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Abstract

The dual specificity protein/lipid kinase, phosphoinositide 3-kinase (PI3K), promotes growth factor-mediated cell survival
and is frequently deregulated in cancer. However, in contrast to canonical lipid-kinase functions, the role of PI3K protein
kinase activity in regulating cell survival is unknown. We have employed a novel approach to purify and pharmacologically
profile protein kinases from primary human acute myeloid leukemia (AML) cells that phosphorylate serine residues in the
cytoplasmic portion of cytokine receptors to promote hemopoietic cell survival. We have isolated a kinase activity that is
able to directly phosphorylate Ser585 in the cytoplasmic domain of the interleukin 3 (IL-3) and granulocyte macrophage
colony stimulating factor (GM-CSF) receptors and shown it to be PI3K. Physiological concentrations of cytokine in the
picomolar range were sufficient for activating the protein kinase activity of PI3K leading to Ser585 phosphorylation and
hemopoietic cell survival but did not activate PI3K lipid kinase signaling or promote proliferation. Blockade of PI3K lipid
signaling by expression of the pleckstrin homology of Akt1 had no significant impact on the ability of picomolar
concentrations of cytokine to promote hemopoietic cell survival. Furthermore, inducible expression of a mutant form of
PI3K that is defective in lipid kinase activity but retains protein kinase activity was able to promote Ser585 phosphorylation
and hemopoietic cell survival in the absence of cytokine. Blockade of p110a by RNA interference or multiple independent
PI3K inhibitors not only blocked Ser585 phosphorylation in cytokine-dependent cells and primary human AML blasts, but
also resulted in a block in survival signaling and cell death. Our findings demonstrate a new role for the protein kinase
activity of PI3K in phosphorylating the cytoplasmic tail of the GM-CSF and IL-3 receptors to selectively regulate cell survival
highlighting the importance of targeting such pathways in cancer.
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Introduction

A key mechanism by which growth factors and cytokines

promote cell survival is via the phosphoinositide 3-kinase (PI3K)

pathway and constitutive PI3K signaling is known to promote

autonomous cell survival and transformation [1]. The recruitment

and activation of class 1A isoforms of PI3K (p110a, p110b, p110d)

by cytokine and growth factor receptors leads to the phosphor-

ylation of phosphatidyl inositol phosphates (PIPs) and the

subsequent docking of pleckstrin homology (PH) domain proteins

such as Akt that activate downstream signaling cascades and

biological responses [1]. However, in addition to their lipid kinase

activity, all members of the class 1 PI3K family also possess

intrinsic protein kinase activity [2–4]. While much is known

regarding the targets and biological functions of PI3K lipid

signaling, little is known of the substrates and functional roles of its

protein kinase activity.

We and others have shown that the phosphorylation of specific

serine residues in the cytoplasmic tails of growth factor and

cytokine receptors is critical for initiating intracellular signaling

pathways that selectively control cell survival [5–9]. In non-

transformed cells, physiological picomolar (pM) concentrations of
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GM-CSF and IL-3 are able to promote Ser585 phosphorylation in

the cytoplasmic domain of the bc receptor subunit to regulate cell

survival in the absence of other biological responses such as

proliferation (the ‘‘survival-only’’ response) [7]. Importantly, this

‘‘survival-only’’ pathway is deregulated in leukemia with constitu-

tive Ser585 phosphorylation clearly detectable in .85% of

primary AML samples [10]. Such findings suggest that the kinase

responsible for cytokine receptor serine phosphorylation and cell

survival becomes constitutively activated in leukemia and may

therefore represent a potential therapeutic target.

We therefore sought to identify the kinases that promote cellular

transformation through their ability to constitutively phosphory-

late serine residues in cytokine receptors. Using primary human

AML patient samples, we have isolated a kinase that phosphor-

ylates Ser585 in the cytoplasmic tail of the GM-CSF/IL-3 bc

receptor. We have identified this Ser585 kinase as the p110a
catalytic subunit of PI3K and show that physiological picomolar

concentrations of cytokine activate the protein kinase activity of

PI3K leading to Ser585 phosphorylation and cell survival.

Inhibition of p110a using pharmacological and RNA interference

approaches reduced Ser585 phosphorylation in multiple cell types

including primary human AML blasts whereas expression of a

mutant form of p110a that was lipid kinase-defective but protein

kinase-active restored Ser585 phosphorylation. Our findings

identify a new role for the protein kinase activity of PI3K in

promoting cytokine-mediated cell survival and provide a novel

functional link between the deregulated PI3K protein kinase

activity and phosphotyrosine-independent survival programs in

leukemia.

Results

Isolation of a Ser585-Kinase
GM-CSF and IL-3 receptor signaling regulate both prolifera-

tion and survival of normal myeloid cells and play an important

role in myeloid leukemia [11]. However, while GM-CSF promotes

cell proliferation in both AML blasts and K562 chronic myeloid

leukemia (CML) cells in a tyrosine kinase-dependent manner, we

observed that cell survival was autonomous, growth factor-

independent, and resistant to tyrosine kinase inhibition

(Figure 1A and 1B). Consistent with our previous findings [10],

Ser585 phosphorylation of the GM-CSF/IL-3 bc receptor was

constitutive in primary AML blasts (Figure 1C) and K562 CML

cells (Figure 1D) and was not affected by tyrosine kinase inhibitors

(TKIs). Furthermore examination of a panel of primary AML

patient samples demonstrated that neither Ser585 phosphorylation

nor cell survival was affected by JAK (JAKI) or FLT3 (AG1296,

CEP-701) TKIs (Figure S1A–S1E). These results indicate that cell

survival pathways in leukemia, such as those regulated by Ser585,

are constitutively activated and are largely resistant to tyrosine

kinase inhibition.

In order to identify the kinases responsible for phosphorylating

Ser585 and promoting cell survival we performed chromato-

graphic fractionation of an AML patient sample exhibiting

constitutive Ser585 phosphorylation (Figure 2A). Eluted fractions

were tested for Ser585-kinase activity in vitro using a bc peptide

encompassing Ser585 and a single peak of activity was observed

(Figure 2A). Pharmacological profiling of the eluted Ser585-kinase

activity (peak activity, fraction 8) revealed that only the PI3K

inhibitor, LY294002, significantly reduced Ser585 phosphoryla-

tion (Figure 2B). Western blotting of eluted fractions confirmed

that the p85 regulatory subunit of PI3K co-eluted with the peak of

Ser585 kinase activity (Figure 2A, immunoblots). Further analysis

using a panel of four independent PI3K inhibitors indicated that

each was able to inhibit the Ser585-kinase activity in a dose-

dependent manner (Figure 2C). Although little is known of the

protein substrates of PI3K, our results suggested the possibility that

the serine kinase activity of PI3K could phosphorylate Ser585.

The p110 Catalytic Subunit of PI3K Can Directly
Phosphorylate Ser585 of the GM-CSF and IL-3 Receptors

We next immuno-purified PI3K from the TF-1 cytokine-

dependent hemopoietic cell line and examined its ability to

phosphorylate Ser585 in vitro. PI3K immuno-purified using an

anti-p85 antibody was able to phosphorylate a Ser585 peptide but

not a control peptide in an LY294002-dependent manner

(Figure 3A). Consistent with the known divalent cation and redox

requirements for PI3K [2], robust Ser585 phosphorylation only

occurred under conditions where both Mn++ and DTT were

present (Figure 3B). Using isoform-specific antibodies, we im-

muno-purified individual class 1A p110 catalytic subunits (p110a,

p110b and p110d) from TF-1 cells and examined their ability to

phosphorylate Ser585 in vitro. Immunoblotting precipitates with

anti-p85 antibodies indicated that TF-1 cells express predomi-

nantly p110a (Figure S2A), which was confirmed by PI3K lipid

kinase activity assays (Figure 3C). Consistent with this activity

profile, our results show that immuno-purified p110a was able to

phosphorylate Ser585 in an LY294002-dependent manner

(Figure 3D).

To determine whether immuno-purified PI3K could phosphor-

ylate bc within the context of a full-length protein, we performed

in vitro kinase assays using the purified recombinant intra-

cytoplasmic portion of bc (bic) [5]. PI3K was able to phosphor-

ylate the p85 subunit (as has been previously described [2]) as well

as purified recombinant bic (Figure S2B). We then examined

whether a mutant form of p110a in which 4 lysine residues (K941-

944) in the lipid-binding pocket were substituted for alanine

(p110a-4KA) that has been previously described as being defective

in its lipid kinase activity but retains full protein kinase activity was

able to phosphorylate bic [12]. Although the p110a-4KA mutant

was defective in phosphorylating PIPs (Figure S2C), it was not only

Author Summary

The ability of cells to survive in the absence of proliferation
(cell division), differentiation (cell maturation) or activation
allows tissues to maintain cell populations that are poised
for rapid responses to damage, infections, or other
physiological demands. While this ‘‘survival-only’’ response
is fundamental to all physiological processes, the under-
lying mechanisms are not understood. Many growth
factors are potent regulators of cell survival through their
ability to bind specific cell surface receptors, which in turn
activate specialized enzymes called kinases. Phosphoino-
sitide 3-kinase (PI3K) is a dual specificity kinase that is
known to be involved in cell survival and malignant
transformation, and it is able to phosphorylate both lipid
and protein substrates. While the PI3K lipid kinase activity
has been extensively studied, the functional significance of
its protein kinase activity remains unclear. Here we show
that PI3K protein kinase activity can directly phosphorylate
growth factor receptors on human hematopoietic (blood)
cells to promote a ‘‘survival-only’’ response. We further
show that the protein kinase activity of PI3K can be
hijacked to result in uncontrolled growth factor receptor
phosphorylation and the deregulated survival of leukemic
cells. Our studies provide the first evidence that the
protein kinase activity of PI3K can control cell survival and
that this activity may be deregulated in cancer.

PI3K Protein Kinase Activity Regulates Survival

PLOS Biology | www.plosbiology.org 2 March 2013 | Volume 11 | Issue 3 | e1001515



able to phosphorylate p85, but also bic (Figure 3E). Furthermore,

purified recombinant p110a and p110b were able to phosphor-

ylate bic in an LY294002-sensitive manner (Figure S2D).

Importantly, we also showed that purified recombinant p110a
can directly phosphorylate Ser585 in the context of the full-length

purified recombinant bic protein by immunoblot analysis using a

phospho-specific anti-phospho-Ser585 pAb (Figure 3F). While it

remains possible that PI3K can phosphorylate serine residues in

addition to Ser585, purified recombinant p110a was able to

directly phosphorylate a Ser585 peptide and this phosphorylation

was blocked by the PIK-75 p110a-selective inhibitor (Figure 3G)

[13]. Taken together, these results indicate that the protein kinase

activity of p110 can directly phosphorylate Ser585 of the GM-CSF

and IL-3 receptors.

The Protein Kinase Activity but Not the Lipid Kinase
Activity of PI3K Promotes Cytokine-Mediated Cell
Survival

While the ability of PI3K to promote cell survival has almost

exclusively been attributed to its lipid kinase activity, the potential

biological roles of PI3K protein kinase activity remain unknown.

Our previous studies have shown that very low cytokine

concentrations in the picomolar range can promote the phos-

phorylation of Ser585 within the GM-CSF and IL-3 bc receptor to

promote cell survival in the absence of both phosphotyrosine

pathways and proliferation [7]. Our current studies indicate that

PI3K protein kinase activity can phosphorylate Ser585. Thus, if

PI3K was able to phosphorylate Ser585 in cells, then picomolar

concentrations of cytokine that induce Ser585 phosphorylation

should also activate PI3K protein kinase activity. We therefore

examined the regulation of both the protein kinase and lipid kinase

activities of PI3K in response to increasing concentrations of

cytokine. In order to examine the regulation of PI3K protein

kinase activity, we analysed p85-Ser608 phosphorylation which

has been shown to be a direct substrate of p110 [2,14]. Low

picomolar concentrations of GM-CSF that were able to promote

Ser585 phosphorylation (0.1–1 pM) were also able to activate the

protein kinase activity of PI3K as evidenced by increased p85-

Ser608 phosphorylation (Figure 4A). However, such low picomo-

lar concentrations did not detectably activate PI3K lipid signaling

as evidenced by the lack of both Akt and GSK-3 phosphorylation

(Figure 4B), p85 tyrosine phosphorylation (Figure 4A), or

activation of PI3K lipid kinase activity (Figure 4C). Thus, PI3K

demonstrates two distinct modes of signaling with PI3K protein

kinase signaling being regulated by low picomolar cytokine

concentrations and PI3K lipid kinase signaling being regulated

by higher nanomolar concentrations.

We then examined whether PI3K lipid kinase activity was

essential for regulating cell survival by examining the role of the

key downstream lipid signaling target of PI3K, Akt. Our results

show that there was no significant defect in the ability of 1 pM

murine GM-CSF to promote the survival of primary mouse bone

Figure 1. Cell survival is autonomous in human AML and CML cells and is refractory to tyrosine kinase inhibition. (A) Primary human
AML MNCs from patient AML1 (Table S2) or (B) K562 CML cells were cultured in DMSO, 10 mM JAKI or 2 mM imatinib and GM-CSF. Cell survival
(annexin V-negative) (grey) or proliferation (BrdU) (black) were measured by flow cytometry. (C) Where indicated, primary AML blasts were
preincubated in JAKI (10 mM), src kinase inhibitor, PP1 (10 mM), or vehicle (DMSO) for 20 min following which the cells were stimulated with GM-CSF
for 5 min. bc was then immunoprecipitated and subjected to immunoblot analysis with anti-phospho-bc Ser585 pAb, anti-phospho-bcTyr577 pAb, or
anti-bc (1C1) mAb. (D) K562 CML cells were preincubated in JAKI (10 mM), src kinase inhibitor, PP1 (10 mM), 2 mM imatinib, 0.1 mM dasatinib, or vehicle
(DMSO) for 20 min following which the cells were stimulated with GM-CSF for 5 min and immunoblotted as in (C). Ckl blots were performed to
confirm Bcr-Abl inhibition (loss of p-Crkl) by imatinib and dasatinib.
doi:10.1371/journal.pbio.1001515.g001

PI3K Protein Kinase Activity Regulates Survival
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marrow (BM) progenitor cells derived from either Akt12/2 mice

(Figure 4D, left) or in BM progenitor cells derived from wild-type

(wt) mice and treated with an Akt1 inhibitor (AKTI-1) (Figure 4D,

right). Further, inducible-expression of a constitutively active form

of Akt (myr-Akt-1) (Figure S3A) was not sufficient to support the

long-term viability of factor-dependent myeloid (FDM) cells in the

absence of cytokine (Figure 4E). Together, these results indicate

that the PI3K lipid signaling target, Akt, was not required for

promoting the survival-only response in the presence of low

picomolar cytokine concentrations.

We next examined the ability of low picomolar cytokine

concentrations to promote cell survival under conditions where the

protein kinase activity of PI3K was blocked (using the YM024 or

PIK-75 p110a-selective PI3K inhibitors) while downstream PI3K

lipid signaling was enforced by expression of myr-Akt-1. Blockade

of PI3K protein kinase activity induced by 1 pM GM-CSF using

either YM024 or PIK-75 resulted in cell death despite constitutive

signaling by myr-Akt-1 suggesting that the protein kinase activity

of PI3K was required for cell survival and could not be rescued by

enforced Akt1 signaling (Figures 4F and S3B). We also performed

an inverse experiment and examined the effect of selectively

blocking PI3K lipid signaling while allowing PI3K protein kinase

signaling. For these experiments we over-expressed the PH

domain of Akt1 fused to GFP (Akt1-PH-GFP) in order to block

the binding of endogenous PH-domain proteins (such as Akt) to

PIPs in the plasma membrane thereby abrogating PI3K lipid

signaling but permitting PI3K protein kinase signaling. Using this

approach, we examined the regulation of cell survival in response

to either 1 pM cytokine (that was able to promote PI3K protein

kinase activity) or 1,000 pM cytokine (that was able to promote

PI3K lipid kinase activity) (Figure 4A–4C). While expression of

Akt1-PH-GFP was able to block lipid signaling as evidenced by the

Figure 2. Purification and pharmacological profiling of a Ser585 kinase from AML. (A) AML MNCs (from patients AML4 and AML8; both
samples gave same profile) were subjected to hypotonic lysis and then chromatography on a Superdex 200PC column. Aliquots of eluted fractions
were immunoblotted with anti-p85 pAbs. (B) Fraction 8 (the peak of kinase activity) was analysed for kinase activity in vitro using a bcSer585 peptide
substrate and 10 mM of the indicated inhibitors. (C) Kinase reactions were performed using fraction 8 in the presence of increasing concentrations of
LY294002 (1, 10, 50, and 100 mM), PI3-Kcc1 (0.01, 0.1, 1, and 10 mM), Wortmannin (0.01, 0.1, 1, and 10 mM), and quercetin (1, 10, 100, and 1,000 nM).
Error bars indicate 6 standard deviation.
doi:10.1371/journal.pbio.1001515.g002

PI3K Protein Kinase Activity Regulates Survival
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lack of detectable Akt phosphorylation (Figure S3C) and reduce

cell viability under conditions where PI3K lipid kinase signaling is

activated by high cytokine concentrations (Figure 4G, 1,000 pM),

it had no significant effect on cell survival under conditions where

only the protein kinase activity of PI3K is induced by low cytokine

concentrations (Figure 4G, 1 pM).

We then examined whether constitutive activation of the

protein kinase activity of PI3K was able to promote Ser585

phosphorylation of the endogenous bc subunit of the GM-CSF

receptor and cytokine-independent cell survival. For these

experiments we utilized a doxycycline-inducible system for the

expression of a cytokine-independent membrane-localized form of

p110a with both lipid and protein kinase activity (p110a-CAAX)

or only protein kinase activity (p110a-4KA-CAAX). Induction of

p110a-CAAX using doxycycline in the absence of cytokine

resulted in increased Ser585 phosphorylation as well as down-

stream Akt phosphorylation, both of which were blocked by the

YM024 PI3K inhibitor (Figure 4H). Importantly, induction of

Figure 3. The protein kinase activity of PI 3-kinase can directly phosphorylate Ser585. (A) PI3K was immunopurified from TF-1 cells by
immunoprecipitation with anti-p85 pAb (no anti-p85 was used for the mock) following which in vitro kinase assays were performed using a phospho-
bcSer585 peptide (non-phosphorylatable control peptide, Ctl) or a bcSer585 peptide and 610 mM LY294002 (LY). (B) Kinase activity was examined in
either mock or p85 immunoprecipitates using either a phospho-bcSer585 non-phosphorylatable control peptide (Ctl) or a bcSer585 peptide in kinase
buffer containing either 10 mM MnCl2 (Mn++), 10 mM MgCl2 (Mg++), or 10 mM MnCl2 and 0.25 mM DTT (Mn++/DTT). (C) Immunoprecipitation of
specific isoforms of p110 from TF-1 cells was performed and lipid kinase assays were performed. (D) The same immunoprecipitations were also
subjected to in vitro kinase reactions using either control peptide (Ctl) or the bcSer585 peptide 610 mM LY294002. (E) HEK 293T cells were
transfected with wt-p110a (p110a), a lipid-kinase defective form of p110a (p110a-4KA), and/or myc-tagged p85. myc-p85 was immunoprecipitated
and subjected to in vitro kinase assays using purified recombinant intracytoplasmic domain of bc (bic) following which reactions were subjected to
SDS-PAGE and autoradiography or immunoblot analysis for p110a and myc-p85. (F) Purified recombinant p110a was examined for its ability to
phosphorylate Ser585 in purified recombinant bic in vitro and reactions were subjected to immunoblot analysis using anti-phospho-bcSer585 pAb.
(G) Purified recombinant p110a was incubated with 50 mM bcSer585 peptide in the presence/absence of 50 nM of the PIK-75 p110a-selective
inhibitor. Reactions were spotted onto nitrocellulose and blotted with the anti-phospho-bcSer585 pAb. Phospho-bcSer585 peptide (50 mM) was
included as a positive control for the anti-phospho-bcSer585 pAb. The histogram shows laser densitometry quantification of signals. Error bars
represent standard deviations.
doi:10.1371/journal.pbio.1001515.g003

PI3K Protein Kinase Activity Regulates Survival
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Figure 4. The protein kinase activity of PI3K promotes Ser585 phosphorylation and cell survival. (A) Factor-deprived TF-1 cells were
stimulated for 20 min with GM-CSF, the cells lysed and p85 or bc immunoprecipitates were subjected to immunoblot analysis. (B) TF-1 cells were
stimulated as in (A) and immunoblotted with an anti-phospho-Ser473 Akt pAb, anti-phospho-Ser21/9-GSK3a/b pAb or total Akt or GSK pAb. (C) TF-1
cells were stimulated as in (A) and subjected to 4G10 immunoprecipitation and lipid kinase assays using [c-32P]ATP and PIP as substrates. Error bars
represent standard error of the mean from three independent experiments with non-significant (ns, p.0.05) and significant differences (*p,0.05)
indicated. (D) Primary mouse Lin2 hemopoietic progenitor BM cells from wt and AKT12/2 mice were plated in murine GM-CSF and cell survival was
determined after 72 h (left panel). The survival of Lin2 cells isolated from wt mice in the presence or absence of murine GM-CSF was also assessed in
the presence (black bars) and absence (grey) of 10 mM Akt inhibitor (AKTI-1) (right panel). (E) FDM cells expressing either GFP or a tamoxifen-inducible
constitutively active form of myristolated Akt1 (myr-Akt1) (see Figure S3A) were plated in the absence of murine IL-3 and 64-hydroxy tamoxifen
(4HT) and cell survival was assessed by propidium iodine (PI) exclusion and flow cytometry. (F) TF-1 cells were co-transfected with GFP alone or myr-
Akt1 and GFP and then plated in 1 pM GM-CSF and either 5 mM YM024 or vehicle (DMSO, -) and cell survival was assessed by PI staining after 48 h.
(G) TF-1 cells were transfected with plasmids encoding either GFP or Akt1-PH-GFP and cell survival was assessed after 48 h. (H, I) TF-1 cells were
transduced with constructs for the doxycyclin-inducible expression of either p110a-CAAX or p110a-4KA-CAAX. After 2 d, cells were plated in

PI3K Protein Kinase Activity Regulates Survival
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p110a-4KA-CAAX, which is lipid kinase defective (Figure S2C)

and was unable to promote Akt phosphorylation (Figure 4H, lower

panels), also resulted in increased Ser585 phosphorylation in a

cytokine-independent manner (Figure 4H, upper panels). In line

with its ability to promote increased Ser585 phosphorylation,

p110a-4KA-CAAX was able to significantly increase cell survival

to levels approaching that observed in the presence of 1 pM GM-

CSF (Figure 4I). Together, these findings demonstrate that the

protein kinase activity of PI3K can phosphorylate Ser585 of the

GM-CSF receptor to regulate cell survival.

Inhibition of p110a Down-Regulates Ser585
Phosphorylation and Induces Apoptosis

We next examined the impact of inhibiting PI3K on Ser585

phosphorylation and cell survival. As shown in Figure 5A, TF-1

cytokine-dependent cells rapidly lose viability in the absence of

GM-CSF (0 pM) and are able to proliferate in response to higher

concentrations of cytokine (1,000 pM). Importantly, lower con-

centrations of cytokine (1 pM) that were able to promote PI3K

protein kinase signaling but not lipid signaling (Figure 4A–4C)

were also able to maintain the viability of TF-1 cells for up to 2 wk

in the absence of detectable proliferation (‘‘survival-only’’

response) (Figure 5A and 5B). To test whether Ser585 of bc was

a substrate for p110 under these ‘‘survival-only’’ conditions, cells

were pretreated with both pan-specific (LY294002 and Wortman-

nin) and isoform-selective PI3K inhibitors (Table S1) and then

stimulated with 1 pM cytokine. Our results show that both

LY294002 and Wortmannin inhibited Ser585 phosphorylation

induced by 1 pM GM-CSF (Figure 5C and 5G). Furthermore, two

different p110a-selective inhibitors (YM024 and PIK-75) and a

p110a-selective and mTOR dual inhibitor (PI-103) were able to

down-regulate Ser585 phosphorylation (Figure 5D–5G). In

contrast, p110b-selective (TGX-221) and p110c-selective

(AS252424) inhibitors had no detectable effect on Ser585

phosphorylation while p110d-selective (IC87114) and the protein

kinase A inhibitor, H89, had modest effects (Figure 5G).

Furthermore, inhibition of DNA-PK and the related PI3K family

member ATM had no effect on either Ser585 phosphorylation or

the survival of AML blasts (Figure S4A and S4B). Consistent with

their ability to block Ser585 phosphorylation, both YM024 and

PIK-75 were also able to significantly block the survival-only

response in both TF-1 cells (Figure 5H) and lineage-negative

primary mouse BM progenitors in the presence of 1 pM cytokine

(Figure 5I). Thus, our results show that under survival-only

conditions in which low picomolar cytokine concentrations

activate the protein kinase activity of PI3K but not its lipid kinase

activity, inhibition of p110a not only blocks Ser585 phosphory-

lation of endogenous bc but also cell survival.

Selective Inhibition of p110a Down-Regulates
Endogenous Ser585 Phosphorylation in Primary Human
AML Blasts

We then screened a panel of siRNAs for their ability to

knockdown p110a in HEK 293T cells and examined the impact

on Ser585 phosphorylation. As shown in Figure 6A, siRNA-

p110a-1 resulted in decreased p110a protein levels and an almost

complete loss of Ser585 phosphorylation. We then examined the

ability of siRNA-p110a-1 to reduce constitutive Ser585 phosphor-

ylation in a panel of primary human AML samples. We observed a

significant decrease in Ser585 phosphorylation following transfec-

tion of the siRNA-p110a-1 in 6/6 AML samples (Figures 6B, 6C,

and S5A; p = 0.001, Mann-Whitney U).

We then tested the ability of YM024 and PIK-75 to induce

apoptosis in AML blasts derived from patient samples that were

sensitive to down-regulation of Ser585 phosphorylation following

PI3K inhibition. Our results show that YM024 and PIK-75 were

able to induce cell death in primary AML blasts whereas inhibition

of p110b (TGX-221), p110d (IC87114), and p110c (AS252424)

were less effective (Figures 6D and S5B). Furthermore, siRNA-

p110a-1 also significantly reduced the survival of primary human

AML blasts (Figure 6E). Thus, both pharmacological and siRNA-

mediated targeting of p110a results in a significant decrease in the

phosphorylation of Ser585 in the GM-CSF and IL-3 bc receptor

in primary human AML cells and the induction of cell death.

Discussion

While many cytokines and growth factors are able to regulate

PI3K lipid signaling, little is known of their ability to regulate

PI3K protein kinase signaling or whether the protein kinase

activity of PI3K is also important in promoting cellular responses

in certain contexts. Previously, we and others have identified key

serine residues in the cytoplasmic tails of cytokine and growth

factor receptors that selectively control cell survival [5–9]. In the

case of the GM-CSF and IL-3 bc receptor, constitutive Ser585

phosphorylation is associated with deregulated cell survival

programs in AML [10]. Importantly, constitutive Ser585 phos-

phorylation in leukemic cells is refractory to tyrosine kinase

inhibition (Figure 1) and thus may provide a receptor-dependent

mechanism by which transformed cells are able to survive in the

presence of TKIs. We have now isolated a kinase activity from

primary AML samples that is able to phosphorylate Ser585 in

vitro and shown that this activity is uniquely sensitive to PI

3-kinase inhibitors (Figure 2). We have further shown that purified

recombinant p110a can directly phosphorylate Ser585 in vitro

(Figure 3) and that inhibition of p110a using either RNA

interference or p110a-selective inhibitors down-regulated Ser585

phosphorylation of endogenous bc (Figures 5 and 6). Furthermore,

inducible expression of a p110a-4KA-CAAX mutant of PI3K that

is defective in lipid-kinase activity but retains protein kinase

activity not only promotes Ser585 phosphorylation but also cell

survival in the absence of cytokine (Figure 4). These results reveal

Ser585 in bc as a direct substrate of the protein kinase activity of

PI3K and show that p110a (rather than p110b, p110d, or p110c)

is the predominant isoform responsible for this activity at least in

the myeloid context (Figure 7, model)

While the lipid kinase activity of PI3K is clearly pivotal in

regulating a wide array of cellular responses including cell survival

[1], little is known regarding the protein substrates of PI3K and

their functional significance [2–4]. Initial reports identified several

autophosphorylation sites in either the p85 regulatory subunit, or

the p110 catalytic subunits (Table 1) [2,15,16]. Additionally, a

number of other protein substrates of PI3K have been reported

including p101, insulin receptor substrate 1, PDE3B phosphodi-

esterase, eukaryotic initiation factor 4E-binding protein 1,

mitogen-activated protein kinase kinase, and H-Ras [17–21].

However, these earlier studies did not determine the specific

residues phosphorylated by PI3K nor their functional significance.

To our knowledge, only one other specific phosphorylation site has

doxycycline and/or 5 mM YM024 and cytokine as indicated. (H) Cell lysates were subjected to immunoblot analysis after 12 h. (I) Cell survival was
analysed after 48 h. Error bars represent standard deviations (* p,0.05).
doi:10.1371/journal.pbio.1001515.g004
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been identified for the protein kinase activity of PI3K for which a

functional role has been ascribed. Prasad et al. have shown that

p110c can phosphorylate Ser61 of non-muscle tropomyosin,

which is required for agonist-dependent b-adrenergic receptor

internalization (Table 1) [12]. From the limited protein substrates

so far identified for PI3K, no clear consensus motif is apparent

(Table 1); however, the known auto-phosphorylation sites are

located within disordered flexible regions either at the C-terminus

of p110 isoforms or between the inter-SH2 and C-terminal SH2

domains of p85 suggesting that primary and/or secondary

structures may be more important for substrate recognition than

tertiary structures.

Figure 5. Inhibition of the p110a catalytic subunit of PI3K reduces Ser585 phosphorylation and blocks the survival-only response.
(A) TF-1 cells were plated in GM-CSF for up to 14 d (media changed every 2 d) and cell viability was determined by trypan blue exclusion. On day 10,
an aliquot of cells in 1 pM GM-CSF was washed and 1,000 pM GM-CSF added (arrow). (B) TF-1 cells were plated in GM-CSF and proliferation was
measured by BrdU-incorporation. (C–F) Factor-deprived TF-1 cells were pre-incubated for 45 min with (C) LY294002, (D) PIK-75, (E) PI-103, (F) YM024
at the concentrations shown, and then stimulated for 5 min with GM-CSF, lysed, and immunoblotted with anti-phospho-bcSer585 pAb and anti-bc
mAb. (G) Laser densitometry quantification of the ability of p110 isoform-selective inhibitors to block Ser585 phosphorylation in which the ratio of
phospho-Ser585 relative to total bc in the presence of drug is expressed as a percentage of the maximum Ser585 phosphorylation (100%, dotted
line). (H) TF-1 cells were cultured in 1 pM GM-CSF in the presence of 100 nM PIK-75, 5 mM YM024, 1 mM TGX-221, 5 mM IC87114, or 100 nM AS252424
and cell viability was determined at 72 h by trypan blue exclusion. (I) Primary mouse lineage-negative BM progenitor cells were cultured in 1 pM
murine GM-CSF in the presence of 100 nM PIK-75, 5 mM YM024, 1 mM TGX-221, 5 mM IC87114, or 100 nM AS252424 and cell viability was determined
at 48 h. Error bars indicate standard deviations (* p,0.05).
doi:10.1371/journal.pbio.1001515.g005
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Figure 6. Inhibition of the p110a catalytic subunit of PI3K down-regulates Ser585 phosphorylation and induces apoptosis in
primary AML MNCs. (A) HEK 293T cells were transfected with a construct for the expression of the bc subunit of the GM-CSF and IL-3 receptors
together with 100 nM of the indicated siRNAs. After 72 h, cells were lysed and blotted with the indicated antibodies. (B) AML MNCs were transfected
with 100 nM of siRNA-p110a-1 or control siRNA and after 48 h, cells were lysed and immunoblots performed using the indicated antibodies.
Quantified signals are indicated under the immunoblots. (C) The phospho-Ser585 signals from six independent AML samples (AML10–15, from
Figures 6B and S5A) were quantified by laser densitometry and normalized to control siRNA (Ctl) with horizontal lines representing the means
(p = 0.001, Mann Whitney U). (D) AML MNCs (AML14 light shade. AML15 dark shade) were plated in 1 mM each of YM024, TGX-221, IC87114, or
AS252424 and cell survival examined at 48 h. (E) AML MNCs (AML14 light shade. AML15 dark shade) were transfected with 100 nM control siRNA (Ctl)
or siRNA-p110a-1 and cell survival was examined after 48 h.
doi:10.1371/journal.pbio.1001515.g006

Figure 7. Model for the regulation of cell survival by the protein kinase or lipid kinase activities of PI3K. Left panel: Low physiological
concentrations of cytokine in the picomolar range activate the protein kinase activity of PI3K leading to Ser608 phosphorylation of p85 and Ser585
phosphorylation of the GM-CSF/IL-3 bc receptor (red circles) to promote cell survival in the absence of phosphotyrosine pathways and proliferation
(survival-only response). Middle panel: Nanomolar concentrations of cytokine result in activation of the JAK2 tyrosine kinase, Tyr577 phosphorylation
of bc, the recruitment of a Shc:grb2:GAB2:PI3K signaling complex to Tyr577 (red circle) [6,33], and the activation of canonical PI3K lipid signaling via
Akt to promote cell proliferation and survival. Right panel: Blockade of the p110a catalytic subunit of PI3K inhibits both protein kinase targets
(Ser585) and lipid kinase targets (Akt) and induces apoptosis in primary human AML cells.
doi:10.1371/journal.pbio.1001515.g007
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The activation of canonical Type 1A PI3K lipid signaling

requires the recruitment of p85 SH2 domains to pYXXM (where

pY is phosphotyrosine) phosphotyrosine docking sites, either in the

cytoplasmic tails of cell surface receptors or their associated

signaling proteins [22]. This mode of signaling is triggered by

higher concentrations of ligand in the nanomolar range that

induce receptor dimerization/oligomerization and the trans-

activation of tyrosine kinases [23]. However, several lines of

evidence indicate that low picomolar concentrations of ligand

promote Ser585 signaling and cellular survival in the absence of

phosphotyrosine pathways, PI3K lipid signaling, and proliferation.

Firstly, while high concentrations of cytokine clearly activate the

lipid kinase activity of PI3K, we were unable to observe any

detectable activation of lipid kinase activity in response to 1 pM

cytokine (Figure 4) despite the ability of these concentrations of

cytokine to promote long-term cell survival (Figure 5). Secondly,

genetic or pharmacological blockade of the key downstream target

of PI3K lipid signaling, Akt, had no effect on hemopoietic cell

survival in response to 1 pM cytokine (Figure 4). Thirdly, while

key downstream targets of PI3K lipid signaling such as Akt or

GSK were clearly phosphorylated in response to high nanomolar

doses of cytokine, phosphorylation was not detected in response to

1 pM cytokine (Figure 4). Fourthly, although we found no

evidence of PI3K lipid signaling in response to 1 pM cytokine,

we were clearly able to detect cytokine-regulated PI3K protein

kinase activity as evidenced by the induction of p85-Ser608 and

bc-Ser585 phosphorylation (Figure 4). Fifthly, enforcing down-

stream lipid kinase signaling by targeting Akt1 to the plasma

membrane while blocking the protein kinase activity of PI3K in

response to 1 pM cytokine with YM024 was able to block cell

survival (Figure 4). Sixthly, selectively blocking the lipid kinase

activity of PI3K by over-expression of an Akt1 PH domain that

dominant-negatively blocks PIP docking sites in the plasma

membrane but allowing PI3K protein kinase activity in the

presence of 1 pM cytokine permitted cell survival (Figure 4).

Finally, inducible expression of a p110a mutant that is defective in

lipid kinase activity but retains protein kinase activity (p110a-

4KA-CAAX) was able to restore Ser585 phosphorylation and

promote cell survival in myeloid cells in the absence of cytokine

and detectable Akt activation. Thus, our results highlight an

important distinction between the regulation of PI3K lipid kinase

and protein kinase signaling. On the one hand, higher concen-

trations of cytokine can regulate phosphotyrosine pathways, PI3K

lipid signaling, and the phosphorylation of downstream lipid

signaling targets to promote both cell proliferation and survival.

On the other, lower concentrations of cytokine promote the

activation of PI3K protein kinase activity, Ser585 phosphoryla-

tion, and cell survival in the absence of other biological responses

such as proliferation (Figure 7, model).

Others have also suggested that PI3K can provide multiple

independent signaling outputs with p110c regulating Akt signaling

via its lipid kinase activity and regulating ERK signaling via its

protein kinase activity [24]. While the functional significance of

this signal bifurcation remains unclear, it is intriguing that the

insulin and IFNa receptors have been reported to activate the

protein kinase activity of PI3K in a phosphotyrosine-independent

manner [20,25]. In the case of the bc subunit, the mechanism by

which PI3K is recruited and activated leading to Ser585

phosphorylation is not clear. It is possible that in addition to

recruitment to phosphotyrosine docking sites, class 1A PI3Ks such

as p110a can also be recruited via phosphotyrosine-independent

mechanisms similar to those employed for the recruitment of

p110c to G-protein coupled receptors or p110b and p110d to

ErbB3 [26,27]. Consistent with this notion, our previous studies

have shown that a bc receptor mutant in which all eight

cytoplasmic tyrosine residues were substituted for phenylalanine

(bcF8) is not only phosphorylated in Ser585 in response to

cytokine but is also able to promote cell survival in the absence of

proliferation [6] indicating that bc tyrosine phosphorylation is not

required for regulating the Ser585-survival pathway. One possible

mechanism by which PI3K is recruited may involve the binding of

the p85 SH3-domain to a conserved PXXP motif in the

cytoplasmic tail of the a-subunit of the GM-CSF and IL-3

receptors as proposed by Perugini et al. [28]. While the

mechanisms by which PI3K is recruited to protein targets to

phosphorylate substrates such as Ser585 in the GM-CSF/IL-3

receptors (identified in these studies) or Ser61 in tropomyosin

(identified by others [12]) requires further study, it is interesting

that significant levels of PI3K can be found at the plasma

membrane under basal conditions in at least some transformed cell

types and that this translocation may be enhanced by the 14-3-3

proteins [29].

It is important to note that siRNA-mediated knockdown of

p110a or pharmacological inhibition inhibits both the protein and

lipid kinase activity of PI3K. Thus, the induction of apoptosis

following PI3K inhibition may not only result from inhibition of

PI3K protein kinase targets (such as Ser585), but also lipid kinase

targets (such as Akt) (Figure 7, model). Deregulated PI3K lipid

signaling has been widely observed in many cancers and activating

mutations in p110a are frequently observed in solid tumors.

However, p110a mutations are rare in AML [30]. Nevertheless,

constitutive PI3K lipid signaling is prevalent in AML with elevated

Akt phosphorylation being observed in most patient samples [30].

Our previous studies suggest that the protein kinase activity of

PI3K is also deregulated with high prevalence in AML with

constitutive Ser585 phosphorylation observed in .85% of primary

AML patient samples [10]. While kinases other than PI3K may be

responsible for constitutive Ser585 phosphorylation in at least

Table 1. PI3K protein kinase substrate phosphorylation sites.

Substrate ID/Accession Phospho-Ser Sequence

PI 3-kinase p85 regulatory subunit P85A_HUMAN Ser608 [2] LGNENTEDQYSSSLVEDDEDLPH

PI 3-kinase p110b catalytic subunit PK3CB_HUMAN Ser1070 [15] MAHTVRKDYRSSS

PI 3-kinase p110d catalytic subunit PK3CD_HUMAN Ser1039 [16] TKVNWLAHNVSSSKDNRQ

PI 3-kinase p110c catalytic subunit PK3CG_HUMAN Ser1101 [15] VLGIKQGEKHSSSA

non-muscle tropomyosin 1a TPM1_HUMAN Ser61 [12] KGTEDELDKYSSSEALKDAQEKL

GM-CSF/IL-3 bc receptor IL3B_HUMAN Ser585 GPYLGPPHSRSSSLPDILGQPEP

doi:10.1371/journal.pbio.1001515.t001
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some AMLs, siRNA targeting of p110a significantly reduced

Ser585 phosphorylation in 6/6 primary AML samples (Figure 6).

Additionally, siRNA-mediated knockdown of p110a or inhibition

of p110a using YM024 in two AML samples analysed resulted in

increased apoptosis (Figure 6) consistent with a role for p110a in

regulating AML cell survival. Most importantly, this pathway

appears refractory to FLT3 and JAK kinase inhibition (Figure 1).

Others have shown that targeting p110d with IC87114 prevents

the proliferation of AML blasts, but the effect on the cell survival

has not been determined [31]. In our studies, IC87114 as well as

p110b-selective (TGX-221) and p110c-selective (AS252424)

inhibitors were not effective in down-regulating either Ser585

phosphorylation (Figure 5) or promoting apoptosis in AML blasts

(Figure 6) suggesting that p110a is likely to be the primary isoform

promoting Ser585-survival signaling in AML. Thus, our results

identify a new role for PI3K in which its protein kinase activity

phosphorylates cytokine receptors to initiate downstream signaling

leading to cell survival. The ability of PI3K to switch between

protein kinase and lipid kinase activities would thus allow two

independent modes of signaling each functionally linked to a

distinct cellular outcome. How these two distinct arms of

enzymatic activity are perturbed and hijacked in cancer remains

to be elucidated. Discovery of other protein kinase substrates of

PI3K that are constitutively phosphorylated in cancer may reveal

useful biomarkers and therapeutic targets for PI3K-pathway drug

development.

Materials and Methods

Reagents
Bisindolylmaleimide I, rapamycin, LY294002, GSK-3 inhibitor

IX, JAK inhibitor 1 (JAKI), U0126, quercetin, PI3Kc-1, genistein,

PI-103, TGX-221, and AS252424 were from Calbiochem;

SB203580 from Promega; H89, PP1, staurosporine, and kemptide

from Biomol; imatinib and dasatinib were from Selleck Chemicals;

Akt inhibitor 1 was from MBL; 5,6-dichlorobenzimidazole riboside

(DRB), AG1296, and Wortmannin were from Sigma; CEP-701 was

from Tocris Biosciences; IC87114 and YM024 were generously

provided by Shaun Jackson (ACBD). PIK-75 and A66 were

synthesized as previously described [13]. Peptide sequences encom-

passing Ser585 of bc (Mimotopes) were 579LGPPHSRSLPDILG591

and 579LGPPHSRpSLPDILG591 (where pS is phospho-Ser585

which was used as a non-phosphorylatable control). Recombinant

purified p110a was from Meredith Layton (Monash University).

Murine GM-CSF and IL-3 were from Prospect. BM from Akt12/2

knockout mice were from Rick Pearson (Peter MacCallum Cancer

Centre). Akt1-PH domain plasmid obtained from Christina Mitchell

(Monash University). A CAAX box was engineered into the C-

terminus of p110a by PCR amplification of a 39 fragment from

pcDNA3.1-myc-p110a using GCGGCCATCGATTTGTTTA-

CAC and TTTCGCGCGGCCGCTCAAGAGAGCACACACT-

TACAGTTCAAAGCATGCTGCTTAA and cloned into the

Cla1/Not1 sites of pcDNA3.1-myc-p110a and pcDNA3.1-myc-

p110a-4KA (gifts of Lazaros Foukas, University College London),

which expresses a mutant form of p110a in which lysines 941–944

within the lipid binding pocket are mutated to alanine, which results

in defective lipid kinase activity while protein kinase activity is

unaffected. The full length myc-p110a-CAAX cDNAs were then

PCR amplified using GAGGAGGACCTGCTGCCTCCAAGAC-

CATCATCAGGTGAACTG and GAACTGTAAGTGTGTG-

CTCTCTTGAAGCGCTCCGAAA followed by PCR using

AAACGGACCGGTGCCACCATGGAGCAGAAGCTGATCT-

CCGAGGAGGACCTGCTGCCTC and TTTCGGAGCGCTT-

CAAGAGAGCACACACTTACAGTTC and the products cloned

into pTripz using Age1 and Afe1 to give pTripz-myc-p110a-CAAX

and pTripz-myc-p110a-4KA-CAAX.

Cell Culture
HEK 293T cells were transfected with using lipofectamine

(Invitrogen) in 0.5% fetal calf serum (FCS; JRH Laboratories) and

DMEM for 4 h. TF-1 factor-dependent cell line was cultured in

10% FCS/RPMI with 2 ng/ml human GM-CSF and transfected

by electroporation (1,000 mF at 250 V). FDM cell lines were

generated by HoxB8 transformation as described in Figure S3A

and cultured in DMEM/10% FCS with 0.25 ng/ml murine IL-3

as previously described [32]. Primary murine hemopoietic

progenitor cells were isolated from the BM of SV129 or BL6

mice as previously described and lineage negative (Lin2) cells were

isolated by negative selection using a Lineage Cell Depletion Kit

(Miltenyi Biotec) [7].

Primary Leukemic Cells
Apheresis product, BM, or peripheral blood samples were

obtained from patients with AML and one patient with CML.

Patient samples were collected after informed consent according to

institutional guidelines and studies were approved by the Royal

Adelaide Hospital and Alfred Hospital Human Ethics Commit-

tees. Diagnosis was made using cytomorphology, cytogenetics and

leukocyte antigen expression and evaluated according to the

French-American-British classification. For patient characteristics

see Table S2. Mononuclear cells (MNCs) were isolated by Ficoll-

Hypaque density-gradient centrifugation and resuspended in PBS

containing 0.1% human albumin (CSL) [10]. Morphological

analysis revealed .70% blasts after Ficoll-Hypaque density-

gradient centrifugation.

Purification of the Ser585 Kinase
Primary AML MNCs (36108) from patients were lysed in a

hypotonic buffer (20 mM Tris-Hcl [pH 7.4], 0.5 mM EDTA,

0.5 mM EGTA, 10 mM bME, 5% glycerol) containing 2 mM

NaF and Complete Mini EDTA-free protease inhibitor cocktail

(Roche). Hypotonic lysis in the absence of detergents was used to

ensure that the activity of multi-subunit kinases was preserved

during the purification. The lysate was then subjected to

centrifugation at 16,000 g for 10 min followed by ultracentrifuga-

tion of the supernatant at 186,000 g for 1 h. The clarified lysate

was then subjected to fast protein liquid chromatography (FPLC)

on a Superdex 200PC 3.2/30 column (Amersham Biosciences).

Chromatography was performed using a running buffer (Tris-Cl

[pH 7.5], 200 mM NaCl, 0.1 mM EDTA, and 10 mM bME) and

a flow-rate of 40 ml/min and 40 ml fractions were collected.

Kinase Assays
Protein kinase activity was examined in (i) aliquots of eluted

fractions following chromatography of primary AML samples, (ii)

p85 and p110 immunoprecipitates, or (iii) purified recombinant

p110 catalytic subunits of PI3K as described in detail in Figure S2.

Reaction mixtures comprised of 50 mM Ser585 peptide, 50 mM

Kemptide or 0.5 mg of recombinant beta subunit cytoplasmic

domain (bic) in kinase buffer (50 mM Hepes [pH 7.4], 5 mM

EDTA, 10 mM MnCl2, 0.250 mM dithiothreitol [DTT], 0.02%

Tween 20) with 0.25 mCi[c-32P]ATP, 1 mM cold ATP. Production

and purification of the histidine-tagged recombinant bic protein

encompassing amino acids 445–881 of the intracellular domain of

bc has been previously described [11]. Reactions were incubated at

30uC for 30 min and aliquots examined for 32P-labelled peptide on

phosphocellulose filters (Whatmann, P81) and liquid scintillation
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counting [5]. For bic kinase assays, reactions were stopped by

adding 26 SDS load buffer followed by SDS-PAGE and

autoradiography. For PI3K lipid kinase assays, cells were lysed in

NP-40 lysis buffer (137 mM NaCl, 1.0% NP-40, 10% glycerol,

50 mM Tris-HCl [pH 7.4]) containing 10 mM b-glycerol phos-

phate, 1 mM phenylmethylsufonylfluoride, 10 mM NaF, 10 mM

Na orthovanadate, 4.5 U/ml aprotinin (Sigma), and 1 mg/ml

leupeptin (Sigma) and immunoprecipitated proteins were examined

for PI3K lipid kinase activity using PIP and 0.25 mCi[c-32P]ATP as

substrates as described in Figure S2C and previously reported [5].

siRNA knockdown of p110a
HEK 293T cells or primary AML blasts were transfected for

48 h with 100 nM of siRNAs to p110a or a scrambled control

using lipofectamine RNAiMAX (1:300) in OptiMEM medium

(Invitrogen) and 0.5% FCS. siRNA sequences for p110a
knockdown were Silencer control (Ctl siRNA-1, Ambion), Stealth

control (Ctl siRNA-2, Invitrogen), GCAUUGACUAAUCAAAG-

GATT (siRNA-p110a-1, Ambion), AAUAGUGUGA-

GAAUUUCGCACCACC (siRNA-p110a-2, Invitrogen), and

UUACCCAGAUCACCACUAUUAUUUG (siRNA-p110a-3,

Invitrogen). Transfection efficiency was monitored using a

BLOCK-iT Alexa Fluor red fluorescent oligonucleotide (Invitro-

gen) and we routinely obtain .85% transfection efficiency using

siRNAs [10].

Immunoblotting
TF-1 cells were factor-deprived in RPMI containing 0.5% FCS

for 12 h and then stimulated with different GM-CSF concentra-

tions before lysis in NP-40 lysis buffer [5]. The bc subunit was

immunoprecipitated using 1 mg of 1C1 or 8E4 anti-bc mAbs; p85

and various isoforms of p110 were immunoprecipitated with anti-

p85 pAb (Upstate) at 1:1,000, anti-p110a (Cell Signalling), anti-

p110b pAb (Santa Cruz), anti-p110d mAb A-8 (Santa Cruz). Anti-

myc (9E10) and anti-a-tubulin antibody (Abcam) was used at

1:1,000; anti-Flag and anti-HA mAb HA7 (Sigma) was used at

1:10,000; Anti-phospho-Ser473Akt, anti-phospho-Ser21/

9GSKa/b (Cell Signalling), anti-phosphotyrosine 4G10 (Upstate),

anti-Ckl, anti-phospho-STAT5 (Tyr694) (Cell Signalling), and

anti-phospho-Ser608 [14] were used at 1:500. Affinity-purified

phospho-Ser585 of bc pAb was used at 1:500 [5]; affinity-purified

phospho-Tyr577 of bc pAb was used at a dilution of 1:1,000 [5].

Cell Survival and Proliferation Assays
Cell survival was determined by either trypan blue exclusion,

annexin V-FITC (Roche) staining, propidium iodide staining, or

counting viable cell number in reference to Flow Count Fluoro-

spheres (BD Biosciences) essentially as described previously [10].

Cell proliferation was determined by BrdU incorporation as

described previously [10], using the in situ cell proliferation kit

(Roche).

Supporting Information

Figure S1 Inhibition of tyrosine kinase signaling does
not affect the survival of AML or CML cells nor the
phosphorylation of Ser585 in the GM-CSF and IL-3 bc
receptor. (A) MNCs from patients with AML (Table S2) were

incubated with 1 mM JAKI for 48 h following which cell survival

was assessed. While cell survival can vary between primary human

AML samples, no significant decrease in cell survival was observed

for the JAKI in any of the samples examined. (B) AML MNCs

were incubated with 1 mM JAKI as above and after 4 h, cells were

lysed and bc immunoprecipitated with the 1C1 anti-bc mAb.

Immunoprecipitates were then subjected to Western blot analysis

using the phospho-specific anti-phosphoSer585 pAb and signals

quantified by laser densitometry. The ratio of phospho-Ser585

relative to total bc in the presence of drug is expressed as a

percentage of the maximum Ser585 phosphorylation in DMSO

(C) MNCs from a FLT3-ITD+ primary human AML (AML5)

were plated in either DMSO (vehicle) or 10 mM of the FLT3

tyrosine kinase inhibitor, AG1296, for 4 h following which the

indicated Western blots were performed. While AG1296 was able

to down-regulate constitutive FLT3 tyrosine phosphorylation, it

had no impact on constitutive Ser585 phosphorylation. (D) AML

MNCs from a FLT3-ITD+ patient (AML6) were incubated in the

indicated concentrations of the AG1296 FLT3 tyrosine kinase

inhibitor or staurosporin (apoptosis inducing positive control) for

48 h after which cell survival was assessed by annexin V staining

and flow cytometry. These results show that FLT3 inhibition using

AG1296 had no impact on short-term survival of AML cells in

vitro. (E) AML MNCs from a FLT3-ITD+ patient (AML7) were

plated in methylcellulose (MethoCult, Stem Cell Technologies) at

10,000 cells/ml supplemented with 100 pM human IL-3 and GM-

CSF and either DMSO (vehicle), Ara-C, or the FLT3 tyrosine

kinase inhibitor, CEP-701. After 14 d, total colonies were counted

(CFU-Blast). Compared to Ara-C, inhibition of FLT3 using CEP-

701 was less effective at blocking the clonogenic growth of FLT3-

ITD+ AML cells.

(TIF)

Figure S2 The phosphorylation of Ser585 by the protein
kinase activity of PI3K. (A) PI3K was immunoprecipitated

from TF-1 cells with antibodies specific for the p110a, p110b and

p110d isoforms of PI3K and then immunoblotted using anti-p85

pAb. Results show that the p110a isoform of PI3K was the most

abundant in TF-1 cells. (B) TF-1 cells were lysed in NP40 lysis

buffer containing 1% NP40, 10% glycerol, 10 mM Tris-Hcl

[pH 7.4], 137 mM NaCl, 10 mM glycerol phosphate, 2 mM Na

Vanadate, 2 mM NaFl, 2 mM PMSF, 1 mg/ml leupeptin, 5 mg/

ml aprotonin following which PI3K was immunoprecipitated with

anti-p85 pAb. Immunoprecipitates were then washed three times

in kinase buffer (50 mM Hepes [pH 7.4], 5 mM EDTA, 10 mM

MnCl2, 0.25 mM dithiothreitol (DTT), 0.02% Tween-20) follow-

ing which 0.25 mCi[c-32P]ATP, 1 mM non-isotopic ATP and

0.5 mg purified recombinant intra-cytoplasmic domain of bc (bic)

were added. Reactions were incubated at 30uC for 30 min

following which they were subjected to SDS-PAGE and

autoradiography. Mock immunoprecipitates in which no p85

pAb was used as well as no substate (bic) controls were included.

LY294002 (10 mM) was added to the kinase reactions where

indicated. 32P-labelled p85 and bic are indicated. (C) Constructs

for the expression of wild-type p110a (wt), a p110a-4KA mutant

(in which four lysine residues, K941–944, in the lipid binding

pocket were substituted for alanine) and myc-tagged p85a were

transfected into HEK 293T cells. After 48 h, the cells were lysed in

NP40 lysis buffer as in (B) and the p85 subunit of PI3K

immunoprecipitated with the 9E10 anti-myc mAb. Immunopre-

cipitates were washed in PI3K kinase buffer (20 mM Hepes

[pH 7.5], 5 mM MgCl2, 1 mM EGTA) following which 0.25 mCi

[c-32P]ATP, 1 mM non-isotopic ATP and PtdIns/PtdSer were

added. Reactions were incubated for 30 min at 30uC following

which 32P-PIP were extracted using chloroform/propanol and

subject to thin layer chromatography (TLC) as previously

described [5]. The direction of TLC as well as the migration of
32P-PIP are indicated. (D) Purified recombinant p110a and p110b
(0.5 mg) were incubated with 0.5 mg bic and 0.25 mCi[c-32P]ATP

in a buffer containing 50 mM Hepes [pH 7.4], 5 mM EDTA,

10 mM MgCl2, and 0.25 mM DTT. Where indicated, 10 mM
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LY294002 was added to the kinase reaction. After 30 min at

30uC, reactions were stopped by the addition of load buffer and

subjected to SDS-PAGE. 32P incorporation was detected by

autoradiography. Coomassie staining of the gel indicates loading.

(TIF)

Figure S3 The role of PI3K lipid signaling and the
regulation of Akt. (A) FDM cells were generated by transduc-

tion of mouse E14.5 fetal liver cells with a retrovirus for the

expression of HoxB8 in the presence of high concentrations of

murine IL-3 as previously described [32]. Briefly, after 5 d, non-

adherent cells were cultured in soft agar and then a further 10–

14 d later, compact colonies were individually selected and put

back into liquid culture containing murine IL-3. Lines were tested

for murine IL-3 dependence as indicated by inhibition of

proliferation in the absence of murine IL-3. FDM cells were then

transduced with GEVP16-myr-Akt1-HA (encoding a constitutively

active myristolated form of Akt under the control of a 4-

hydroxytamoxifen-inducible promoter) and pF5xUAS-SV40-

eGFP. Pools of GFP+ FDM cells resistant to both hygromycin

and puromycin were isolated and maintained in DMEM/10%

FCS with 0.25 ng/ml murine IL-3. Induction of myr-Akt-HA was

achieved by treating FDM cells with 1 mM 4-hydroxy tamoxifen

(4HT) and protein expression and phosphorylation was confirmed

by immunoblotting with the indicated antibodies. (B) TF-1 cells

were co-transfected with constructs for the expression of myr-Akt1

and GFP and plated in 1 pM GM-CSF and either DMSO

(vehicle) or 100 nM PIK-75. The number of GFP+ viable cells was

counted at 48 h using Flowcount fluorospheres and flow

cytometry. (C) TF-1 cells were electroporated with constructs for

the expression of GFP or a fusion protein consisting of the PH

domain of Akt1 fused to GFP (Akt1-PH-GFP) and GFP-positive

cells were purified by FACS. Cells were then stimulated with

either 1 pM or 1,000 pM GM-CSF for 15 min following which

the cells were lysed and immunoblotted with the indicated

antibodies. Expression of Akt1-PH-GFP blocked PI3K lipid

signaling in response to 1,000 pM GM-CSF as evidenced by the

inhibition of Akt phosphorylation. Consistent with the data shown

in Figure 4B, 1 pM GM-CSF does not induce PI3K lipid signaling

with no evidence of detectable Akt phosphorylation.

(TIF)

Figure S4 Inhibition of DNA-PK or ATM kinases does
not block Ser585 phosphorylation or the survival of
human AML cells. (A) Primary human AML MNCs (AML6)

was plated in DNA-PK inhibitor NU7026 (10 mM), PIK-75

(100 nM) or ATM kinase inhibitor CGK733 (10 mM) and cell

survival examined at 24 h by annexin V staining and flow

cytometry. (B) TF-1 cells were treated with either 10 mM NU7026

or GCK733 for 1 h and then stimulated with the indicated

concentrations of GM-CSF for 20 min. Cells were then lysed and

bc immunoprecipitates were blotted with indicated antibodies.

(TIF)

Figure S5 siRNA-mediated knockdown of p110a results
in down-regulation of Ser585 phosphorylation. (A) Prima-

ry human AML MNCs (AML10–14) were transduced with

100 nM control or siRNA-p110a-1 (Ambion) for the down-

regulation of the p110a catalytic subunit of PI3K. After 48 h, cells

were lysed and the bc subunit of the GM-CSF/IL-3 receptor

immunoprecipitated followed by Western blotting with the

indicated antibodies. Phospho-bcSer585 signals were quantified

by laser densitometry. Relative intensity (%) of quantified signals

are indicated under the immunoblots. (B) Primary human AML

MNCs (AML6 and AML9) were plated in PIK-75 (100 nM),

TGX-221 (1 mM), IC87114 (5 mM), or AS25424 (100 nM) and

cell survival examined at 24 h.

(TIF)

Table S1 Selectivity of PI3K inhibitors.

(DOC)

Table S2 Primary human AML samples used and
clinical details. AML samples used (AML1–AML15) were

obtained from apheresis product, BM, or peripheral blood

samples. Patient samples were collected after informed consent

according to institutional guidelines and studies were approved by

the Royal Adelaide Hospital Human Ethics Committee and Alfred

Hospital Human Ethics Committee. +, white cell count (WCC)

(6109/l); ¤, normal karyotype (NK). Complex indicates at least

three abnormalities.

(DOC)
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