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Abstract

Practical application of genomic-based risk stratification to clinical diagnosis is appealing yet performance varies widely
depending on the disease and genomic risk score (GRS) method. Celiac disease (CD), a common immune-mediated illness, is
strongly genetically determined and requires specific HLA haplotypes. HLA testing can exclude diagnosis but has low
specificity, providing little information suitable for clinical risk stratification. Using six European cohorts, we provide a proof-
of-concept that statistical learning approaches which simultaneously model all SNPs can generate robust and highly
accurate predictive models of CD based on genome-wide SNP profiles. The high predictive capacity replicated both in cross-
validation within each cohort (AUC of 0.87–0.89) and in independent replication across cohorts (AUC of 0.86–0.9), despite
differences in ethnicity. The models explained 30–35% of disease variance and up to ,43% of heritability. The GRS’s utility
was assessed in different clinically relevant settings. Comparable to HLA typing, the GRS can be used to identify individuals
without CD with $99.6% negative predictive value however, unlike HLA typing, fine-scale stratification of individuals into
categories of higher-risk for CD can identify those that would benefit from more invasive and costly definitive testing. The
GRS is flexible and its performance can be adapted to the clinical situation by adjusting the threshold cut-off. Despite
explaining a minority of disease heritability, our findings indicate a genomic risk score provides clinically relevant
information to improve upon current diagnostic pathways for CD and support further studies evaluating the clinical utility
of this approach in CD and other complex diseases.
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Introduction

Improving the diagnosis of celiac disease (CD), a common

immune-mediated illness caused by dietary gluten, remains a

clinical challenge [1,2]. Despite a prevalence of approximately 1%

in most Western countries, lack of awareness and failure to

implement appropriate serological, histological and genetic testing

means that less than 30–40% of those affected by CD are diagnosed

[1,3–5]. Undiagnosed CD is associated with reduced quality of life,

substantial morbidity, and increased mortality, however, prompt

diagnosis and treatment lowers the burden of disease and may

reduce the rate of complications such as osteoporosis, autoimmune

disease, and malignancy. Optimizing the diagnosis of CD is now

recognized as an important goal for clinicians [6].

CD is characterized by a variable combination of gluten-

dependent clinical manifestations, CD-specific antibodies and small

bowel inflammation (villous atrophy) [7]. Traditional guidelines for

the diagnosis of CD rely on demonstrating villous atrophy and

improvement of symptoms, laboratory abnormalities, and/or small

bowel inflammation upon exclusion of dietary gluten [8]. Current

clinical practice is to screen for CD by detecting CD-specific serum

antibodies and then confirm the diagnosis by undertaking small

bowel biopsy to demonstrate typical villous atrophy. Serologic

screening for CD with transglutaminase-IgA antibodies is reported

to be highly sensitive and specific for CD (both .90%), imparting a

high positive predictive value (PPV) of over 90% when assessing

most populations [9,10], although the PPV can fall to 45–70% in

community screening settings [11,12]. In practice, serological and

histological assessments have technical limitations that generate

both false negative and false positive diagnoses.

A key feature of CD is its strong dependence on the presence of

susceptibility genes encoding for HLA DQ2.5, DQ8, and/or half

the HLA DQ2.5 heterodimer (typically DQ2.2), seen in approx-

imately 99.6% of all patients with CD [13]. These genes encode
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immune-recognition molecules which facilitate CD4+ T cell

recognition of specific gluten-derived peptides, a critical step in

disease pathogenesis [14–18]. Recognizing the crucial role of these

genes, the latest consensus diagnostic guidelines for CD recom-

mend testing for these HLA heterodimers (HLA typing) as a first-

line investigation for asymptomatic individuals identified at-risk of

CD, such as 1st-degree relatives of an affected individual or those

with suggestive symptoms [7]. However, a major flaw of HLA

typing as a diagnostic tool is that a substantial proportion of the

community, typically reported to be 30–40%, express HLA

DQ2.5, DQ8, and/or DQ2.2, thus making the presence of these

HLA types poorly predictive and of low specificity for CD [13].

Indeed, a recent Australian population study revealed that 56% of

the community possessed at least one of these CD susceptibility

haplotypes [5]. Thus, while HLA typing can exclude CD in the

community with high confidence when the susceptibility haplo-

types are absent, these haplotypes will be present in 30–56% of the

population, the majority of whom would not have CD. Therefore,

if assessed as a stand-alone test, HLA typing has exceptionally high

sensitivity and negative predictive value (NPV) but very poor

specificity and low positive predictive value (PPV) for CD. Since a

positive result poorly predicts the presence of CD, HLA typing is

not useful as a stand-alone diagnostic tool for CD. While the

relative-risk for CD can be stratified based on the HLA subtype

(CD risk DQ2.5.DQ8.DQ2.2) [19], these categories have low

positive predictive value and do not provide clinically-informative

attribution of CD risk [20]; HLA results are therefore interpreted

as a binary outcome: CD susceptibility positive or negative.

Despite these limitations, HLA typing is now widely utilized in

clinical practice and typically determined using polymerase chain-

reaction sequence specific oligonucleotide (PCR-SSO) hybridiza-

tion, which is time and labor intensive, and costly (AU $120/

sample, Medicare; in the USA cost varies but is typically US $150/

sample or greater).

It is important to distinguish between three different approaches

to analyzing the HLA region for association with CD. The first

approach, currently in clinical practice, is HLA typing, as

described above, where the HLA result is considered a binary

variable and its utility is to exclude CD. A second approach, such

as that taken by Romanos et al., utilizes the same HLA-DQ

haplotypes, stratifies individuals into several nominal risk levels

then fits a statistical model to empirically estimate the true risk in

each group [21,22]. While HLA-DQ haplotypes may be inferred

from typing several HLA SNPs, importantly the HLA SNPs are

only used to assign the HLA type and the SNPs themselves are not

directly modeled. The third approach, such as that used here, is

based on direct concurrent modeling of many thousands of

individual SNPs for association with CD in order to produce a

more fine-grained predictive ‘‘genomic risk score’’ (GRS).

GRSs have been enabled by the advent of genome-wide

association studies (GWAS), which perform unbiased testing of

many thousands of SNPs for association with CD. Using GWAS,

recent studies have identified multiple non-HLA SNP associations

with CD [23,24]. GWAS are primarily concerned with the

detection of variants associated with disease in order to gain insight

into the disease etiology and genetic architecture. Due to the high

number of significance tests, controlling for false positive

associations is a major, valid concern. Therefore, SNP-based risk

scores have tended to be constructed from the SNPs found to be

significantly associated with the disease status [22,25]. However,

due to the stringent multiple-testing corrections utilized in GWAS

there may be other SNPs that fail to achieve genome-wide

significance but may be predictive of disease status nonetheless and

including them in the model could potentially result in higher

predictive ability than achievable by models based solely on

genome-wide significant SNPs. In contrast to the GWAS

approach, the main overriding aim of a GRS from a clinical

perspective is to achieve maximal predictive capacity, the

inference of genetic architecture is secondary.

We have recently designed computational algorithms which

efficiently fit L1-penalized multivariable classification models to

genome-wide and whole-genome SNP data [26]. Such models

were then shown to be preferable to several other methods such as

the standard method of summing the per-SNP log odds (polygenic

score) [27], mixed effects linear modeling [28,29], and unpena-

lized logistic regression, with both better precision for detecting

causal SNPs in simulation and better case/control predictive

power [30]. These advantages were consistent across several

complex diseases, including two British studies of CD. However,

the diagnostic implications of penalized models have not been

previously examined nor has the robustness of such models in

other populations or the advantage over HLA-typing approaches.

In contrast to existing studies that examine a small number of

genome-wide significant SNPs, we have shown that many more

SNPs (potentially hundreds) are required to achieve optimal

predictive ability for CD. Further, the standard GWAS approach

of considering each SNP separately when estimating its effect size

does not consider its correlation with other SNPs. We have shown

that unpenalized predictive models based on these top SNPs suffer

from lower predictive ability than L1-penalized models since the

pre-screening introduces multiple highly correlated SNPs into the

model, of which a substantial proportion may be redundant in

terms of contribution to the predictive ability. Similar L1-

penalized approaches have also recently been successfully applied

to inflammatory bowel disease case/control Immunochip data,

where models based on several hundred SNPs have led to high

predictive ability [31].

Here, we provide a proof-of-concept that the GRS for CD,

induced by L1-penalized support vector machine models, are able

to achieve a predictive capacity and robustness that provides

information not afforded by current diagnostic pathways utilizing

Author Summary

Celiac disease (CD) is a common immune-mediated illness,
affecting approximately 1% of the population in Western
countries but the diagnostic process remains sub-optimal.
The development of CD is strongly dependent on specific
human leukocyte antigen (HLA) genes, and HLA testing to
identify CD susceptibility is now commonly undertaken in
clinical practice. The clinical utility of HLA typing is to
exclude CD when the CD susceptibility HLA types are
absent, but notably, most people who possess HLA types
imparting susceptibility for CD never develop CD. There-
fore, while genetic testing in CD can overcome several
limitations of the current diagnostic tools, the utility of
HLA typing to identify those individuals at increased-risk of
CD is limited. Using large datasets assaying single
nucleotide polymorphisms (SNPs), we have developed
genomic risk scores (GRS) based on multiple SNPs that can
more accurately predict CD risk across several populations
in ‘‘real world’’ clinical settings. The GRS can generate
predictions that optimize CD risk stratification and
diagnosis, potentially reducing the number of unnecessary
follow-up investigations. The medical and economic
impact of improving CD diagnosis is likely to be significant,
and our findings support further studies into the role of
personalized GRS’s for other strongly heritable human
diseases.
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HLA typing alone. This GRS has the potential to provide greater

clinical diagnostic utility by enabling each individual to be

assigned a more informative risk score beyond the simple

designation of ‘‘CD susceptible’’ or ‘‘CD non-susceptible’’, or

‘‘high risk’’ versus ‘‘low risk’’. To enable useful comparisons

between diagnostic approaches, we model the GRS as a stand-

alone test to ‘‘diagnose’’ CD, while at the same time acknowledg-

ing that real world clinical practice will need to draw upon clinical

history, CD-specific serology and small bowel histology to confirm

the diagnosis of CD. We assess the predictive power of the GRS

both in cross-validation and in external validation, across six

different European cohorts, showing that the models strongly

replicate. We test our GRS on three other autoimmune diseases:

type 1 diabetes, Crohn’s disease, and rheumatoid arthritis, finding

some predictive ability for T1D status but none for the others, thus

largely supporting the specificity of the scores for CD. To

overcome limitations of previous studies utilizing GWAS case/

control studies, where ascertainment bias incurs substantially

higher rates of false positive results, we undertake genomic

prediction of CD in ‘‘real world’’ settings where the prevalence of

CD is far lower and evaluate the performance of the GRS using

PPV and NPV at several levels of CD prevalence. Unlike HLA

typing, the GRS allows flexibility in determining who is considered

at higher risk for CD by selecting a clinically determined user-

specified threshold. We demonstrate how these scores can be

practically applied at various prevalence levels to optimize

sensitivity and precision. Finally, we show how the model can be

calibrated to produce accurate predicted probabilities of disease.

Results

An overview of our analysis workflow is shown in Figure 1. We

analyzed five CD datasets on the Illumina Infinium array

platform: UK1 and UK2 (British descent), Finn (Finnish descent),

IT (Italian descent), and NL (Dutch descent). We also utilized a

dataset run on a fine-mapping array: IMM (Immunochip of British

descent) (see Methods and Table 1). We have previously analyzed

the AUC achievable in the UK1 and UK2 [30].

We trained L1-penalized support vector machines (SVM) [26]

on the genotype data, including all post quality control (QC)

autosomal SNPs unless otherwise indicated. These models are

sparse models, (Methods) and varying the penalty induces models

based on different number of SNPs with non-zero coefficients. We

investigated the performance for various degrees of sparsity, and

the models were fitted to all SNPs across the genome simulta-

neously. For each model’s induced risk score, we estimated the

area under the receiver operating characteristic curve (AUC) and

the explained phenotypic variance [32], which depends on the

assumed prevalence of disease.

Cross-Validation in Each Dataset
Within each dataset, we used 10610 fold cross-validation to

estimate the AUC and explained phenotypic variance on the

liability scale. The explained phenotypic variance was derived

from the AUC assuming a population prevalence of K = 1%. All

cohorts showed high AUC in cross-validation (Figure 2a), with the

Finnish and Italian cohorts having a maximum of 0.89, followed

by the UK1 cohort (AUC = 0.88), and finally the UK2 and Dutch

cohorts with a maximum AUC of 0.87. Both the UK1 and the

Italian cohorts peaked at ,64 SNPs with non-zero weights,

whereas the rest peaked at ,250 SNPs. Subsampling of the

individuals in the UK2 dataset indicated diminishing returns with

80% of the sample size having the same AUC as 100% (Figure

S1). Consistent with this, combining the UK1 and UK2 datasets

did not increase AUC beyond UK2 alone (results not shown). It is

also important to note that some of the control samples were

population-based and were not explicitly screened for celiac

disease, thus ,1% may be cryptic CD cases which potentially

underestimates prediction performance in downstream analyses.

These AUCs correspond to explained phenotypic variance of 30–

35% (Figure 2b). Assuming a CD heritability of 80%, this

translated to an explained genetic variance of 37–43%.

External Validation between Datasets
While cross-validation provides an estimate of the model’s

ability to generalize to unseen datasets, choosing the model with

the highest AUC may lead to so-called ‘‘optimization bias’’ (also

called ‘‘winner’s curse’’) [33,34], potentially manifesting as lower

performance in independent validation. Additionally, cross-vali-

dation cannot compensate for intra-dataset batch effects, as these

would be present in both the training and testing folds, potentially

artificially inflating the apparent predictive ability. To assess

whether the models suffered from optimization bias and to control

for the possibility of intra-dataset batch effects, we performed

external validation. Based on the results of the cross-validation, we

selected the best models trained on the UK2 dataset then, without

any further tuning, tested them on the UK1, Finn, IT and NL

datasets and computed the receiver-operating characteristic

(ROC) curves (Figure 3a). Overall, the models trained on the

UK2 cohort showed high reproducibility on the other cohorts,

achieving AUC of 0.89–0.9 in the Finnish and UK1 datasets,

indicating negligible optimization bias from the cross-validation

procedure. We also examined the replication of different SNP sets

(all autosomal, MHC, and non-MHC) trained on the UK2 dataset

and tested on the others (Figure S2). The trends observed in cross-

validation, namely similar performance for MHC and all

autosomal SNPs and lower but still substantial performance of

non-MHC SNPs, was observed in all external validation

experiments.

Comparison of Genomic Risk Score with Methods Based
on HLA Typing

Since HLA typing is commonly used for assessing CD risk

status, we sought to compare the performance of an approach

based on inferred HLA types with the GRS. We utilized the

approach of Romanos et al. [21] on the Immunochip data, which

relies on both HLA types and 57 non-HLA Immunochip SNPs

(including one chrX SNP). Since directly measured HLA types

were not available for our datasets, we imputed HLA-DQA1 and

HLA-DQB1 haplotype alleles using HIBAG [35] and derived the

presence of DQ2.2/DQ2.5-homozygous/DQ2.5-heterozygous/

DQ8 heterodimer status. The coefficients for the HLA risk types

in the HLA+57 SNP model were not available for the Romanos et

al. method, thus we had to estimate these from our data. For

application of the GRS method, we trained models on 18,309

autosomal SNPs from UK2 (the subset shared between the

Illumina 670 and Immunochip) then externally validated these

models on the Immunochip data. We trained three separate

models: All autosomal SNPs, MHC SNPs, and autosomal non-

MHC SNPs. As seen in Figure 3b, the GRS trained on either all

SNPs or the MHC SNPs yielded higher AUC (0.87) than the

Romanos HLA+57 SNPs (AUC = 0.85) or HLA type alone

(AUC = 0.8). The predictive power of the GRS induced by SNPs

outside the MHC was lower but still substantial at AUC = 0.72.

We also performed similar analyses on the rest of the datasets

(UK2 in cross-validation then externally validated on the rest),

comparing the GRS with the HLA type and with analysis of HLA

tag SNPs [36] commonly used to infer HLA types since the 57

Genomic Prediction of Celiac Disease
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Figure 1. The analysis workflow.
doi:10.1371/journal.pgen.1004137.g001
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non-HLA SNPs used by Romanos were not available on these

platforms. As shown in Figure S2, the HLA type approach had

consistently lower AUC (0.795–0.86) than analysis of the

individual HLA tag-SNPs of Monsuur (AUC of 0.85–0.876,

directly modeled using logistic regression on the SNPs in the UK2

then tested on the other datasets) and substantially lower than the

GRS (AUC of 0.86–0.894).

Overall, our results showed that the L1-penalized SVM

approach which modeled the SNPs directly was able to extract

more information from the HLA region than the coarse-grained

HLA haplotype model, either with or without the addition of the

57 non-HLA SNPs. This resulted in a gain in explained

phenotypic variance of 3.5% over the best Romanos et al model

in the Immunochip data.

Specificity of the Genomic Risk Score
We investigated whether the models of CD were predictive of

case/control status in other immune-mediated diseases, specifically

type 1 diabetes (T1D), rheumatoid arthritis (RA), and Crohn’s

Disease/Inflammatory Bowel Disease (Crohn’s) from the

WTCCC [37]. We utilized the 76,847 post-QC SNPs that

appeared on both the UK2 Illumina and WTCCC Affymetrix

500K arrays. Despite the substantial reduction in the number of

SNPs from the original data, we observed only small reductions in

AUC in the restricted UK2 dataset in cross-validation, indicating

that most of the predictive information was retained in the reduced

SNP set (AUC = 0.85 at ,200 SNPs). The models trained on the

UK2 were subsequently tested on the T1D, RA and Crohn’s

datasets. We also used the Finnish CD dataset as external

validation to ensure that the high predictive performance observed

in cross-validation on UK2 was replicated on other CD datasets

and not degraded by using fewer SNPs. Overall, the models

showed some predictive ability of T1D (AUC = 0.69), consistent

with previous findings showing shared genetics between T1D and

CD [38,39] (see Figure S3 for results for the MHC and non-MHC

SNPs in T1D) but displayed very low performance (AUC 0.51–

0.54) on the RA and Crohn’s datasets. In contrast, performance on

the Finnish CD cohort was only slightly lower (AUC = 0.85)

Table 1. List of celiac disease datasets used in this study.

Name Ethnicity Platform
Autosomal SNPs
post-QC Male Female Cases Controls

Total samples
post-QC

Finn Finnish Illumina 513,952 1206 1270 647 1829 2476

IT Italian Illumina 515,641 332 708 497 543 1040

NL Dutch Illumina 515,169 752 897 803 846 1649

UK1 British Illumina 301,659 938 1262 778 1422 2200

UK2 British Illumina 515,444 2954 3831 1849 4936 6785

IMM British Immunochip 18,252* 3927 6377 5907 4397 10,304

*only SNPs in common with the post-QC UK2 dataset were analysed and are thus shown here.
doi:10.1371/journal.pgen.1004137.t001

Figure 2. Building genomic models predictive of celiac disease. LOESS-smoothed (a) AUC and (b) phenotypic variance explained, from 10610
cross-validation, with differing model sizes, within each celiac dataset. The grey bands represent 95% confidence intervals about the mean LOESS
smooth.
doi:10.1371/journal.pgen.1004137.g002
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compared with the full SNP set, again confirming that the CD

models replicated across ethnic cohorts despite using a reduced set

of SNPs (Figure 3c).

Analysis of a Combined Dataset
All CD datasets showed consistently high AUC both in cross-

validation and in external validation, indicating that the risk of

substantial confounding of the case/control status by ethnic cohort

(via population stratification or strong intra-cohort batch effects)

was low. Therefore, in order to increase statistical power in

comparing the performance of the models, we created a combined

dataset consisting of the Finnish, Dutch, and Italian cohorts,

totaling 5158 samples (1943 cases and 3215 controls, 512,634

SNPs). This combined dataset is likely more representative of a

real screening scenario where individuals of different ethnicities

are being screened for CD. Figure 4a shows kernel density

Figure 3. Performance of the genomic risk score in external validation, when compared to other approaches, and on other related
diseases. ROC curves for models trained in the UK2 dataset and tested on (a) four other CD datasets, (b) the Immunochip CD dataset, comparing the
GRS approach with that of Romanos et al. [21], and (c) three other autoimmune diseases (Crohn’s disease, Rheumatoid Arthritis, and Type 1 Diabetes).
We did not re-tune the models on the test data. For (b) and (c), we used a reduced set of SNPs for training, from the intersection of the UK2 SNPs with
the Immunochip or WTCCC SNPs (18,252 SNPs and 76,847 SNPs, respectively). In (c), the same reduced set of SNPs was used for the CD-Finn dataset,
in order to maintain the same SNPs across all target datasets.
doi:10.1371/journal.pgen.1004137.g003
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estimates of the predicted risk scores for cases and controls in the

combined dataset, where the scores are based on models trained

on the UK2 dataset as previously described. As expected from the

high AUC, there is substantial separation between the score

distributions for the two classes. Also shown is the percentage of

the combined population corresponding to a range of GRS

thresholds (Figure 4b).

Positive and Negative Predictive Values under Different
Prevalence Settings

The prevalence of CD in the general population, here taken to

be 1%, is much lower than the prevalence in the case/control

datasets where the cases are substantially over-represented owing

to the study design. Considering the prevalence as the prior

probability of a person having the disease (without knowing their

genetic profile), then unless the likelihood of disease given the

genotype is high as well, the posterior probability of disease will

remain low. To quantify the predictive performance of our

models while accounting for the prevalence, we estimated the

precision of our models trained on UK2 on the Finn+NL+IT

combined dataset. We down-sampled the cases in the combined

dataset to simulate settings with different CD prevalence levels

(1%, 3%, 10%, and 20%) and estimated precision and sensitivity

in the test data, repeated in 50 independent simulations for each

prevalence level (Figure 5a). The precision here is equivalent to

the PPV [40] as the precision is estimated in data with the same

prevalence as assumed by the PPV. The PPV is the posterior

probability of having the disease given a positive diagnosis, and

the NPV is the posterior probability of not having the disease

given a negative diagnosis (a perfect model offers

PPV = NPV = 1). Note that the lowest NPV achievable is

12prevalence which translates to seemingly high NPV values

in the low-prevalence setting, rendering NPV less useful for

assessing classifiers in such settings as even a weak classifier can

achieve apparently high NPV.

Population screening for CD is not currently accepted practice.

Most evidence supports an active case-finding strategy where patients

with risk-factors for CD, and therefore higher pre-test probability of

CD than the population-wide average, are identified by their

primary practitioner and screened. For example, the prevalence of

CD in patients with a first-degree relative with CD is 10% or higher

[41,42], and the prevalence of CD in patients with T1D ranges from

3–16% [43]. The increased CD prevalence in these groups of

patients improves the apparent ‘diagnostic’ performance of the GRS.

To examine the effect of prevalence on PPV, we first employed the

GRS in a population-based setting (prevalence of 1%) which resulted

in a PPV of ,18% at a threshold that identified 20% of the CD

cases, but this dropped to ,3% at a threshold identifying 85% of the

CD cases. In contrast, performance in more clinically relevant

settings with higher CD prevalence was substantially better. For

instance, the PPV increased from ,18% at 1% prevalence to ,40%

at 3% prevalence, and to ,70% at 10% prevalence, with the

sensitivity setting at 20% (Figure 5a). At 10% prevalence, increasing

the GRS sensitivity to 60% resulted in a PPV of 40%, and at a

sensitivity of 80% the PPV was ,30%. There were small differences

in the AUC between prevalence levels, on the order of 1–3%,

however all settings maintained high AUC at $0.86 (Figure 5b).

Since sensitivity and specificity are independent of prevalence, these

differences are likely due to the small number of cases in the low-

prevalence settings and stochastic variations in the data caused by

randomly sampling cases from different ethnicities, as each ethnicity

showed slightly different predictability of CD in external validation,

Figure 4. Distribution of genomic risk scores in cases and controls. (a) Kernel density estimates of the risk scores predicted using models on
UK2 and tested in the combined dataset Finn+NL+IT, for cases and controls. (b) Thresholds for risk scores in terms of population percent, with the top
more likely to be a CD and the bottom more likely to be non-CD.
doi:10.1371/journal.pgen.1004137.g004
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together with clinical heterogeneity resulting from different numbers

of cryptic cases in the controls of each cohort.

Non-Disease Cases Implicated per True Disease Case
Another way to quantify the usefulness of predictive models as

diagnostic tools is to evaluate the number of subjects without CD

that are incorrectly identified as potential CD cases per each true

CD diagnosis, and to do so at different levels of clinical risk

(prevalence). This measure is equivalent to the posterior odds of

not having CD given the genotypes (1 – PPV)/PPV, where a lower

number is better (fewer incorrect cases implicated per true CD

case). Figure 6 shows that at a sensitivity threshold to detect 20%

of CD cases, the odds of incorrectly implicating CD were ,7:1 at

prevalence of 1%, but this decreased to ,1:2 and ,1:5 at a

prevalence of 10% and 20%, respectively. Further, at 10% CD

prevalence the odds of incorrectly implicating CD were less than

1:1 while maintaining sensitivity of more than 30%, and for 20%

CD prevalence up to 80% of true CD cases could be detected with

such odds.

Application of the Genomic Risk Score
The application of the GRS is straightforward: once the SNPs in

the model have been genotyped for a given patient, the GRS can

be easily computed as the sum of the SNPs weights times the allele

dosages plus an intercept term (Methods and Table S1). Our

models consist of ,200 SNPs, hence the score can be easily

computed in a spreadsheet or with PLINK. Whereas the models

are fixed in the training phase, the interpretation of the scores

depends on the screening setting in which they are used since

selection of different risk thresholds leads to different false positive

and false negative rates. In other words, the same numerical risk

score may be interpreted differently in each setting, depending on

the performance criteria required by the clinician, such as a

minimum level of sensitivity or a maximum number of non-CD

implicated per true CD implicated.

Figure 7 illustrates how the GRS could be applied in two

commonly encountered but different clinical settings to (i) exclude

individuals at average (background) risk of CD with high

confidence, or to (ii) stratify individuals at higher risk of CD for

further confirmatory testing. In the first setting, in order to

optimize the NPV, a suitably low GRS threshold is selected,

leading to a relatively large proportion of the population being

considered as potentially at-risk of CD. An NPV of 99.6%

(comparable to HLA testing) can be achieved at the population-

wide 1% prevalence by setting a threshold corresponding to

designating 15% of the population as CD cases (PPV of 5%). In

the second setting, we modeled a scenario where the risk of CD is

increased (for instance in patients with suggestive symptoms or

clinical conditions) and risk stratification is sought to identify the

patients most likely to benefit from further definitive investigation

for CD. The prevalence of CD in those with higher-risk

symptoms is approximately 3% [3,44] and in first-degree relatives

of CD patients it is 10% [41,42]. In this second setting, we

highlight two extreme choices of threshold as an example of what

is achievable using the GRS at each prevalence level. The first

threshold is stringent, predicting only a small number of high-

confidence individuals as likely to have CD and subsequently

leading to low sensitivity but higher PPV. The second threshold is

low, implicating a larger number of individuals as likely to have

CD and leading to higher sensitivity at the expense of reduced

PPV.

More detailed results for a range of prevalence levels are

shown in Table S2. These consider different cutoffs of the risk

score expressed as a proportion of the population implicated

for CD. We used the proportion of the population rather than

proportion of the cases (sensitivity) to select risk thresholds

Figure 5. Performance at different prevalences and partial ROC curves. (a) Positive and negative predictive values and (b) partial ROC curves
for models trained on UK2 using 228 SNPs in the model, and tested on the combined Finn+NL+IT dataset. K represents the prevalence of disease in
the dataset and the curves are threshold-averaged over 50 replications. Note that precision is not a monotonic function of the risk score. Precision is
equivalent to PPV here. A prevalence of ,10% corresponds to prevalence in first-degree relatives of probands with CD [42].
doi:10.1371/journal.pgen.1004137.g005
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since the true number of cases is unknown and we must select

how to classify a given individual based only on their score

relative to the population scores estimated in our data

(Figure 4). As expected, sensitivity and specificity remain

unchanged between the prevalence levels using the same risk

score cutoff, however PPV, NPV and consequently the number

of people incorrectly implicated as CD for each true CD case,

depend strongly both on the prevalence and on the cutoff.

Therefore, at a given prevalence level a suitable risk score

cutoff can be selected in order to balance the two competing

requirements of increasing the number of people correctly

identified as having CD per true cases (PPV) while maintaining

an acceptable level of sensitivity (coverage of the cases). A

major benefit of the GRS is its flexibility in adapting to the

appropriate clinical scenario and needs of the clinician. The

PPV of the GRS can be adjusted up or down by varying the

GRS cutoff and considering the acceptable level of sensitivity

to detect CD. In practice, the most clinically appropriate cut-

off thresholds would ideally be determined in local populations

by undertaking prospective validation studies utilizing the

GRS (See Discussion).

Risk Score Calibration
While the raw GRS cannot strictly be interpreted as the

probability of disease given the genotypes, since it hasn’t been

normalized to be between 0 and 1, the score can be transformed

Figure 6. Clinical interpretation as a function of threshold and prevalence. The number of non-CD cases ‘‘misdiagnosed’’ (wrongly
implicated by GRS) per true CD cases ‘‘diagnosed’’ (correctly implicated by GRS), for different levels of sensitivity. The risk score is based on a model
trained on the UK2 dataset, and tested on the combined Finn+NL+IT dataset. The results were threshold-averaged over 50 independent replications.
Note that the curve for K = 1% does not span the entire range due to averaging over a small number of cases in that dataset.
doi:10.1371/journal.pgen.1004137.g006
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into a probability using the empirical distribution of scores in the

data (Figure 4). To assess the agreement between the predicted

probability of disease and the observed probability of disease, we

used calibration plots [45] that compared the predicted 5%

quantiles of the risk scores, derived from models trained on the

UK2 dataset and externally applied to the other datasets, with the

observed probability of cases in each bin. For a well-calibrated

GRS, the proportion of cases to samples in each bin should be

approximately equal to the predicted risk. To correct for potential

lack of calibration, we fitted a LOESS smooth to the calibration

curve, which was then used to adjust the raw predictions into

calibrated predictions. To avoid biasing the calibration step and to

assess how well it performed in independent data, we randomly

split each external dataset (Finn, IT, NL, and UK1) into two

halves of approximately equal size. We assessed calibration in the

first half of each dataset and fitted a LOESS smooth to the

calibration curve (Figures S4a and S4c). We then used the LOESS

smooth to calibrate the predictions for the other half of each

dataset and assessed the calibration there (Figures S4b and S4d).

Since the calibration is affected by prevalence, we assessed this

procedure both in the observed data (prevalence of ,40%) and in

a subsampled version with prevalence of ,10%. Overall, our

calibration procedure was able to correct for a substantial amount

of mis-calibration in the raw scores, even in the more challenging

case of 10% prevalence.

Discussion

In this study, we have sought to exploit the strong genetic basis

for CD and leverage comprehensive genome-wide SNP profiles

using statistical learning to improve risk stratification and the

diagnosis of CD. Our models showed excellent performance in

cross-validation and were highly replicable in external validation

across datasets of different ethnicities, suggesting that the genetic

component is shared between these European ethnicities and that

our models were able to capture a substantial proportion of it.

Figure 7. Example clinical scenarios. The GRS can be employed in different clinical scenarios and tuned to optimize outcomes. The GRS can be
employed in a comparable manner to HLA testing (left table) to confidently exclude CD. In this scenario, we selected a GRS threshold based on
NPV = 99.6% however a range of thresholds can be selected to achieve a high NPV (see note below). The GRS can also stratify CD risk (right table).
Confirmatory testing (such as small bowel biopsy) would be reserved for those at high-risk. In this example, we present two scenarios: optimization of
PPV or of sensitivity. In comparison to the GRS, all HLA-susceptible patients will need to undergo further confirmatory testing for CD. For more
information on GRS performance across a range of thresholds, see Table S2. Prospective validation of the GRS in local populations would enable the
most appropriate settings for NPV, PPV and sensitivity to be identified which provide the optimal diagnostic outcomes. + The highest achievable NPV
at 10% prevalence was 99.4%.
doi:10.1371/journal.pgen.1004137.g007
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Importantly, even without explaining a majority of CD heritabil-

ity, the models were robust and accurate, showing that it is not

necessary to explain most of the heritability in order to produce a

useful model.

The most frequently employed tools to diagnose CD are

serology and small bowel histology, but both have limitations.

Differences in the sensitivity of antibody recognition of commer-

cially employed CD-specific antigens such as tissue transglutamin-

ase, deamidated gliadin peptides, and endomysial antigen, as well

as the human operator performing the assay can all influence

findings and affect reproducibility of serological testing [9,46–49].

Serologic testing in children is reported to be less reliable before

the age of 4 and up to 50% of children normalize elevated

antibodies over time [50,51]. While small bowel histology remains

the ‘gold standard’ confirmatory test, it is dependent upon patients

willing and available to undergo endoscopy, adequate sampling by

the gastroenterologist, and appropriate pathological processing

and interpretation [52–54]. The frequencies of false positives and

false negatives in CD serology assays vary widely and also partly

depend upon what degree of histologic inflammation is considered

compatible with CD [52,54–58]. Notably, the accuracy of both

serologic and histologic testing for CD is dependent on the

ongoing consumption of gluten. It is clear that clinically significant

variability exists in serologic and histologic work-up for CD and

new tools to improve the accuracy of CD diagnosis would be of

benefit to clinicians. Given the strong genetic basis for CD,

genomic tools are logical and appealing because they are relatively

robust and less subject to the kind of variability seen with serologic

and histologic assessment, are independent of age, and do not rely

on dietary intake of gluten.

A major shortcoming of clinical HLA typing for risk prediction

of CD is its poor specificity. HLA testing would result in virtually

all CD cases detected but at the cost of approximately 30–56

people incorrectly implicated for each true case of CD. A

significant advantage of the GRS approach is that it can be

adapted to the clinical scenario in order to maximize PPV and

diagnostic accuracy. By promoting accurate clinical stratification,

the GRS could reserve invasive and more expensive confirmatory

testing for those who would most likely benefit from further

investigation to secure a diagnosis, and it would avoid unnecessary

procedures in those who are HLA susceptible but unlikely to have

CD. This provides both clinical and economic benefits. HLA

typing does not provide the flexibility afforded by the GRS and

cannot be effectively employed to identify those who would benefit

from endoscopy. For instance, if HLA typing were used as a guide

for further investigations, at 10% CD prevalence it would generate

over five unnecessary endoscopies per correct endoscopy and at

1% CD prevalence it would generate 30–56 unnecessary

endoscopies. Small bowel endoscopy is not a trivial undertaking

– the procedure is costly (approximately AUD $750–$1000 for the

procedure and associated pathology), has potential complications,

necessitates a full day off work, and many patients are reluctant to

undergo it.

The GRS can be used to exclude patients unlikely to have

CD with a performance comparable to HLA typing. Testing

with these parameters may be useful in the clinical scenario of

assessing individuals at average risk of CD. A common example

would be when a person has commenced a gluten-free diet prior

to assessment for CD by serology or small bowel examination

and are unwilling or unable to resume oral gluten intake in

order to make testing reliable. This is an increasingly common

clinical dilemma as the number of people following a gluten-

free diet without adequate initial testing for CD continues to

rise. In the United States approximately 30% of the adult

population are interested in cutting back or avoiding dietary

gluten [59].

The GRS can also be used to stratify the risk for CD in

patients who present with suggestive clinical features. These risk

factors include having a first-degree relative with CD or

problems such as recurrent abdominal pain, bloating, diarrhea

or constipation, fatigue, weight loss, unexplained anemia,

autoimmune disease (including thyroid disease, T1D, autoim-

mune hepatitis, rheumatoid arthritis, and Sjogren’s syndrome),

infertility or early-onset osteoporosis [3,60]. Supporting the

recently revised diagnostic guidelines for CD, which promote

HLA testing as the 1st line investigation for higher-risk cases,

genetic testing of CD is likely to be more informative in these

sub-populations exhibiting higher-than-normal prevalence.

While clinical guidelines recommend screening for CD in these

high-risk populations [61], testing often poses a diagnostic

dilemma as serologic assessment alone cannot confidently

exclude a diagnosis, especially given the higher pre-test

probability. HLA typing is not particularly informative as the

CD HLA susceptibility haplotypes HLA-DQ2.5 and DQ8 are

commonly present (manifesting in over 90% of patients with

T1D and in 65% in first-degree relatives of individuals with CD)

[62,63]. Stratifying these higher-risk patients based on a GRS

will allow improved identification of those where small bowel

biopsy is likely to be informative. Thus, a GRS should reduce

the number of unnecessary small bowel biopsies in first-degree

relatives who carry HLA susceptibility for CD but do not have

it. We have found that our CD models had only moderate

predictive ability for T1D, which is consistent with previous

findings showing some shared genetics between T1D and CD

[38]. Despite the substantial overlap of genetic factors for

autoimmune disease, the CD models had negligible predictive

ability for Crohn’s disease and rheumatoid arthritis. These

results indicate that our GRS is specific to CD and less likely to

incorrectly identify patients with other autoimmune diseases as

having CD, but further work is required to determine whether

CD can be as confidently predicted in individuals with T1D as it

is in non-T1D populations.

Another major clinical challenge that may benefit from

genomic risk prediction is determining the natural history of

potential CD (formerly termed ‘latent CD’) when there is

serologic but not histologic evidence of CD, and identifying

which patients are more likely to develop overt CD with small

bowel inflammation [64]. Current practice is to follow-up all

patients with immunologic evidence of gluten intolerance in order

to capture those who will eventually develop overt disease. An

analogous clinical scenario is that of children with positive CD

serology, of whom 50% will fail to develop small bowel changes

consistent with CD during follow-up [50,51]. In both clinical

situations, it is reasonable to expect that a GRS can improve risk

stratification of such patients for developing overt CD. Of course,

environmental factors are important in the development of CD

and the exact extent to which environmental versus genetic

factors contribute to the development of overt CD remains

unknown. Long-term follow-up studies of patients with potential

CD will be necessary to establish the role of genomic risk

prediction in this important subgroup.

Future work will look at optimizing our GRS as a tool to predict

CD risk. Validation of our model in real-life practice will be

important to confirm the clinical benefit of the GRS in

conjunction with serology and/or over HLA typing alone, as well

as to what extent other clinical predictors such as sex, age, and

family history can contribute to clinically relevant risk prediction.

Future prospective studies will enable direct optimization of
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clinical utility (accuracy, practicality, throughput and cost)

afforded by the GRS, for example in conjunction with CD

serology. These studies will also provide a rigorous evidence base

for suggested clinical guidelines of GRS usage. Importantly,

appropriate GRS cut-off levels to maximize diagnostic accuracy

(optimal PPV and NPV for each given clinical scenario and CD

prevalence) could be obtained by local prospective validation.

Such studies can identify the ultimate clinical role for the GRS:

whether it can effectively replace HLA typing and also whether it

is a stand-alone test or one to accompany CD serology. Hadithi et

al showed that in patients at high-risk of CD the addition of HLA

typing to CD serology had the same performance as either testing

strategy alone [65], but the greater precision of the GRS over

HLA typing may better complement CD serology. Understanding

where the GRS fits in the diagnostic algorithm to optimize

precision and cost-effectiveness will be essential, as is the role it

might play in the diagnostic work-up of CD in populations with

lower levels of clinical risk. Health economic modeling will address

the cost-benefits of using the GRS in the diagnosis of CD, taking

into account the cheaper cost of GRS over HLA typing, and

include the downstream benefits of potentially reducing endosco-

pies (substantial cost savings and value to patients from reduced

discomfort) as well as potential improvements in quality of life

from the detection of CD.

Further, it may be that other statistical modeling approaches

yield improvements in predictive power, for example non-additive

models that consider epistatic interactions between SNPs. Another

avenue for improvement is considering each CD subtype

separately, recognizing potentially different genetic bases for these

conditions. Based on our results, we do not expect substantial

improvements from increasing sample size alone, however this will

be important for adequately powered studies of lower frequency

genetic variants of assumedly greater effect size.

In summary, this study demonstrates that simultaneous

modeling of all SNPs using statistical learning was able to

generate genomic risk scores that accurately predict CD to a

clinically relevant degree. This was despite the models

explaining only a minority of disease heritability. The GRS

better enables clinicians to stratify patients according to their

risk of CD compared to HLA typing alone and, we predict,

more accurately determines those suitable for confirmatory

testing in the form of small bowel biopsy. Reserving this

invasive, time consuming and costly procedure for higher-risk

cases is likely to improve the accuracy, cost and public

acceptance of testing for CD, and by extension, benefit the

overall diagnosis of CD in the community. By better prioritizing

higher-risk patients for confirmatory testing, genomic risk

prediction carries promise as a clinically useful tool to add to

the clinician’s diagnostic armamentarium. Ultimately, we

envisage a clinical scoring algorithm based on the combination

of clinical features, serologic, and genetic information that will

accurately predict people with biopsy-confirmed CD and

perhaps ultimately overcome the reliance on small bowel

histology altogether. Further, the costs of genotyping a select

number of marker SNPs with a low-plex, high throughput

technology are already far lower than the costs of full HLA

typing, resulting in a test that is cheaper, more flexible and

more precise than HLA typing. More generally, this study

demonstrates that statistical learning approaches utilizing SNPs

can already produce useful predictive models of a complex

human disease using existing genotyping platforms assaying

common SNPs and suggests that similar approaches may yield

comparable results in other complex human diseases with

strong genetic components.

Methods

Ethics Statement
All participants gave informed consent and the study protocols

were approved by the relevant institutional or national ethics

committees. Details given in references van Heel et al [23] and

DuBois et al [24]. All data was analysed anonymously.

Data
We analyzed six CD datasets: UK1 [23], UK2, IT, NL, and Finn

[24], and IMM [66]. The main characteristics of the datasets are

listed in Table 1. In addition we used three WTCCC datasets

(T1D, Crohn’s, and RA) that have been described elsewhere

[30,37]. UK1 used the Illumina Hap330v1-1 array for cases and

Hap550-2v3 for controls, UK2 used the Illumina 670-QuadCus-

tom-v1 for cases and 1.2M-DuoCustom-v1 for controls, the NL

and IT datasets used the Illumina 670-QuadCustom-v1 in both

cases and controls, and the Finn dataset used the Illumina 670-

QuadCustom-v1 for cases and Illumina 610-Quad for controls.

The WTCCC data (T1D, Crohn’s, and RA) used the Affymetrix

500K array. In all of our models, we used autosomal SNPs only,

and did not include the gender as a covariable, as models built

separately on the two genders using the same sample size and

case:control balance showed very similar performance in cross-

validation on the UK2 dataset (results not shown). For analyses of

the MHC region, we defined the MHC as all SNPs on chr6 in the

range 29.7 Mb–33.3 Mb.

Quality Control
For each of the UK1, UK2, IT, NL, and Finn datasets, we

removed non-autosomal SNPs, SNPs with MAF,1%, with

missingness .1%, and those with deviations from Hardy-

Weinberg Equilibrium in controls P,561026. We also removed

samples with missingness .1%. We tested identity-by-descent

between samples in UK1 and UK2 and removed one of a pair of

samples with pi-hat $0.05 (either between the datasets or within

the datasets). The QC for the IMM Immunochip data has been

previously described [66]; we estimated 5763 Immunochip

samples to have pi-hat $0.125 (PLINK IBS) with any UK2

sample, and those were removed, leaving 10,304 Immunochip

samples in total, with 18,252 SNPs shared with the UK2 dataset

(post-QC). The QC for the WTCCC data (T1D, Crohn’s, and

RA) has been previously described [30,37].

Assessment of Population Structure Effects
To assess the impact of potential cryptic population structure,

we estimated the top 10 principal components (PCs) for the UK2

with EIGENSOFT 4.2 [67], after removal of regions with high LD

(see Text S1 for details). The principal components themselves

showed almost no predictive ability (AUC = 0.52), and models

trained on all SNPs accounting for these PCs showed indistin-

guishable performance from the non-adjusted model, both in

cross-validation on the UK2 dataset and in external validation on

the Finn, NL, and IT datasets (Figure S5), demonstrating that

confounding of our UK2 models by population structure was

negligible and was not a contributing factor to the high predictive

ability.

Statistical Analysis
We used L1-penalized support vector machines (SVM)

implemented in the tool SparSNP [26] (https://github.com/

gabraham/SparSNP) as the classifiers. The L1-penalized SVM

is a sparse linear model, that is, many or most of the SNPs will

receive zero weight in the model, as determined by the L1
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penalty. The use of a sparse model fits with our prior

expectation that in autoimmune disease most SNPs will not be

associated with disease status. The inherent sparsity of the

model obviates the need for subsequent filtering of SNPs by

weight, in order to decide which ones show strong evidence of

association and which are spurious, as would be required in a

non-sparse (L2-penalized) model. In addition, in extensive

simulation and in analysis of real genotype data, including the

two celiac disease datasets UK1 and UK2, we have previously

shown the advantage of L1-penalized SVMs over commonly

used approaches such as polygenic scores (sum of the log odds),

linear mixed models (GCTA), and unpenalized logistic regres-

sion [30]. The advantage of sparse models over standard linear

mixed models in predicting autoimmune disease has been

recently confirmed in type-1 diabetes as well [68]. We have also

shown that our L1-penalized SVMs achieved essentially

identical performance to L1-penalized logistic regression

(glmnet) in cross-validation over the Finnish subset of the celiac

disease dataset, while being substantially faster [26]. Unlike

single marker approaches that estimate the effect size of each

SNP separately, the L1-penalized SVM is a multivariable

model, where the estimated effect of each SNP is conditional on

all other SNPs, thereby implicitly accounting for the linkage

disequilibrium (LD) between SNPs. Besides imposing sparsity,

the L1 penalty tends to produce models where one represen-

tative SNP is selected out of a group of highly correlated SNPs,

while the rest remain with a zero weight, in contrast with L2-

penalized or unpenalized models where many or all of these

SNPs may receive a non-zero weight. For an in-depth discussion

of these issues and the effects of varying LD levels on the

performance of multivariable models, see [30].

The L1-penalized SVM model is induced by minimizing the

L1-penalized squared-hinge loss over N samples and p SNPs,

L b0,bð Þ~ 1

2N

XN

i~1

max 0,1{yi xT
ibzb0

� �� �2
zl

Xp

j~1

Dbj D

where xi is the p-vector of genotypes for the ith sample in allele-

dosage coding {0, 1, 2}, y are the binary phenotypes {21, +1},

b is the p-vector of weights, b0 is the intercept (also called the

bias, which is not penalized), and l is the L1 penalty. We also

investigated adding an L2 penalty to the model (elastic-net),

however, based on initial cross-validation experiments, we

found no advantage in the L2 penalty and subsequently did

not use it. All of our models were additive in the allele dosage

{0, 1, 2}.

The genomic risk score ŷyi for a new sample xi consisting of p

genotypes is then

ŷyi~b0z
Xp

j~1

xijbj

where the continuous value ŷyi is later thresholded at different

values to produce a binary predicted class. The model was

evaluated over a grid of penalties, in 10-fold cross-validation,

repeated 10 times. The optimal number of SNPs in the model was

decided based on the model with the highest average AUC across

the replications. The final model was a consensus model, averaged

over all 10610 = 100 models, and containing approximately the

number of SNPs determined earlier. Post processing and plotting

of the results was performed in R [69], together with the package

ggplot2 [70].

Measures of Predictive Performance
To quantify the predictive performance of the models in cross-

validation and external validation, we employed receiver operating

characteristic (ROC) curves (sensitivity versus 1 minus specificity),

the area under the ROC curve (AUC) [71], and the proportion of

phenotypic variance explained [32].

To quantify predictive performance in different population

settings, we used the positive and negative predictive values, which

can be estimated as

PPV~
sens|prev

sens|prevz(1{spec)|(1{prev)

and

NPV~
spec|(1{prev)

spec|(1{prev)z(1{sens)|prev

where ‘‘sens’’ is the sensitivity = TP/(TP+FN), ‘‘spec’’ is the

specificity = TN/(FP+TN), and ‘‘prev’’ is the population preva-

lence. The PPV/NPV are equivalent to the posterior probability

of a person having/not having the disease given a positive/

negative diagnosis, respectively. When the PPV and precision are

estimated in data with identical prevalence (that is, the observed

prevalence in the data is identical to the prevalence in the

population for which we wish to estimate PPV), they are

equivalent. Precision is defined as TP/(TP+FP).

Supporting Information

Figure S1 LOESS-smoothed AUC in 10610-fold cross-valida-

tion for the random subsamples of the UK2 dataset, in increasing

sample size proportions of the original data (n = 6785).

(EPS)

Figure S2 Results of externally validating the predictive

models, trained on UK2 in cross-validation, and tested on the

other CD datasets. Legend: Romanos HLA: 3-levels of risk (low,

medium, high) [21] based on imputed HLA type (HIBAG);

Romanos HLA+57 SNPs (Immunochip only): 3-level HLA risk plus

57 Immunochip non-HLA SNPs [21]; Monsuur HLA SNPs: logistic

regression on individual HLA SNPs [36] (5/6 SNPs or proxies

thereof were found in the UK2/Finn/NL/IT datasets, 3/6 were

found in the subset of UK1 shared with UK2); GRS MHC SNPs:

SparSNP run on individual SNPs on chr6 within 29.7

Mb–33.3 Mb; GRS non-MHC SNPs: SparSNP run on individual

autosomal SNPs outside MHC; GRS all SNPs: SparSNP run on all

autosomal SNPs.

(EPS)

Figure S3 ROC curves for CD model trained on SNP subsets of

the UK2 dataset that were assayed for the WTCCC-T1D dataset:

All SNPs (76,847 SNPS), MHC SNPs (186 SNPs in the MHC region

of chr6, 29.7–33.3 Mb), and Non-MHC SNPs (76,661 SNPs outside

the MHC).

(EPS)

Figure S4 Calibration plots, comparing predicted score in 5%

quantiles against observed proportions of cases falling within the

bin. The score comes from models trained on the UK2 dataset,

and tested on the rest of the datasets. The bars show 95%

confidence intervals using the Agresti-Coull method for

proportions. We randomly split the test datasets into two halves.

In the first half, we plotted the original quantiles of the scores

and fitted a LOESS smooth to them. We did this for the original

case/control data (prevalence of 40%), shown in (a), and for a
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subsampled version of the data with prevalence of 10% (c). We

then used the LOESS smooth to correct the original quantiles,

forming a calibrated score, one for each dataset (Finn, IT, NL,

UK1), which was then applied to the second half of the data,

shown in (b) and (d) for prevalence of 40% and 10%

respectively. The second half of the data was not used in the

calibration step.

(EPS)

Figure S5 (a) LOESS-smoothed AUC from 10-fold cross-

validation for the UK2 model (all autosomal SNPs), accounting

for the top 10 PCs (included in training but not in testing). (b)

External validation of the best UK2 model that accounted for the

PCs (PCs excluded from testing).

(EPS)

Table S1 The predictive model. The SNPs are sorted in

decreasing order of the absolute value of their model weight

averaged over the 10610 cross-validation folds. Stability is the

percentage of times a SNP was selected to have non-zero weight

over the 10610-cross-validation folds. Intercept: 20.757226. To

annotate the SNPs we used Bioconductor 2.12 together with the

packages VariantAnnotation 1.6.5 and TxDb.Hsapien-

s.UCSC.hg18.knownGene 2.9.0. We considered a SNP to be

genic if it was annotated to fall inside one of the regions

{spliceSite, intron, fiveUTR, threeUTR, coding, promoter} and

intergenic otherwise. For intergenic SNPs, we also annotate the

nearest gene and the distance to it. All positions are in hg18

coordinates.

(PDF)

Table S2 Summary of screening results at different prevalence

levels for the combine dataset Finn+IT+NL dataset, using different

cutoffs to declare the samples as disease cases (expressed as % of

the population). The smaller the cutoff, the stricter the definition of

a disease case.

(PDF)

Text S1 Supplementary Methods.

(PDF)
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