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Abstract

Genome-wide association studies (GWAS) have identified around 60 common variants associated with multiple sclerosis
(MS), but these loci only explain a fraction of the heritability of MS. Some missing heritability may be caused by rare variants
that have been suggested to play an important role in the aetiology of complex diseases such as MS. However current
genetic and statistical methods for detecting rare variants are expensive and time consuming. ‘Population-based linkage
analysis’ (PBLA) or so called identity-by-descent (IBD) mapping is a novel way to detect rare variants in extant GWAS
datasets. We employed BEAGLE fastIBD to search for rare MS variants utilising IBD mapping in a large GWAS dataset of 3,543
cases and 5,898 controls. We identified a genome-wide significant linkage signal on chromosome 19 (LOD = 4.65;
p = 1.961026). Network analysis of cases and controls sharing haplotypes on chromosome 19 further strengthened the
association as there are more large networks of cases sharing haplotypes than controls. This linkage region includes a
cluster of zinc finger genes of unknown function. Analysis of genome wide transcriptome data suggests that genes in this
zinc finger cluster may be involved in very early developmental regulation of the CNS. Our study also indicates that BEAGLE
fastIBD allowed identification of rare variants in large unrelated population with moderate computational intensity. Even
with the development of whole-genome sequencing, IBD mapping still may be a promising way to narrow down the region
of interest for sequencing priority.
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Introduction

Multiple sclerosis (MS) is a complex neurological disease of the

central nervous system (CNS) triggered by environmental and

genetic factors. There is considerable evidence for a significant

genetic component to MS susceptibility, such as a higher

concordance rate in monozygotic twins (24%–30%) than dizygotic

twins (3%–5%) [1,2]. As for other immune diseases, genome-wide

association studies (GWAS) have been highly successful for MS:

uncovering around 60 common genetic variants associated with

disease [3–13]. The majority of these variants lie near genes with

known functions in the immune system and these variants have

also been associated with other autoimmune diseases, often in the

opposite direction [14]. Virtually all of the variants confer modest

increases in disease risk, the outstanding exception being the

strong association with the HLA-DRB1*15:01 allele in the major

histocompatibility complex (MHC), which was first detected in the

1970’s [15,16].

Despite this success, the variants identified by GWAS to date

only explain 18–24% of the heritability of MS [13,17]. While

much of the missing heritability is probably explained by common

variants of even smaller effect sizes, some heritability may be

explained by rare variants of larger effect size. Standard analysis of

GWAS data is not designed to detect associations with rare

variants that many believe may play an important role in the

aetiology of complex traits [18–20]. Interestingly, GWAS have

had less success for putative neurodegenerative diseases, such as

Parkinson’s disease, than for MS. For these diseases, family-based

approaches detecting rare variants have been more successful

[21,22]. This raises the possibility that rare variants under negative

selection pressure are relatively more important in the genetic

architecture of neurodegenerative processes, whereas common

variants under balancing selection are more important in the

genetic architecture of immunological processes. Discovery of rare

MS susceptibility variants may alter perspectives on the relative

importance of immunological & neurodegenerative processes in

MS onset.

Standard analyses of GWAS data are not designed to detect

associations with low frequency variants (MAF#5%), and other

strategies are required. One approach is to re-sequence loci

containing common susceptibility variants identified from GWAS

studies. This strategy was used to detect rare variants in IFIH1

conferring protection to type I diabetes [18]. However this strategy
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precludes the identification of new loci. Eventually it will be

possible to overcome this limitation by whole genome sequencing,

but it remains prohibitively expensive to perform adequately-

powered studies. An alternative is to re-analyse GWAS data using

identity-by-descent (IBD) mapping [23], also referred to as

‘population-based linkage analysis’ (PBLA) [24]. PBLA describes

linkage analysis applied at the population level to detect mega

base-scale regions where cases have inherited long haplotypes from

distant ancestors, 10–100 generations ago. IBD mapping is

performed on the unrelated individuals to determine whether

these mega-base scale regions are identical and inherited from a

common ancestor. If the common ancestor lived more than ten

generations ago the individuals will share very short tracts of

genetic material, and a shared haplotype that is very rare is also

very likely to be IBD. HapMap Phase 3 identified that lower

frequency variants should, on average, be younger than more

common variants; and thus display a greater extent of haplotype

sharing [25]. Therefore, if case pairs can be detected with long

shared haplotypes (generally one to five megabases) inherited from

distant common ancestors, then rare variants influencing disease

risk can be localised. Even when whole genome sequencing

becomes cheap enough to pursue with substantial sample sizes,

IBD mapping may still help reduce the massive multiple testing

problem by prioritizing regions. This is similar to the technique of

prioritising association signals in regions of linkage [26].

Several methods of IBD mapping have been published: these

include PLINK [24], GERMLINE [27], BEAGLE IBD [28] and

BEAGLE fastIBD [29]. The models employed by PLINK and

GERMLINE assume SNPs are in linkage equilibrium, and so

‘pruning’ of SNPs [24] is required to avoid false positives due to

under-estimates of population haplotype frequencies. However

pruning of SNPs in incomplete linkage disequilibrium (LD)

discards potentially useful information and reduces power.

BEAGLE IBD and fastIBD implement a variable length Hidden

Markov Model [30] to account for LD and model haplotype

frequencies more accurately. BEAGLE fastIBD runs considerably

faster than BEAGLE IBD (of the order of 1000 times faster with

large GWAS datasets). This is mainly because 1) it does not

formally model IBD status (‘IBD’/’not IBD’) between pairs of

individuals using a Hidden Markov Model as in BEAGLE IBD; 2)

it stores haplotype frequencies in a data dictionary (as in

GERMLINE) which means computational time scales with sample

size n like n log n instead of n2.

To detect MS rare variants, we here use BEAGLE fastIBD to

perform an IBD analysis on several large MS GWAS datasets

comprised 3543 cases and 5898 controls. We identified a region of

high significance on chromosome 19q13.43, with a genome-wide

significant localisation signal (p = 1.961026; LOD = 4.65) using

thresholds based on IBD segment length greater than 3 cM and

the probability p-value less than 1029 (3cM_1e-9). This locus was

deemed genome-wide significant according to the recently

established genome-wide significance thresholds set for IBD

mapping [31]. Analysis of expression data and investigation of

genes in this area support the hypothesis for regulation of gene

expression in this region to impact upon development or health of

CNS tissue. Our analyses also illustrate some of the practical issues

to deal with in IBD analyses, and demonstrate that IBD mapping

can form a potentially powerful method for detecting rare variants

in unrelated individuals at the population level.

Methods

Study subjects
All the MS cases and controls were recruited and genotyped

from MS GWAS totaling 3,543 cases and 5,898 controls. Of these,

1,618 cases and 3,413 controls were from an Australian and New

Zealand MS GWAS conducted by the Australian and New

Zealand Multiple Sclerosis Genetics Consortium (ANZgene) [3],

and those DNA samples were genotyped on the Illumina Infinium

Hap370CNV array [3]. An additional 861 Australian and New

Zealand MS cases were genotyped with the Illumina Human660-

Quad chip as part of a GWAS performed by the International MS

Genetics Consortium (IMSGC) and the Wellcome Trust Case

Control Consortium-2 (WTCCC2) [13]. Controls included 1,531

unrelated Australian samples from a GWAS genotyped by

Queensland Institute of Medical Research (QIMR) with the

Illumina Human610-Quad chip [32], and 1064 MS cases and 954

controls genotyped with the SentrixH HumanHap550 BeadChip

from a GWAS conducted in the US (GeneMSA) [6] [accessed via

dbGAP].

Table 1. Sample numbers from GWAS (after cleaning).

GWAS dataset

Country of
origin

No.
Case

No.
Control Total No. SNPs

Cases Controls

ANZgene [3] AUS, NZ US, UK 1,608 3,404 5,012 300,900

WTCCC2 [13] AUS - 766 - 766 586,393

QIMR [32] - AUS - 1,516 1,516 529,292

GeneMSA [6] US US 878 805 1,683 550,677

Total 3,252 5,725 8,977 274,735*

*The number of SNPs that passed QC in all 4 GWAS datasets.
AUS = Australia, NZ = New Zealand.
doi:10.1371/journal.pone.0056379.t001

Figure 1. Plots of raw data of IBD with one point for each SNP.
The green region is obvious outstanding from the black line, which
indicates the proportion of case pairs in this region higher than that of
control pairs. The black line represents where the proportion of case
pairs equal to control pairs.
doi:10.1371/journal.pone.0056379.g001

IBD Mapping for Rare Variants in MS
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Quality control of data
Conservative quality control measures were imposed both on

the individual datasets before merging, and in the combined

dataset after merging: SNPs with call rates less than 0.95 or in

Hardy-Weinberg disequilibrium (p,1027) were discarded, as were

samples with call rates less than 0.98. Duplicates and close relatives

were also removed. This data cleaning was performed using

PLINK.

A principal components analysis (PCA) was conducted by

EIGENSTRAT [33] to exclude ancestry outliers and examine

population structure within the remaining samples. First, SNPs in

strong LD were pruned (using the PLINK – indep command with

options 50 5 1.5), and then we excluded previously identified

regions of high LD [34]. Outliers in the PCA were excluded using

standard settings in Eigenstrat (more than six standard deviations

from the mean along the first 10 principal components). All

chromosomal locations refer to Human genome version hg18.

Running BEAGLE fastIBD and results processing
The fastIBD analyses were conducted using BEAGLE (http://

faculty.washington.edu/browning/beagle/). In brief, genotypes

for the merged, cleaned dataset were converted to BEAGLE

format by using the linkage2Beagle.jar utility program. We then

used the BEAGLE method for phasing the data and identifying

IBD segments simultaneously, using the ‘fastibdthreshold’ option.

This procedure was run 10 times for each chromosome starting

with different seeds of the random number generator.

The output of these calculations was a series of ‘‘putative’’ IBD

segments shared between pairs of individuals. Each segment comes

with the following information attached: ids for the pair of

individuals, first and last SNPs in the IBD segment, length of the

segment in centimorgans, and probability of the two individuals

both carrying the segment if it was not IBD. We filtered these

segments using various maximum probabilities and minimum

segment lengths, as recommended in the BEAGLE manual.

Results from the 10 runs were combined by taking the union of

IBD segments detected in each run. From the final list of segments,

we wrote a Perl script to count numbers of case-case pairs (yi),

case-control pairs (ui) and control-control pairs (vi) estimated to

share haplotypes IBD at each SNP.

Analysis of IBD
We focused on the detection of loci where groups of cases have

inherited rare susceptibility alleles IBD. To do this, we modelled

IBD sharing yi in case-case pairs (‘‘case pairs’’) as a function of IBD

sharing in xi = ui + vi in case-control pairs and control-control

pairs combined (‘‘control pairs’’).

We tried various methods to model the yi as a function of the xi:

linear regression, negative binomial regression and Poisson

regression. Models were fitted using R [35] and goodness of fit

was assessed by examining diagnostic plots (SR_commands S1).

At SNPs i with more IBD sharing in cases than expected,

residuals zi from the fitted models should be large and positive. To

present residuals on a scale more familiar to geneticists, we

converted them to LOD scores using the formula LODi = zi2/

(2*loge(10).

At the SNPs with the highest LOD scores, we calculated the

proportions of case pairs sharing IBD in various populations, and

plotted networks of case and control pairs sharing IBD with each

other using the R network package (http://cran.rproject.org/

web/packages/network/index.html).

Results

Study samples from GWAS after cleaning
11 individuals were excluded due to call rates less than 0.98 and

an additional 202 individuals were excluded because they were

close relatives or duplicates. PCA was conducted on a subset of

77,856 SNPs not in LD, which were common to all sample sets.

Through successive iterations 251 outliers (37 AUS cases; 9 AUS

controls; 6 UK controls; 97 US cases; 102 US controls) were

excluded. All datasets overlapped well after the removal of outliers

(Figure S1). In summary, following cleaning there were 3,243

cases and 5,725 controls with 274,735 autosomal SNPs in the final

analysis (Table 1).

Results of IBD analysis
We detected IBD with the threshold of IBD segment greater

than 3 cM and the haplotype probability p-value less than 1029

(3cM_1e-9). A strong linkage signal was observed in the HLA

region (LOD = 3.58), while the strongest signal in non-HLA region

was on chromosome 19 (LOD = 4.65), which reached genome-

wide significance according to the recent established genome-wide

significance threshold set for IBD mapping [31].

Figure 1 is a scatterplot of case-pair sharing yi versus control-

pair sharing xi as each of the 274,735 SNPs i. Using different

colours to represent SNPs on different chromosomes, an outlier

group of SNPs with relatively high case pair sharing on one

chromosome stands out in green.

Fitting, testing Poisson model and converting to LOD
scores

From examination of diagnostic plots (Figure S2, S3, S4), we

found that the Poisson model provided the best fit for these data.

Figure 2 shows a plot of residuals from the Poisson model

converted to LOD scores. The highest linkage signal, correspond-

ing to the green outlier region in Figure 1, was observed on

chromosome 19 with LOD = 4.65 and p = 1.961026. As expected,

a strong signal also was observed in the HLA region (LOD = 3.58;

Fig. 1).

Figure 2. Plot of linkage scores along the whole genome with
the IBD threshold of 3cM_1e-9 (shared haplotype segment
.3 cM and haplotype probability p,1029). Chromosome 19 has
the strongest linkage signal (LOD = 4.65).
doi:10.1371/journal.pone.0056379.g002

IBD Mapping for Rare Variants in MS
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Analysis of Linkage region on chromosome 19
The linkage region on chromosome 19 with LOD scores

between 3.65 and 4.65 is around 900kb in length (Hg18 chr19:

62,529,738–63,437,743 bp) and corresponds to a cluster of zinc

finger genes at 19q13.4, many of which have arisen by gene

duplication. None of the genes in this region have been previously

identified in published GWAS or associated with MS or

autoimmune diseases.

The genes in this region were examined to identify candidate

genes with putative roles, which could, impact on susceptibility to

MS. Published microarray expression data [36], profiling gene

expression in the human hippocampus over a broad developmen-

tal range, were downloaded from Gene Expression Omnibus [37],

series number GSE25219. Gene summary data was analysed in

Partek Genomics Suite version 6.6 (Partek Inc., St. Louis, MO,

USA) to generate expression profiles across all developmental

periods for genes in the linkage region. Many of these genes

exhibit similar expression profiles with high expression in early

time points and low expression after birth. To categorize this

observed trend, samples from a number of early foetal time

periods (3, 4 and 5) (described in [36]) were grouped together and

compared with expression of grouped samples from periods 9, 10,

11, and 12. Differential expression of exon level probe sets

between these two groups was then analysed. The data points

corresponding to individual probe sets, and representing expres-

sion changes between these two developmental stages, were then

aligned against the linkage region in a UCSC genome browser

view. Differentially expressed probe sets were filtered using a false

discovery rate adjusted p value cut off (1.5361023) equivalent to a

p value threshold of 0.01 and a fold change minimum 1.5. Those

probe sets that passed this threshold were plotted on the UCSC

browser screen view [38]. Genomic locations for Affymetrix exon

level probe sets within the linkage region were downloaded from

the UCSC table browser [39] and used to construct a bedGraph

file of expression changes. The green bars indicate a higher

expression in foetal time points compared to later time points.

Some fold changes for genes in this region are very high (4–6 fold

higher in foetal than post birth).

Although little is known about the majority of genes in this

region, ZNF274 is a DNA binding protein involved in regulation of

H3K9me3 methylation at the 39 end of some ZNF genes by

recruitment of the histone methyltransferase SETDB1, and the

corepressor TRIM28 (KAP1) [40]. To examine the pattern of

H3K9me3 methylation in this region, genomic data on H3K9me3

methylation and KAP1, SETDB1 and ZNF274 binding in K562

cells [40] was used to make custom bedGraph files for visualization

Figure 3. Screen shot from the UCSC genome browser illustrating expression regulation within the identified linkage region on
Chromosome 19 (hg18) (http://genome.ucsc.edu). Human Refseq gene models are shown at the bottom of the figure. Custom bedGraph tracks
illustrating expression regulation, as described in the manuscript, are shown. From top to bottom: (A) exon level expression fold change in
hippocampus (FDR adjusted p value ,0.01 and fold change .1.5) between early fetal (periods 3,4 and 5) and postnatal (periods 9,10,11 and 12) from
Kang et al 2011, green bars indicate increased expression in fetal compared with postnatal and red bars indicate decreased expression in fetal
compared with postnatal. ChIP-chip binding patterns of (B) H3K9me3 (C) TRIM28/KAP1 (D) SETDB1 and (E) ChIP-seq binding pattern of ZNF274 in
K562 cells. For the ChIP-chip data log2 (ratio) values reflecting the ChIP enrichments are plotted on the Y axis. For the ChIP-seq data the number of
tags reflecting the ChIP enrichments are plotted on the Y axis. ChIP-chip and ChIP-seq data are from Frietze et al 2010 supplementary data.
Chromosomal coordinates and relative position on the chromosome is illustrated in the idogram at the top of the figure. The position of SNP
rs159870 is shown by a vertical black line.
doi:10.1371/journal.pone.0056379.g003

IBD Mapping for Rare Variants in MS
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alongside the expression change with development (Fig. 3). From

this data we observed that the vast majority of genes in this region

with high foetal expression levels are marked by both H3K9me3

methylation and bound by KAP1 and SETDB1 at the 39 end of the

gene. A small number of genes are also bound at the 39 end of the

transcript by ZNF274. We also observed a pattern in the level of

H3K9me3 methylation, with two maximum levels at about

position 62,850,000 and 63,400,000 and trailing off at position

63,250,00. This bimodal pattern also occurs in the KAP1 and

SETDB1 binding data and is even more apparent when viewing a

wider view of the region. This position, marked in the figure by

vertical black line, also corresponds with the position of rs159870

(chr19: 63239261) and there is break in synteny with rodent

genomes in this zone.

Comparison of IBD sharing among different populations
We next examined patterns of IBD sharing at the SNP with the

highest LOD score on chromosome 19 (rs159872). We compared

the proportion of IBD case pairs in different populations to

determine whether there are particular populations that contribute

to more IBD case pairs at this locus; and found the Tasmanian

population has the highest proportion of IBD case pairs. When

compared with all other combined Australian populations, the

Tasmanian population significantly contributed more IBD case

pairs at this locus (p = 0.004); and was significant when compared

with all other combined non-Tasmanian populations

(p = 5.4461025; Table 2).

Networks of cases and controls sharing haplotypes on
chromosome 19

Figure 4 shows networks of cases and controls sharing

haplotypes IBD at the SNP with the highest LOD score on

chromosome 19. The biggest cluster comprises 10 cases sharing a

haplotype in which 4 cases were from Melbourne, 4 from New

Zealand, 1 from Sydney and 1 from USA. Another big cluster

includes 2 cases from Melbourne, 3 cases from Tasmania and 4

cases from New Zealand (Fig. 4A). More generally, there are

more networks of cases sharing haplotypes than controls.

Discussion

We have applied BEAGLE fastIBD for the detection of rare MS

variants utilising a large-scale GWAS dataset. We identified a high

linkage signal on chromosome 19 with a p-value of 1.961026

(LOD = 4.65). In classical linkage analysis in small families,

individuals are closely related and the segments of IBD tend to

be fairly long (.10 cM) which are easier to detect and less

independent than IBD mapping, the generally-accepted threshold

for genome-wide significance is p = 2.061025 [41]; while GWAS

has more independent tests than IBD mapping, the threshold of

genome-wide significance is around p = 5.061028 [42], so the

threshold of p-value for IBD mapping genome-wide significant

should be between 5.061028 and 2.061025. Recently, researchers

demonstrated that the genome-wide significance thresholds for

IBD mapping depend on the IBD segment size detected or IBD

generations [31]. For example, an IBD segment size of 2 cM

corresponds to 25 generations and the genome-wide significance

threshold is 2.061026, while the segment size of 3.2 cM

corresponds to 15 generations and the genome-wide significance

threshold is 4.061026 [31]. The strongest non-HLA linkage signal

we detected in this study used a 3 cM segment size; which

corresponds to 17 generations, thus the genome-wide significance

threshold is between 4.061026 and 2.061026. As such, the

linkage signal on chromosome 19, with a p-value of 1.961026, was

determined to be genome-wide significant.

Causal relationship between genes in linkage region and
MS

Most genes in this linkage region are zinc finger (ZNF) proteins

of which 32 genes have been suggested to be transcriptional

regulators [43] (http://genome.ucsc.edu/). Seven genes (ZNF134,

ZNF135, ZNF154, ZNF549, ZNF606, ZNF671 and ZSCAN1) in this

region belong to the Krüppel family of ZNF genes. Only a few

ZNF genes in this region have known vertebrate homologues and

it includes a number of primate specific KRAB-ZNF genes [44].

In humans KRAB-ZNF genes number about 400 and make up the

largest group of C2H2 transcription factors [45] which are

typically expressed at low levels and involved in cell specific

silencing and driving different cell lineages.

Detailed analysis of genes in this region did not reveal any direct

links with MS. However examination of their expression profiles in

published data revealed a shared early developmental CNS

specific expression profile with 22 genes in this region being

members of the expression module M20 described in [36],

characterised by higher expression in all brain regions in early

foetal time points followed by decreased expression prior to birth

and very low expression thereafter. The M20 network of genes has

a strong correlation with both neuronal differentiation and

neuronal migration and a strong negative correlation with

myelination [36].

Epigenetic mechanisms such as histone modification and DNA

methylation are responsible for silencing many specific transcrip-

tion factors including zinc finger genes, and the 39 end of many

ZNF genes are specifically covered by H3K9me3 [46]. The zinc

finger gene ZNF274, located within the linkage region, is involved

in gene silencing through recruitment of the histone methytrans-

ferase complex TRIM28 (KAP1)/SETDB1 to the 39 end of

specific ZNF genes [40]. Examination of H3K9me3, KAP1 and

SETDB1 binding data, confirms that many of the genes in the

linkage region are covered by H3K9me3 at their 39end (Fig. 3).

ZNF274 also interacts with p75NTR and is predicted to play a role

in programmed cell death during development [47]. A number of

the genes in this area are also highly expressed in differentiated

Table 2. Comparison of IBD case pairs among different
populations (rs159872 with the highest LOD score on chr19;
LOD = 4.65).

Population No. case
No. IBD
case pairs

% IBD
case pairs p-value

TAS 308 7 14.8061025 Ref.

Mel 841 32 9.0661025 0.22

Newc 111 0 0.00 1.00

Syd 541 14 9.5861025 0.32

Other 32 0 0.00 1.00

AUS (non-TAS) 1525 46 3.9661025 0.004

NZ 540 14 9.6261025 0.32

US 879 22 5.7061025 0.033

Non-TAS 2944 82 1.8961025 5.4461025

*% IBD case pairs = IBD pairs/case6(case-1)/2; (Fisher’s Exact Test).
doi:10.1371/journal.pone.0056379.t002

IBD Mapping for Rare Variants in MS
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human neural cells compared to earlier stems cells (ZNF549,

ZNF324, ZNF548, ZNF264, ZNF671, ZSCAN1 and ZSCAN18 are

members of cluster A [48]). There is very little available evidence

for involvement in immune cell activity for genes in this region.

ZNF304 is implicated in lymphocyte activation [49] and ZNF274

has very high expression in activated eosinophils compared with

other immune cell types [50]. Other genes in this region have

relatively low expression and are not differentially regulated

between immune cell types [50], as viewed in the immunological

genome [51].

Together these findings suggest that many of the genes in this

cluster may be involved in early differentiation of neuronal cells

and potentially the silencing of genes required for myelination.

Expression of ZNF genes is commonly detected in foetal brain and

they are predicted to be involved in development of the nervous

system, a KRAB zinc finger cluster on chromosome 8 has also

been proposed to be involved in regulation of CNS development

[52]. Although other clustered genes families have been shown to

be co-expressed in cell types or tissues, previous studies have failed

to identify coordinated expression of KRAB-ZNF gene clusters

[44]. However earlier experiments did not examined the very early

timepoints in CNS tissues included in the Kang dataset [36].

These expression profiles described in the M20 module are

supported by two independent data set of both exon array level

and RNA-seq expression data in early human CNS development

available at the Allan Brain Atlas (http://developinghumanbrain.

org/).

Thus this may be an example of a gene cluster of KRAB -ZNF

genes exhibiting coordinated expression regulation, indicating the

presence of a genomic regulatory block (GRB). Such regions are

usually transcription factors controlled by highly conserved

noncoding regions. Although the identification of GRBs remains

difficult the evidence that we have collated is suggestive of two

genomic regulatory blocks within the linkage region, interrupted at

the position of SNP rs159870 where there is an absence of

H3K9me3 methylation and a break in synteny (reviewed in [53]).

The underlying cause for susceptibility in this region could

therefore be due, not to differences in a specific gene expression or

protein product, but to differences in the tight expression

regulation of a GRB. As mentioned above, many of the C2H2

zinc finger genes in this region have an expression profile

consistent with silencing of genes required for myelination.

Further analysis needs to be undertaken to examine if these genes

are co-regulated in demyelination and remyelination as well as

CNS developmental states. Unfortunately, due to the species

specificity of many of the KRAB-ZNF genes and the absence of

rodent homologues of genes in this region, data from non-human

models of demyelination and remyelination may not be useful.

Ideally, re-sequencing is the next step to refine this potential

signal further. Unfortunately, resequencing of the region would be

complicated since there are many gene duplications in this linkage

region.

For the SNP (rs159872) with the highest LOD score on

chromosome 19, we hypothesise that there are some difference

between cases and controls sharing haplotypes in the linkage

region among different populations. We found the Tasmanian MS

population has the highest proportion of case IBD sharing,

significantly higher than non-Tasmanian combined populations as

well as other non-Tasmanian combined Australian populations.

While Tasmania has the highest prevalence of MS in Australia, it

is generally agreed that this is primarily driven by environmental

effects related to, sunlight and/or vitamin D [54]. However there

is also a modest founder effect in Tasmania [55], which might

result in an increase in MS susceptibility driven by rare variants

IBD. Interestingly, we found there are more big networks of cases

sharing haplotypes than controls, and one big case network

comprises 3 Tasmanian cases, 4 New Zealand cases and 2 cases

from Melbourne, which may indicate the potential causal variants

or gene mutations exist in those big case networks. However, this

Figure 4. Networks of cases and controls sharing haplotypes IBD at the SNP with the highest LOD score on chromosome 19. (A)
Networks of cases sharing haplotypes in common at the linkage region on chromosome 19. (B) Networks of controls sharing haplotypes in common
at the linkage region on chromosome 19. Each dot represents an individual and each line connects pairs of individuals who share a haplotype. There
are more big networks of cases sharing haplotypes than controls.
doi:10.1371/journal.pone.0056379.g004
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SNP falls in a region of low/none methylation and correlates with

a break in syteny, the significance of which is unclear.

Technical considerations
Even though Beagle fastIBD is several orders of magnitude

faster than Beagle IBD, IBD analysis remains moderately

computationally intensive on a dataset of this size (8,977

individuals and 274,735 SNPs). For instance, on chromosome 2

with 22,607 SNPs, the computation time for each run was

approximately 4.6 hours with memory requirement of 3.3 GB on

2 cores of a SGI Altix ICE 8200 HPC cluster computer node.

However, we also found IBD analysis limitations: it is only

suited to discover rare variants if all variants act in the same

direction in one gene. For example, the identified rare variants in

BRCA1 and BRCA2 gene all increase risk of breast cancer [56], and

the four rare variants identified in IFIH1 gene all protect against

type I diabetes [18]. If some rare variants increase risk while others

in the same gene decrease risk then the signal in the region will be

attenuated. In addition, we found IBD analysis is very sensitive to

genotyping error, resulting in reducing signal strength. The linkage

signal detected depends on a lot of markers or long haplotypes,

containing up to hundreds of SNPs, a single error occurring in

reading a single marker significantly reduces the signal. In our

data, samples came from different GWAS using different

genotyping chips in different locations, which at least in part,

may decrease the potential signal strength from our study.

Furthermore, resequencing would be complicated by gene

duplication and repeat regions, since the linkage region detected

in this study had many gene duplicates, thus replication in other

independent dataset is needed.

The optimal method to detect rare disease-causing variants is

whole genome sequencing of thousands of samples. When this

becomes affordable, there will remain a role for IBD analysis to

prioritize regions for follow-up analysis and minimize the massive

multiple testing burden. Just as linkage analysis is now used to

identify regions for follow-up in whole genome sequencing and

exome sequencing of Mendelian disease families, and linkage

analysis can be used to weight regions for GWA analysis [26].

In summary, we have applied IBD analysis to a large complex

disease GWA dataset and identified a linkage signal with genome-

wide significance, although it. While our most significant result is

of equivocal significance, and lies in a region that is hard to

validate via sequencing, we believe IBD analysis has considerable

potential, particularly to help interpret whole-genome sequencing

data in complex trait studies.

Supporting Information

Figure S1 Principal components analysis for the data-
set. Most individuals in the dataset are of predominantly northern

European ancestry (right hand side), but some have southern

European ancestry (left hand side) (one dot for each individual).

(TIF)

Figure S2 Fitting Poisson model for the IBD data. All the

four real lines in these four modules fit well with the default lines,

suggesting Poisson model is appropriate for this data. The

residuals of the green region are higher than others.

(TIF)

Figure S3 Fitting negative binomial model for the IBD
data. All the four real lines in these four modules fit not well with

the default lines, suggesting negative binomial model is not suitable

for this IBD data.

(TIF)

Figure S4 Fitting linear model for the IBD data. All the

four real lines in these four modules fit not well with the default

lines, suggesting linear model is not suitable for this IBD data.

(TIF)

SR_commands S1 1) Fitting and testing model for IBD

data. 2) Plot of residuals from the Poisson model converted to

LOD scores. 3) Network analysis.

(PDF)
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