
READ dataset Mutation calling was done by three

callers (Caller H, I, and J) using SOLiD exome-seq tumor-
normal pairs from 6 READ patients. Three kinds of addi-
tional data exist. One is Illumina RNA-sequence data
available for the 6 tumor samples. A second is Illumina
exome-seq tumor-normal pairs for all 6 patients. The
last one is information available for 721 sites, for which
validation was done using the 454 sequencing technology.
In an effort to create comparable calling outputs, all four

centers agreed on one annotation representing exome
regions and generated calls only within those regions.
Outputs were provided in a modified Variant Call For-
mat (VCF [23]), which reports the genomic position,
somatic status, filter status, sequence information from
each tumor and normal sample. The filter status indi-
cates whether the variant (candidate mutation) passes all
the filters implemented by each caller or not. The full
details of all filters were not given in the VCF files though,
partly because the modified VCF format was under active
development.
Detecting a variant in an aligned sequence (BAM) is

looking for the existence of a variant allele that is differ-
ent from the reference allele. In principle, the more reads
carrying the variant allele, the stronger the evidence for
it being a true variant. Thus, the fraction of reads car-
rying the variant allele (called the variant allele fraction,
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‘vaf ’) is frequently used in variant calling analyses. For
somatic mutation-calling, the tumor and its matched nor-
mal sample are considered together. Therefore, a variant is
determined by the joint status in tumor-normal sequence
pairs: ‘somatic’ (the variant allele is found in the tumor
sample but not in the normal), ‘germline’ (variant allele
found in both the tumor and the normal sample), and
‘wildtype’ (no variant allele found in either the tumor or
the normal sample). In our manuscript, a mutation or
variant ‘site’ refers to a position only for the particular
patient carrying the variant.

Discrepancies observed in the benchmark data
LUSC dataset From each caller’s raw mutation-calling
output (VCF), we extracted a final set of somatic muta-
tions. To have a broad picture, we gathered all such
mutations from all 16 LUSC patients. An immediate
Venn diagram summary reveals substantial discrepancies
among the mutations from the four callers (Figure 1A).
For example, 491 and 427 mutations were detected by
Caller A only and Caller D only, while 1,667 mutations
were discovered by all four callers. There are many muta-
tions that were missed by a single caller. For example, 716
mutations were detected by all but Caller B, and 104 were
detected by all but Caller C. We also categorized muta-
tions based on the degree of agreement (Figure 1B). In
total, 5,380 mutations were called by one or more callers,
and 31%, 28%, 16%, and 25% of those were detected by
all, three, two, and a single caller(s). A similar categoriza-
tion of the mutations detected by each caller suggests that
Caller B is stringent, since it detected a relatively small
number of mutations, most of which were detected by
the other callers. Callers A, C, and D reported a simi-
lar number of mutations, a good proportion of which are
caller-specific.
We attempted to further characterize the discrepancies

among the callers using those mutations called by a sin-
gle caller only (1,352) or missed by a single caller only
(1,494). To a large extent, discrepancies occurred due to
different variant call status on the tumor sample. Variant
calling in the normal sample seems to be highly accurate,
as potential mis-classification between somatic mutations
and germline mutations explain relatively small fraction
of the discrepancies (only 11% of the mutations have a
normal vaf > 2%, which is probably a minimal require-
ment for a variant to be detected). The distribution of
the coverages and the variant allele fractions in the tumor
exome-seqs vary significantly across the mutation sets
defined based on the detection status of the four callers
(Figure 2). For example, the set of mutations detected
by Caller A only is somewhat enriched for positions of
medium- to low-sequencing depth (e.g., < 40x), while the
set detected by Caller D only has many sites with very
high depth (> 100x) but have very low vaf (< 10%).
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Figure 1 Counts of the mutations detected by four callers in the
16 LUSC tumor-normal exome-seq pairs. A. Venn Diagram of the
mutations. B.Mutations detected by each caller or by any caller
(‘Union’) are classified based on the number of callers detecting the
mutations.

The characteristics of mutations that were missed by a
single center are different. A large fraction of mutations
that were missed by Caller B only have tumor vaf < 20%.
Almost all the mutations detected by all but Caller D have
very high depth (>200x), and most of them have vaf
> 20%. The mutations missed by Caller A only have
medium-to-high coverage (> 40x) and medium-to-high
vaf > 20%. The number of mutations that were missed
by Caller C is significantly lower than those missed by
other callers only. Overall, many of themutations detected
by a single caller only and those missed by Caller B only
have relatively low sequencing depth or low vaf, which
presumably poses difficulty in detecting existence of alter-
native allele in the tumor sample, while mutations missed
by Caller A, C, or D only tend to have high sequencing
depth and show good support of the existence of a variant
allele. Thus, for these mutations, it’s likely that the single
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Figure 2 Distribution of the coverage (horizontal) and the variant allele fraction (vertical) in the tumor exome-seqs. Among the mutations
detected by four callers using 16 LUSC tumor-normal exome-seq pairs, mutations detected by a single caller (upper row) or missed by a single caller
(lower row) are used. Each column corresponds to a caller that uniquely detects the mutations or uniquely misses the mutations.

caller employed a certain filter that was different from
the others.
To better understand the sources of discrepancies, we

examined all variants in the VCF files. (We note that the
VCF files were produced for the benchmark study only,
and the output formats were under constant develop-
ment.) The classes of variants and the number of variants
reported in the VCF files differ significantly among the
callers (Additional file 1: Figure S1A). Caller D reported
only somatic variants. Caller A, B, and C reported both
somatic and germline variants but the numbers vary.
Our main interest is in the somatic variants that suc-
cessfully pass all the filters implemented by each caller,
which comprise the final set of mutations. Nonetheless,
information of the somatic variants that did not pass fil-
ters can be used for comparison purposes. For example,
for each caller, we screen the corresponding VCF file to
check whether the mutations missed by the caller only

are reported in the file, and then find the reasons for
them being filtered out. Around 60% of mutations that
were missed by Caller B only are not reported in the
VCF file from Caller B (Additional file 1: Figure S1B),
suggesting that initial requirement to be scanned by
Caller B might be more stringent than others. The scale
of mutation quality scores reported in the VCF varies
across the callers as well (Additional file 1: Figure S2).
Mutations that were detected by all callers tend to have
high quality and those that were detected by a single
caller tend to have low mutation quality. Nevertheless,
pairwise comparison of mutation quality scores between
callers shows some but not a very high level of agree-
ment (Additional file 1: Figure S3). Furthermore, such
scores from all callers are available only for a limited sub-
set of mutations. Thus ranking all mutations detected
by any caller is not feasible based on these mutation
quality scores.
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READ dataset From the mutation-calling outputs
(VCFs) of the three callers (Caller H, I, and J), we extracted
the final set of somaticmutations. Themutations detected
by each caller are stratified by the number of callers
detecting those mutations (Additional file 1: Figure S4).
Caller I tends to be stringent, in that it calls a small num-
ber of mutations but most of those are shared by the
other two callers. Notably, among the mutations that were
detected by one or more callers, a very large fraction
(median of 78%) were detected by a single caller, espe-
cially by Caller H or Caller J only. The relative numbers of
mutations called by each caller varies across the 6 READ
patients. Specifically, for READ-1, READ-4, and READ-
5, Caller H and J detected a similar number of mutations.
For READ-2 and READ-6, Caller H detected around three
times as many calls as Caller J. READ-3 is unique in the
sense that Caller I and J detected relatively many more
mutations compared to other cases.
Since many mutations were detected by a single caller

only, we explored such mutations further. First, we
checked whether eachmutation detected by a single caller
was reported in the VCF files of other callers. Additional
file 1: Figure S5 shows that it is the case for majority of the
mutations. That says, those mutations were initially con-
sidered for variant detection by at least one more caller
but filtered out. Unfortunately, as mentioned earlier, the
full details of all filters were not available for further explo-
ration. We also examined the coverage and the vaf of the
tumor sample of suchmutations. Almost all calls detected
by Caller J only have very low vaf, less than 10%. The
tumor vaf of the mutations detected by Caller H only cov-
ers the whole spectrum of allele fractions, and more than
80% of those are larger than 10% (data not shown).

Analysis of validation data
LUSC datasetDeep-sequencing data was available for 76
genes for all LUSC patients. We used it to determine the
validation status of any variant in the VCF files that are
within the 76 genes. A variant is called ‘somatic’ if the
tumor vaf in the deep-seq data is > 10% and the normal
vaf in the deep-seq data is < 2%, otherwise, ‘non-somatic’.
(This specific validation rule is determined based on our
examination of the deep-sequencing data while construct-
ing an evaluation dataset. Further details are described
below). The validation results are summarized by each
mutation set, defined based on the detection status by
the four callers (Table 1). Notice that mutations that were
detected by two or more callers tend to have a high accu-
racy. For example, all the 13 mutations detected by all but
Caller A, or all the 6 mutations detected by Caller A and
C are validated as ‘somatic’. Mutations that were called by
a single caller tend to be enriched for false positives but
some of those turned out to be false negatives for the other
three callers, suggesting that a non-negligible number of

Table 1 Validationof themutationswithin the targeted
regions (76 genes) of the Illumina deep-sequencingdata
from 16 LUSC patients

Mutation set Non-somatic Somatic

None 4292 9

Caller A only 3 4

Caller B only 1 2

Caller C only 2 0

Caller D only 6 5

Caller A and C 0 6

Caller A and D 2 3

Caller B and C 0 2

Caller B and D 0 2

Caller C and D 0 5

All but Caller D 0 3

All but Caller C 0 4

All but Caller B 3 15

All but Caller A 0 13

All callers 0 57

The variants included in any mutation output (VCF) file were divided into
mutation sets based on the detection status of the four callers (rows). For each
variant, validation status (columns) was determined as ‘somatic’ if the
deep-sequencing data shows the signature of a somatic mutation: the vaf in the
tumor sample is> 10% and the vaf in the normal sample is< 2%; otherwise, it is
as ‘non-somatic’. Variants that have less than 6 reads in the original exome-seq
data were discarded. One mutation was such a case.

sites posed difficulties in mutation-calling. For example,
among the 11 mutations that were called by Caller D only,
five of them are validated as ‘somatic’, i.e., Caller A, B, and
C failed to detect these mutations.
The individual validation status of all the 138 muta-

tions is shown in Figure 3. Mutations are marked as
‘Strand bias’ if more than 95% or less than 5% of the
reads carrying the variant allele are on the forward strand.
Out of 13 such mutations, 11 overlap with those muta-
tions that were detected by a single caller or missed by
a single caller. Not surprisingly, many of the mutations
validated as ‘non-somatic’ have low tumor vaf (less than
15%). Manual examination of the five mutations validated
as ‘non-somatic’ but having tumor vaf > 20% suggested
that four of them are likely to be ‘germline’ mutations.
Mutations in each mutation set (e.g., ‘detected by Caller A
only’ or ‘detected by Caller D only’) tend to scatter around
across a large range of tumor vafs. One exception is the set
‘detected by All but Caller B’, for which many of them are
clustered by having a low vaf.
We further interrogated false positive and false negative

sites by exploring alignment of nearby regions, distribu-
tion of base scores of the variant and the reference allele,
coverage, and variant allele fraction. Some of such details
for each mutation are summarized in Additional file 2.



Kim and Speed BMC Bioinformatics 2013, 14:189 Page 6 of 16
http://www.biomedcentral.com/1471-2105/14/189

Figure 3 Validation status of individual mutations within the targeted regions of the deep-sequencing data (76 genes), among those
detected from 16 LUSC whole exome-seq pairs using four callers.Mutations that were detected by at least one caller (in total, 138) are ordered
by the variant allele fraction in the tumor exome-seq data. The validation status (‘somatic’ or ‘non-somatic’) was determined based on the
deep-sequencing data as described in Table 1. A mutation is marked as ‘strand bias’ (red circle) when more than 95% or less than 5% of the reads
carrying the variant allele are on the forward strand in the tumor exome-seq data. Mutations that were detected by a single caller only (e.g., Caller B
only) or missed by a single caller only (e.g., All but Caller B) are indicated with upside down triangle or filled diamond, respectively.

Each discrepancy has a very specific reason but broadly,
there are two explanations accounting for the false pos-
itives and false negatives. One is when a mutation has
low-quality information (low vaf in the tumor sample, or
low coverage, or low mapping quality, or low base quality
scores for the variant allele). The other is when differ-
ent pre- and post-filtering criteria were applied to high
or intermediate-quality mutations, i.e., mutations show-
ing clear signs of the existence of the variant allele, but
may show strand bias, repeatedly appear in the first or last
few bases of the reads, etc. Nonetheless, detailed charac-
terization couldn’t be performed, since full details of the
filters were not available.
READ dataset Among the mutations called for the 6

READ patients, we obtained the validation status of 721
sites that were validated by the 454 technology. We first
classified each mutation found in any VCF file into five
validation groups. It is ‘nonMAF’ if the mutation was
found in the benchmark data but did not appear in the
TCGA colon working group MAF (mutation annotation
format) file as of Nov 8, 2011 nor validated by the 454
technology. Otherwise, it was classified as ‘unknown’ (in
the MAF file but not validated), ‘wildtype’ (no variant
allele found in either the tumor or the normal sample),
‘germline’ (variant allele found in both the tumor and the
normal sample), and ‘somatic’ (the variant allele is found
in the tumor sample but not in the normal).We didn’t have
information about how sites were chosen for validation.
However, classification of the mutations by the detection
status of the three callers and by the validation group
suggests that only the variants initially called by Caller J

were considered for validation, except for a few variants
in READ-4 (Additional file 1: Table S2). It is important to
be aware of such ascertainment. Otherwise, one may mis-
takenly compute the false positive and the false negative
rates of Caller H or Caller I using the validated mutations,
and may make unfair comparison with the rates of Caller
J. Note that in the set of validated mutations, if a muta-
tion is called by Caller H, then it implicitly implies that the
mutation is called by both Caller H and Caller J due to the
ascertainment.
Validation results for the mutations that were called by

Caller J are shown in Additional file 1: Figure S6. Most of
the calls detected by Caller J only were not considered for
validation nor included in the MAF file (i.e., ‘nonMAF’),
except for the calls from patient READ-3 and READ-4. For
the two patients, numerousmutations were considered for
validation and validated as wildtype. Mutations that were
detected by all callers have high validation rate for most of
the patients, except READ-3. For READ-3, around half of
the mutations were validated as wildtype. The validation
results of the mutations that were detected by Caller J and
another caller also suggest somewhat unusual validation
accuracy for the mutations from two patients, READ-3
and READ-4. It is plausible that the quality of samples or
the experimental procedure for these patients provided a
challenge to all three mutation callers.
Our earlier work suggested that for Illumina sequenc-

ing data, the variant quality scores computed by the GATK
UnifiedGenotyper [19] could be effectively used
for visualizing overall and individual mutation qualities.
Therefore, we first compiled the variants in any VCF
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output, whichwas produced based on 6 SOLiD exome-seq
pairs. Then for each such variant, we obtained the signed
GATK variant call quality scores using the correspond-
ing Illumina exome-seq pairs (for details, see Methods).
The signed GATK qualities are shown for two patients
in Figure 4, and for all 6 patients in Additional file 1:
Figure S7. We expect a somatic mutation to have a large
positive signed GATK quality score in the tumor sam-
ple (strong support of the existence of the variant allele)
and a large negative signed GATK quality score in the
normal sample (strong support for two homozygous ref-
erence alleles). Indeed, most of mutations validated as
‘somatic’ show such characteristics. For READ-1, READ-
2, READ-4 and READ-5, the overall distribution of the
GATK quality scores suggests good DNA sample quality.
In this case, wildtypes, germlines, and somatic mutations
are well distinguished. However, for READ-3 and READ-
4, the distribution of the GATK quality score seems much
noisier (numerous points in the area in which biologically
meaningful variants are not likely to be), suggesting poor
DNA sample quality. Numerous wildtypes show expected

characteristics for somatic mutations, and that is likely to
be the reason for the relatively poor validation rates for
these two patients in Additional file 1: Figure S6. Note
that mutation-calling is done based on SOLiD sequences,
but the signed GATK quality scores are computed based
on the Illumina sequences. Therefore, the difficulty is not
likely due to the sequencing technology but due to sam-
ple quality. We suspect that the poor quality DNA sample
induces many artifactual variants causing high false pos-
itive rates, since those artifactual variants do not exist
in the RNA-seq tumor sample (Figure 4). Notice that all
the mutations validated as wildtypes have zero vaf in the
RNA-seq data.

Analysis of the deep-sequencingdata for construction of
an evaluation dataset
For method development, we constructed an evaluation
dataset by compiling a set of candidate somatic variants
detected based on the exome-seq data and determining
their validation status based on the deep-sequencing data.
Our evaluation dataset consists of the 6,692 variant sites

Figure 4Motivation for the pseudo- and the RNA-seq validationmethods. For two READ patients (columns), the upper row shows the signed
GATK variant quality scores based on the tumor-normal Illumina exome-seq pairs, and the lower row shows the histogram of the variant allele
fraction in the tumor Illumina RNA-seq. Note that for the READ samples, mutation calling was done by three callers (Caller H, I, and J) using SOLiD
exome-seq pairs. For the upper panels, we first compiled all the variant sites reported in any VCF file based on SOLiD exome-seq pairs. Then, for each
such site, using the Illumina exome-seq data, we obtained the GATK variant call quality score for each tumor (y-axis) and the normal sample (x-axis).
When no variant allele was detected by the GATK UnifiedGenotyper, we flipped the sign. Mutations that were validated by the 454
sequencing technology are colored: red (somatic), blue (germline) and green (wildtype). Among the validated mutations, those with the RNA-seq
depth ≥ 5x were further examined for the variant allele fraction in the tumor RNA-seq data (lower panels).
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that were detected within the 76 genes using the GATK
UnifiedGenotyper from 39 LUSC tumor exome-seq
data (for further details, see Methods). To determine
the validation status of these sites, we first examined the
distribution of variant allele fractions in the deep-seq
tumor-normal pairs (Figure 5A). The scatter plot shows
good separation between somatic mutations from other
types of variants. A somatic mutation is characterized by
having a variant allele in the tumor sample but not in the
normal sample. On the left boundary of the plot, there
are many points for which the tumor vaf is reasonably
large (or away from zero, e.g., > 5%) but the normal vaf
is almost zero (e.g., < 2%). These points are well sepa-
rated from the other points, especially when the normal
vaf is larger than zero (e.g., > 2%). The distribution of
the vafs in the normal samples clearly has three modes
(near zero, 45%, and 100%), corresponding to genotypes
with zero, one, and two variant alleles. Presumably, the
alignment bias preferring the reference allele resulted in
the centre mode around 45% rather than 50%. When the
normal vaf is near the centre mode (i.e., the normal is het-
erozygous), the tumor vafs are vertically spread around,
suggesting that varying degrees of normal contamination
exist in the tumor samples and the loss of heterozygos-
ity regions. Interestingly, there are numerous variants for
which the normal vaf departs from the three modes but
the correspondence between the tumor vaf and the nor-
mal vaf is very high. In particular, most of these variants
have the normal vaf less than half. Since these variants
have both the tumor and normal vafs in the range sug-
gesting for the existence of a variant allele, we name these
as ‘germline-like’ variants. Alignment biases are not likely

to explain numerous occurrence of these ‘germline-like’
variants fully. We suspect that a large fraction of these
variants appeared due to artifactual variant alleles that
were caused by sequencing technology, since a substan-
tial number of the variants exhibit extreme levels of strand
bias (Additional file 1: Figure S8). Specifically, among the
787 germline-like variants for which the normal vaf is
between 5% and 35%, around 50% variants exhibit very
strong strand bias in the tumor sequence data (more than
95% or less than 5% of reads carrying the variant allele
are on the forward strand). In contrast, among the 2,716
variants for which the normal vaf is in a more expected
range (40% – 60%) for heterozygous genotype for the nor-
mal sample, only 1.5% exhibit such extreme strand bias.
Below, we further discuss that base mis-calling can cause
numerous artifactual variant alleles that are characterized
by extreme strand bias, in contrast to the reference alleles.
We also examined the GATK variant quality scores

(Additional file 1: Figure S9A). Such scores indirectly com-
bine the vaf with sequence depth for each sample. Since
we flipped the sign when no alternative allele is found
by the GATK, the points on the left boundary with posi-
tive values for the tumor sample and negative values for
the normal sample are strongly supported to be somatic
mutations. Those points are reasonably well separated
from other points in the diagonal. After further examina-
tion of the distribution of the vafs as well as the signed
GATK quality scores, we determined the validation sta-
tus for each of the 6,692 sites based on the deep-seq pairs
(gold-standard data). A variant is called ‘somatic’ (334
sites; ∼ 5%) if the tumor vaf is > 10% and the normal vaf
is < 2%, otherwise, ‘non-somatic’. An alternative criterion

A B C

Figure 5 Scatter plots of tumor vs normal variant allele fractions, using deep-seq pairs (A), exome-seq pairs (B), and tumor RNA-seq and
normal exome-seq (C) from 39 LUSC patients. Each point is a variant site detected in the tumor exome-seq data using the GATK
UnifiedGenotyper. Variants detected within 76 genes (targeted regions of the deep-sequencing data) are aggregated over the 39 patients (in
total, 6,692). Using the deep-sequencing data, we determined the validation status as ‘somatic’ if the tumor vaf is > 10% and the normal vaf is < 2%
(334 sites; red). Among the ‘non-somatic’ ones, we further classified the variants as ‘wildtype’ if the tumor vaf is < 2% and the normal vaf is < 2%
(319 sites; green).
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for a ‘somatic’ mutation is that the signed GATK quality
scores for the tumor sample and for the normal sample are
> 200 and< -100, respectively. The two criteriamismatch
only for 17 sites. Rather thanmaking subjective judgement
for these sites, we have exclude these 17 ambiguous sites
from our final evaluation set.

Reasons for artifactual variants
In the evaluation dataset, we validated the variants found
in the exome-seq data using the deep-sequencing data.
Among the variants validated as ‘non-somatic’, there are
numerous cases for which both the tumor and the nor-
mal vafs are very low (<2%) in the deep-sequencing data.
We classified these as ‘wildtypes’ (319 sites) and visualized
for comparison with somatic ones and investigated the
reasons for mis-calling. Notice that many of these wild-
types look like germline variants in the original exome-seq
data (Figure 5B and Additional file 1: Figure S9B). These
artifactual variants also exist in the tumor RNA-seq data
(Figure 5C). Our exploration reveals a remarkable differ-
ence in the strand bias pattern between the somatic muta-
tions and the wildetypes in the tumor samples (Additional
file 1: Figure S10). (Strand bias is computed as the fraction
of reads on the forward strand among the reads carrying
the allele of interest.) For somatic mutations, the fraction
of reads on the forward strand is very similar between the
variant allele and the reference allele. For wildtypes, the
strand bias of the variant allele is extreme in that almost all
the reads carrying the variant allele are either on the for-
ward strand or the reverse strand. Although weaker than
the tumor exome-seq, the RNA-seq data exhibits a sim-
ilar behavior. Thus, the sources causing these wildtypes
are not the characteristics of the protocol used for exome-
sequencing or RNA-sequencing, but rather are likely to
be consequences of the Illumina sequencing technology.
Even for the deep-sequencing data, numerous false vari-
ants seem to occur due to strand bias. The ‘germline-like’
variants based on the deep-seq pairs show a very dif-
ferent strand bias pattern compared to the somatic ones
(Additional file 1: Figure S8). To a large extent, we believe
that such false variants occur due to base-calling errors
in the raw sequencing reads [24]. Some sequence con-
texts are more prone to base-calling errors than others,
and these errors may occur in only one direction [17,18].
Indeed, the direction of the strand bias is the same across
the different sequenced samples such as tumor exome-seq
and the normal exome-seq (data not shown).

Pseudo- and RNA-seq validationmethods
Pseudo-validationmethod In the absence of a gold stan-
dard data, direct comparison among calls from different
mutation callers is difficult. Each caller reports informa-
tion for a subset of genomic positions, and these sets do
not entirely overlap. To overcome this difficulty, i.e., to

provide reasonable and consistent measure of mutation
quality across all positions that are reported by any muta-
tion caller, we used a publicly available variant caller, GATK
UnifiedGenotyper, to build our own pseudo-caller.
Specifically, for each variant of interest, we computed the
signed GATK variant quality score for each tumor and
normal sample (for details, see Methods). With a given
threshold qt for the tumor sample, and qn for the normal
sample, we define pseudo-positives as variants for which
the signed GATK quality from the tumor is > qt and the
signed GATK from the normal is < qn. Note that the
pseudo-caller is for comparison purposes only, and is not
to be treated as an independent mutation caller.
RNA-seq validation method RNA-sequencing is often

done for tumor samples, since the expression pattern of
the tumor sample is of great interest in many cancer
projects. If such tumor RNA-seq data is available as well as
the original exome-seq pairs used for mutation calling, it
can be used as partial validation data. Due to the variation
in the expression levels across the genes, RNA-seq gener-
ally shows a significantly larger variation than DNA-seq
data in the number of reads carrying the variant allele.
To construct a validation dataset using the RNA-seq

data for the tumor sample, we examined the variant allele
fraction (vaf ) in the RNA-seq data together with the vaf
in the normal exome-seq data. We restricted our analy-
sis to those variants that have RNA-seq depth > 10x. (In
our datasets, 30-40% of sites satisfy this restriction.) Then,
with a given threshold for tumor and the normal, ft and
fn, respectively, we define positives as such variants for
which the tumor RNA-seq vaf exceeds ft and the normal
exome-seq vaf is less than fn.

Evaluation of pseudo- and RNA-seq validationmethods
To assess the performance of the pseudo-validation
method, we ranked the variants in the evaluation set using
the GATK quality score obtained from the tumor exome-
seq, given that the signed GATK quality score from the
normal sample is less than -50. We mostly used only the
tumor sample for ranking, since most of difficulties in
calling somatic mutations seem to occur due to hetero-
geneous aspects of the tumor sample. For the normal
sample, it suffices to set a threshold to exclude any sites
with a variant in the germline. We also attempted to fil-
ter out artifactual variant alleles by introducing a criterion
based on the strand bias pattern in the tumor exome-seqs.
If the variant allele shows much more extreme strand bias
compared to the reference allele, specifically, more than
95% or less than 5% of the variant alleles are on the for-
ward strand, while less than 70% or larger than 30% of
the reference alleles are on the forward strand, then we
filtered out the mutation sites.
The performance of the RNA-seq validation method

was assessed using the 1,945 variants (∼30% of the total
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6,692 sites) in the evaluation dataset that have the RNA-
seq depth ≥ 10x. We used the tumor vaf to rank the
variants, given that the normal vaf in the exome-seq is
less than 2%. To filter out artifactual variant alleles, we fil-
tered out a mutation site if both the tumor exome-seq and
the tumor RNA-seq showed strong strand bias (more than
95% or less than 5% of the reads are on the forward strand)
for the variant allele. The reason that we applied differ-
ent filtering criterion is because for the RNA-seq data,
the correspondence of the strand bias between the variant
allele and the reference allele is much weaker even for the
“true” variants (Additional file 1: Figure S10C) but exist-
ing exome-seq data can help for filtering out artifactual
variants.
The performances of the two methods were summa-

rized by ROC-like curves, showing the true positive rate
at each false discovery rate (Figure 6). (We used the false
discovery rate (FDR) instead of the false positive rate since
the evaluation dataset consists of the ascertained variants
obtained using the GATK UnifiedGenotyper. Thus,
only relative false positive rates are meaningful. Instead,
we chose to use FDR here since it has very intuitive
scale and it won’t change the conclusion. Note that we
examined the full spectrum of stringency levels by vary-
ing cut-offs for the GATK quality scores and for the
tumor vaf in the RNA-seq data.) As expected, both vali-
dation approaches show improved performances with the
strand bias filters. For the pseudo-validation method, for
example, the signed GATK quality score in the tumor

sample exceeds 300 for 287 sites. Among these, 265 sites
are validated as ‘true’ somatic mutations (based on the
gold-standard deep-sequencing data) detecting 80% of
the 334 somatic mutations. The remaining 22 sites are
false positives, but with the strand bias filter, 18 of them
are removed, dropping the false discovery rate from 8%
to 1.5%. For the RNA-seq validation method, the vaf in
the RNA-seq is larger than 10% for 98 sites. Among these,
84 sites are validated as ‘true’ somatic mutations detect-
ing 88% of the 95 somatic mutations with the RNA-seq
depth > 10x. The remaining 14 sites are false positives.
Nine of those were discarded using the strand bias fil-
ter, dropping the false discovery rate from 15% to 5.6%.
Note that we conceived the strand bias filter based on
the insights learned from the strand bias pattern in
the exome-seq and the RNA-seq data in the evaluation
dataset. Therefore, re-applying the strand bias filter to
the same data will obviously improve the performances.
Nonetheless, we keep this strand bias filter for the evalu-
ation of the two validation methods using the benchmark
data, since a similar strand bias pattern is likely to be
observed using only the data from the additional 23 LUSC
patients that were not used for the benchmark study.
Notice that for the RNA-seq validation method, the true
positive rate is only 90% even with the 1% threshold for
the RNA-seq vaf. It is because some of the true variants
that existed in the DNA exome-seq data did not appear in
the RNA-seq due to the variation in the expression level
as well as the sequencing depth.
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Figure 6 ROC-like curves summarizing the performances of the pseudo- and the RNA-seq validation methods. For each method, across the
range of thresholds for the tumor sample, we computed the true positive rate (y-axis) at each false discovery rate (x-axis). The evaluation was done
based on the 6,692 variant sites detected within 76 genes from 39 LUSC exome-seq pairs, for which, 334 sites were validated as ‘somatic’ based on
the deep-sequencing data. For the pseudo-validation method, across the range of thresholds for the tumor GATK quality scores (marked with
letters), a site was identified as pseudo-positive if the tumor score is larger than the threshold and the signed GATK quality score for the normal
sample is less than -50. When ‘SbiasFilter’ is applied, a site becomes non-somatic if more than 95% or less than 5% of the variant alleles but less than
70% or larger than 30% of the reference alleles are on the forward strand. For the RNA-seq validation method, across the range of thresholds for the
tumor RNA-seq vaf, a site was identified as positive if the tumor RNA-seq vaf is larger than the threshold and the normal exome-seq vaf is less than
2%. When ‘SbiasFilter’ is applied, a site becomes non-somatic if more than 95% or less than 5% are on the forward strand for the variant allele in both
the tumor exom-seq and the RNA-seq data.
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Comparing the performances of callers in the benchmark
data using the pseudo- and RNA-seq validationmethods,
and latent class models.
We applied the pseudo- and the RNA-seq validation
methods to the whole exome benchmark data from 16
LUSC patients. For each validation method, we picked a
specific cut-off for convenience and illustration purposes,
but across a range of reasonable cut-offs, the qualitative
conclusions were similar. For the pseudo-method, we val-
idated mutations as somatic if the signed GATK quality
scores for the tumor sample and for the normal sam-
ple are > 200 and <-50, respectively. For the RNA-seq
method, for the mutations with the RNA-seq depth ≥10x
(∼ 38% out of the 5,380 mutations in the exome bench-
mark data; Additional file 1: Figure S11), we validated
them as somatic if the vaf in the RNA-seq >10% and the
vaf in the normal exome-seq<2%. The chosen cut-offs for
each validation method roughly correspond to a false dis-
covery rate less than 3% and the true positive rate larger
than 80% based on the analyses of the evaluation dataset
constructed using data from 39 LUSC patients. However,
the absolute values should not be emphasized since the
features of the whole exome benchmark data are likely dif-
ferent from the sites within the 76 genes for which the
evaluation dataset was constructed. For the two validation
methods, we attempted to remove the artifactual variants
by applying the strand bias filters.
When submitted to the pseudo-validation method,

around 75% of the mutations called by a single caller
only (1,231 sites) were validated as false positives. Notice
that majority of the mutations in the upper row in
Figure 2 have disappeared from Additional file 1: Figure
S12, while around 85% of the mutations that were
detected by three callers (1,491) have been retained.When
submitted to the RNA-seq validation method, a simi-
lar observation is made (Additional file 1: Figure S13).
Nonetheless, among the 1,959 sites that were called by
one or more callers and validated by both the pseudo-
and the RNA-seq methods, 553 sites (∼ 27%) have
different validation status, implying that validation can
be quite challenging. A part of these differences (104
sites) occurred for the sites that were detected by all
callers.
For the mutations within the targeted regions of deep-

sequencing data (76 genes), validation status based on a
gold-standard data is available. Thus, for those mutations,
we compared the gold-standard (GS) validation status
with the status based on the pseudo- or the RNA-seq val-
idation method. Out of 138 sites, 14 sites are validated as
somatic by the GS method but not by the pseudo method,
and vice versa for 3 sites. Almost all of the 14 former sites
have low vaf (10% – 15%) in tumor exome-sequence data,
and that may explain why missed by the pseudo method.
Out of 51 mutations where RNA-seq validation can be

applied (depth > 10x), 6 sites are validated as somatic
by the GS method but not by the RNA-seq method, and
vice versa for 3 sites. The former 6 sites tend to have
low-to-medium RNA-seq coverage, mostly less than 30x,
and this might be the reason for losing the true vari-
ant allele. Two out of the latter 3 sites have very low vaf
(<15%) for both tumor deep-seq and the exome-seq data.
Finally, when the pseudo-validation status was compared
with the RNA-seq validation status, 10 out of 51 muta-
tions (∼ 20%) show different status. It is difficult to know
what are the genuinely correct status for all these discrep-
ancies, but these observations illustrate the challenges
in mutation-calling.
We also employed latent class models, which have been

repeatedly used to compare multiple diagnostic tests in
medical studies when there is no gold standard data
[20,21,25-28]. In the benchmark study, multiple mutation
callers were applied to the same tumor-normal paired
sequence alignments, and the decision was made on
whether each position in the alignments is a somatic
mutation or not. In the absence of gold standard valida-
tion data, latent class models offer a convenient statistical
framework within which the false positive and the false
negative rates are estimated by treating the true mutation
status as a latent variable (for more details, see Methods).
We fitted the latent class model using the set of mutations
within the 76 genes, and the set consisting the whole
exome data. For the set using the 76 genes, the model
assuming conditional independence among the callers fits
the data pretty well (Pearson chi-square goodness of fit
statistic is 11 with degrees of freedom of 6). For the whole
exome data, the conditional independence model does
not fit the data as well, but the latent class model with
random effects having an additional parameter improves
the fit significantly (Pearson chi-square goodness of fit
statistic drops from 233 to 121, and the fitted counts
look more sensible). Note that our model is equivalent
to the 2LCR1 model in Qu et al. [20], except that we
let the variance component be shared between ‘somatic’
and ‘non-somatic’ sites. We decided to use this model
for the exome data, since more general models do not
improve the fit much nor change qualitative conclusions.
The observed and the fitted counts using the latent class
models are summarized in Additional file 1: Table S3.
In Figure 7, we summarized the false positive (FP) and

the false negative (FN) rates estimated using two datasets
(76 genes or whole exome) by four validation methods:
gold-standard method using the deep-sequencing data,
pseudo-method using the GATK quality scores, RNA-
seq validation method utilizing the variant allele fraction
in RNA-seq, and the latent-class models. Note that the
gold-standard validation is not applicable to the whole
exome-data. For the pseudo- and the RNA-seq methods,
the thresholds controlling the performance were picked
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Figure 7 Estimated (re-scaled) false positive rate (upper) and the false negative rates (lower), using the mutations across whole exome
(‘exome’) or within the 76 genes (‘76genes’) in the LUSC benchmark data.We applied four approaches: validation using the gold-standard
deep-sequencing data (‘byGS’), the RNA-seq validation method (‘byRNA-seq’), the pseudo-validation method (‘byPseudo’), and the latent class
models (‘byLatent’).

by us for convenience. The latent class models directly
estimate the false positive and false negative rates based
on a statistical model. Since absolute values of FP rates are
less emphasized for our dataset, for an easier comparison,
we re-scaled the FP rates across the four validation meth-
ods. Within the 76 genes, around 3% of the all variants
compiled from VCF files were validated as ‘somatic’ by the
GS method. We assume that the same portion of the eval-
uated sites are ‘somatic’ in other datasets, and re-scaled
the FP rates accordingly.
Overall, relative performances of the four callers were

similar across the different datasets and methods. Caller
B is stringent and other three callers show few distinctive
characteristics. There is one exception. When the muta-
tions within the 76 genes are validated by the RNA-seq
method, Caller B shows an unusually high false positive
rate. Our manual examination suggests that the unusu-
ally high false positive rate of the Caller B is likely due
to the few sites for which the RNA-seq missed the vari-
ant allele presented in low fraction (<20%) in both the
deep-seq and the exome-seq data. Therefore, one needs
to be cautious when utilizing RNA-seq for validation of
a small dataset. Often, Caller C performs slightly better
than Caller A and D by having a lower false positive rate
as well as a lower false negative rate, i.e., located in a lower
left part compared to Caller A and D in Additional file 1:
Figure S14. In particular, the latent class models clearly

prefer Caller C, implying that high fraction of the calls
detected by Caller C is shared with other callers. How-
ever, systematic comparison of the performances was not
feasible, since we were not able to explore the full spec-
trum of the performances of each caller due to limited
information.

Discussion
We observed a number of sites exhibiting artifactual
variant alleles while we were constructing the evalua-
tion dataset using the deep-sequencing and the RNA-seq
data in addition to the original exome-seq data. Most of
the artifactual variants show an extreme level of strand
bias for the variant allele, regardless of the correspond-
ing level in the reference allele. Such artifactual variants
are present not only in the tumor sample but also in the
normal sample. In particular, on many occasions, the arti-
factual variants occur simultaneously in both tumor and
normal samples, creating ‘germline-like’ variants, based
on the exome-seq data. Moreover, a substantial fraction
of such variants are also present in the tumor RNA-seq
data. The accumulation of such errors repeatedly at the
same genome location across different biological sam-
ples suggests that those artifactual variants are likely to
occur due to the errors in the sequencing technologies,
cf. Meacham et al. [17]. The ‘germline-like’ variants based
on the deep-sequencing data also exhibit a strand bias
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pattern similar to the artifactual variants found in the
exome-seq data.
For somatic mutation-calling, the joint occurrence of

the artifactual variants in both tumor and normal samples
could be useful for filtering out ‘non-somatic’ mutations.
Any position exhibiting the presence of a variant allele in
the normal sample will be discarded, and thus the artifac-
tual variant in the tumor sample when the normal sample
also carries it. For a similar reason, many of artifactual
variants in the tumor RNA-seq data were filtered out
by our RNA-seq validation method. Interestingly, substi-
tuting the normal exome-seq data by the normal deep-
seq data hurts the performance of the RNA validation
method. The deep-sequencing data seems to have a higher
quality and thus contains many fewer artifactual variants,
and thus filtering out artifactual variants in the tumor
RNA-seq data was less effective. A better characterization
of artifactual variants remains as our future work.
In this study, we introduced two validation approaches,

the pseudo- and the RNA-seq validation methods. The
two approaches, however, should not be considered
as alternative mutation-calling methods. Our validation
methods were developed to overcome the challenge of
comparison, rather than for correcting all the biases or
errors affecting mutation-calling. In particular, the per-
formance of the pseudo-validation method depends on
how effectively the GATK UnifiedGenotyper calls a
variant in the tumor and the normal samples. Even though
we observed that on many occasions it proved its useful-
ness in somatic-mutation analyses, GATK was developed
for normal samples not for tumor samples. Furthermore,
some of the mutation-callers used for the benchmark
study may share with the GATK the underlying statistical
models or methods, which could result in biased infer-
ences. However, our small exercise in replacing GATK
UnifiedGenotyper with Samtools mpileup sug-
gests this was not the case.

Conclusions
TCGA conducted benchmark studies comparing multi-
ple mutation-callers on the same sequence pairs (BAMs).
Our work attempted to characterize the discrepancies
among the callers in two benchmark datasets, and pro-
vide guidelines for the analysis of such comparative data.
To assess the performances of mutation callers, we have
introduced four approaches estimating the sensitivity and
the specificity of each caller.
Our analyses revealed that the discrepancies among

the callers not only occur at sites with low-information
(low sequence depth, low mapping quality, or low variant
allele fraction), but also at sites with intermediate or high-
quality information. Specifically, a large fraction of calls
missed by a single caller in the LUSC benchmark dataset
exhibit strong evidence for the existence of a variant allele.

Investigation of raw mutation-outputs (VCF) suggested
that the uniquely missing caller initially included such
calls as candidate somatic mutations but implemented a
filter removing those. The details of these filters were not
available in the VCF files for this benchmark study, but
this recognition emphasizes the value of full details for a
comprehensive analysis. In addition to that, a more com-
prehensive analysis can be performed if somatic mutation
qualities are included in the VCF files, allowing ranking of
mutations within each caller and thus varying the strin-
gency level of the caller by changing the false positive rate.
Then the full ROC curve showing the performance of each
caller can be examined.
Strand bias is one of well-known features producing

artifactual variants in high-throughput sequencing data,
and we presume at least some of the callers used for
the benchmark study have implemented filters for strand
bias. Nevertheless, our analysis of the validation data
for the LUSC samples suggests that the specifications
of such filters are likely to vary considerably across the
callers. When we marked the mutations that have an
extreme level of strand bias for the variant allele in the
tumor exome-seq sample, most of them accounted for the
discrepancies.
Our work calls for extra caution in comparing the per-

formances of multiple callers based on an ascertained
validation data, since ‘not attempted to be validated’
mutations should be distinguished from ‘attempted to be
validated’ mutations. For the READ dataset, validation
information for 721 sites was available, but not the infor-
mation about the ascertainment, i.e., how those sites were
chosen for validation. By classifying the mutations based
on the detection status of the three callers and the val-
idation status, we learned that almost all of those 721
sites were initially called by one particular caller. Pre-
sumably, the experimental validation of those sites was
performed for evaluation of that particular caller’s perfor-
mance, and not for comparison of multiple callers. Such
validation information can be used for learning about
individual errors of other callers but should not be used
for evaluating the performance of other callers.
Somaticmutation-calling based on the high-throughput

sequencing data is a rapidly evolving field. Currently, a
limited number of somatic mutation-callers are publicly
available [29-32], but manymore are likely to appear in the
near future. Our paper focused on understanding the dis-
crepancies and highlighting the challenges in comparing
multiple callers. With more details in the mutation out-
puts, such as mutation quality scores and the details of
filters, another interesting question to address is how to
combine the calls across multiple callers. A recent study
by Lower et al. [33] tackled a similar problem by assign-
ing an FDR confidence score for each call from multiple
callers, but their method requires replicate sequencing of
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at least one of the tumor or the normal sample.When only
a pair of tumor-normal sequence data are available for
mutation-calling, combining the calls incorporating the
information in the outputs frommultiple callers is another
upcoming problem.

Methods
Obtaining signed GATK variant quality scores
The GATK UnifiedGenotyper [19] is one of publicly
available variant callers. For a sample of interest, it takes
the sequence data (BAM) and detects SNPs by default.
The outputs are summarized in a VCF file, which includes
a list of variant positions along with the associated call
quality scores (‘QUAL’ column in the VCF). The software
can produce calls only at variant sites but also at any
callable site regardless of confidence. We used an option
for the latter case to obtain variant call quality for all
positions of interest. An example of run command is as
follow.

java -jar GenomeAnalysisTK.jar
-R human_reference.fasta
-T UnifiedGenotyper -I
input.bam -computeSLOD -L
positions_of_interest.bed -output_mode
EMIT_ALL_SITES -o output.vcf

For a given list of genomic positions, we ran the
GATK UnifiedGenotyper (version 1.5-3) on
each tumor sample and its matched normal sample. We
forced it to emit variant call quality for all positions.When
no variant allele was found, the variant call quality rep-
resents a confidence level for the homozygous reference
genotype. To differentiate such positions, we flipped the
sign of the variant call quality. Therefore, a large negative
value is a strong support for the non-existence of a variant
allele, and a large positive value is a strong support for the
existence of a variant allele.

Constructing an evaluation dataset
For method development, we aimed to construct an eval-
uation dataset that consists of a set of candidate somatic
variants for which the validation status is assumed to
be known (i.e., determined based on the gold-standard
data). For LUSC patients, variants called based on the
exome-sequence data can be validated based on the deep-
sequencing data for 76 genes. We constructed an evalua-
tion set using the sequence data from 39 LUSC patients,
which include an additional 23 patients. Note that the
exome-seq pairs, the tumor RNA-seq, and the deep-
sequence pairs were available for a much larger set of
LUSC patients than the 16 patients used for the bench-
mark mutation-calling comparison.
To build an evaluation set that includes all somatic

mutations, we first detected variants in each tumor

exome-seq data using the GATK UnifiedGenotyper
[19] with a very lenient stringency level (GATK variant
quality score ≥ 5):

java -jar GenomeAnalysisTK.jar
-R human_reference.fasta -T
UnifiedGenotyper -I input.bam
-computeSLOD -L exome_annotations.bed
-output_mode EMIT_VARIANTS_ONLY
-stand_call_conf 5 -o output.vcf

When cross-checked with the mutation-call data avail-
able for the 16 patients, all but three of the 5,380mutations
in the benchmark data were detected. From the 39 LUSC
patients, 8,828 variants were detected within the 76 genes
(the targeted regions of deep-sequence data). Since we
aimed to build a gold standard validation set with a high
accuracy, we retained only the variants that have high
tumor deep-seq depth with ≥ 100x (8,033). By requir-
ing the tumor and the normal exome-seq depth to be ≥
10x, and also by removing 17 ambiguous variants through
manual examination, we obtained 6,692 variants as our
final set. After examining the deep-sequencing data at
these variants (see Results), we determined the validation
status. A variant is called ‘somatic’ (334 sites; ∼ 5%) if the
tumor deep-seq vaf is > 10% and the normal deep-seq vaf
is < 2%, otherwise, ‘non-somatic’. An alternative criterion
for a ‘somatic’ mutation is that the signed GATK quality
scores for the tumor sample and for the normal sample are
> 200 and < -100, respectively.

Utilizing latent class models
Here we provide a quick review on the latent class model
assuming that mutation callers were developed based on
independent algorithms.
Suppose that K mutation-callers evaluate N positions

for their mutation status (1=somatic, 0=non-somatic). Let
Yi,k denote the observed outcome of the ith position by the
kth caller, and Yi = (Yi,1, . . . ,Yi,K ) be the vector of out-
comes over all callers for the ith position. Let Di denote
the true mutation status of the ith position, and η the
mutation prevalence, P(Di = 1), assumed independent
of i. Then, the probability of observing Yi is computed as
follows:

P(Yi) = (1 − η)P(Yi|Di = 0) + ηP(Yi|Di = 1)

Assuming that callers behave conditionally independently
given the true mutation status,

P(Yi|Di=0)=P(Yi,1, . . . ,Yi,K |Di=0)=
K∏

k=1
P(Yi,k |Di = 0)

P(Yi|Di=1)=P(Yi,1, . . . ,Yi,K |Di=1)=
K∏

k=1

P(Yi,k |Di = 1)
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Note that P(Yi,k = 1|Di = 0) and P(Yi,k = 0|Di = 1)
are the false positive and the false negative rates of the kth
caller, respectively. Therefore, there are 1+2K parameters:
the mutation prevalence η, and the false positive and the
false negative rates of each of the K mutation-callers.
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Additional file 2: Details of the individual mutations that were
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