
Naturally Acquired Immune Responses to P. vivax
Merozoite Surface Protein 3a and Merozoite Surface
Protein 9 Are Associated with Reduced Risk of P. vivax
Malaria in Young Papua New Guinean Children
Danielle I. Stanisic1,2.*, Sarah Javati2., Benson Kiniboro2, Enmoore Lin2, Jianlin Jiang3, Balwan Singh3,

Esmeralda V. S. Meyer3, Peter Siba2, Cristian Koepfli1,4,5, Ingrid Felger4,5, Mary R. Galinski3,6,

Ivo Mueller1,2,7*

1 Walter and Eliza Hall Institute, Parkville, Australia, 2 Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea, 3 Emory Vaccine Center, Yerkes

National Primate Research Centre, Emory University, Atlanta, Georgia, United States of America, 4 Swiss Tropical Institute and Public Health Institute, Basel, Switzerland,

5 University of Basel, Basel, Switzerland, 6 Department of Medicine, Division of Infectious Disease, Emory University, Atlanta, Georgia, United States of America, 7 Barcelona

Centre for International Health Research (CRESIB, Hospital Clı́nic-Universitat de Barcelona), Barcelona, Spain

Abstract

Background: Plasmodium vivax is the most geographically widespread human malaria parasite. Cohort studies in Papua
New Guinea have identified a rapid onset of immunity against vivax-malaria in children living in highly endemic areas.
Although numerous P. vivax merozoite antigens are targets of naturally acquired antibodies, the role of many of these
antibodies in protective immunity is yet unknown.

Methodology/Principal Findings: In a cohort of children aged 1–3 years, antibodies to different regions of Merozoite
Surface Protein 3a (PvMSP3a) and Merozoite Surface Protein 9 (PvMSP9) were measured and related to prospective risk of P.
vivax malaria during 16 months of active follow-up. Overall, there was a low prevalence of antibodies to PvMSP3a and
PvMSP9 proteins (9–65%). Antibodies to the PvMSP3a N-terminal, Block I and Block II regions increased significantly with
age while antibodies to the PvMSP3a Block I and PvMSP9 N-terminal regions were positively associated with concurrent P.
vivax infection. Independent of exposure (defined as the number of genetically distinct blood-stage infection acquired over
time (molFOB)) and age, antibodies specific to both PvMSP3a Block II (adjusted incidence ratio (aIRR) = 0.59, p = 0.011) and
PvMSP9 N-terminus (aIRR = 0.68, p = 0.035) were associated with protection against clinical P. vivax malaria. This protection
was most pronounced against high-density infections. For PvMSP3a Block II, the effect was stronger with higher levels of
antibodies.

Conclusions: These results indicate that PvMSP3a Block II and PvMSP9 N-terminus should be further investigated for their
potential as P. vivax vaccine antigens. Controlling for molFOB assures that the observed associations are not confounded by
individual differences in exposure.
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Introduction

Historically, most malaria vaccine research and development

has been focused on Plasmodium falciparum. However, the impor-

tance of developing a P. vivax specific or combination P. falciparum/

P. vivax vaccine is increasingly being recognised [1]. P. vivax is the

most geographically widespread malaria parasite with up to 2.5

billion people at risk and an estimated 80–300 million clinical

cases every year [2]. It is not the benign parasite it was long

assumed to be; while severe manifestations are less common [3],

there is a spectrum of severe disease associated with P. vivax

infection that in many ways resembles that seen with P. falciparum

[4]. Furthermore, case fatality rates associated with severe P. vivax

or mixed P. falciparum/P. vivax infections are comparable with P.

falciparum [3,5,6]. Unique aspects of the biology of this particular

species of Plasmodium make it a challenge to treat and eradicate
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with currently available strategies [7,8,9,10]. P. vivax forms

dormant stages in the liver (hypnozoites), which can result in

relapses following effective anti-malarial treatment of blood-

stage infection [8]. It is also able to produce gametocytes early

in infection which may appear in the peripheral circulation

before the development of clinical symptoms [9]. Therefore, an

infected, asymptomatic but untreated individual serves as a

‘reservoir’, maintaining successful transmission of the parasite.

An effective P. vivax vaccine is a desirable, additional tool for P.

vivax elimination.

Prioritisation of malaria vaccine candidates is informed by their

site and stage expression, apparent function in vitro and role in

protective immunity in malaria exposed populations. The

identification and subsequent development of candidates for a P.

vivax specific vaccine has been challenging due to a number of

practical factors including the lack of a reliable in vitro culture

system and limited data with respect to antigen diversity. Several

antigens expressed during the blood stage of P. vivax infection have

been identified as potential vaccine candidates including the Duffy

Binding Protein (PvDBP, one of the primary erythrocyte invasion

ligands), Merozoite Surface Protein 3 (PvMSP3) and Merozoite

Protein 9 (PvMSP9) [11–14]. Antibodies against the most studied

P. vivax vaccine candidate, the PvDBP, have been shown to inhibit

binding of the parasite to receptors on the red blood cell and have

been associated with protection [15]. PvDBP Region II (RII), the

critical region for binding, is however quite polymorphic and the

protection observed in this study had a degree of strain specificity

[15]. This suggests that a vaccine based on PvDBP RII should

either target conserved epitopes and be able to induce broadly

inhibitory antibodies as recently demonstrated in vitro [16] or it

may need to include multiple allelic types. Additionally, recent

observations that P. vivax can utilise a Duffy antigen-independent

invasion pathway and invade Duffy-negative red cells [17] suggests

that a vaccine based solely on the PvDBP will not be effective

against all P. vivax strains. Consequently, it is essential that

additional P. vivax antigens are also critically assessed for their

potential as vaccine candidates.

The P. vivax MSP3 multigene family is expressed during the

erythrocytic stage of the life-cycle, with the majority of the

proteins expressed in the schizont stage when merozoites are

being formed [13,14,18]. Members are structurally related to P.

falciparum MSP3, which has been shown to mediate antibody-

dependent cellular-mediated inhibition [19] and is a vaccine

candidate that showed some efficacy in human trials following

preliminary analyses [20]. PvMSP3 lacks a hydrophobic region

which indicates the presence of a transmembrane domain that

could link it to the merozoite surface, rather it is thought to

associate with other surface anchored proteins [13]. Its central

alanine-rich domain with heptad repeats is predicted to form

coiled-coil tertiary structures which mediate protein-protein

interactions.

One of the members of the PvMSP3 family, originally identified

as PvMSP3a, has been the focus of several specific bodies of

research. Expression of PvMSP3a has been detected in tropho-

zoites and schizonts and is displayed at the surface of merozoites

[18,21]. This protein is highly polymorphic and it has therefore

been used as a molecular marker in P. vivax epidemiological and

population studies [22,23,24,25]. However, the hydrophilic,

extreme N-terminal and the acidic C-terminal domains of the

protein are relatively conserved [26]. Polymorphisms are clustered

in specific domains, mainly confined to the N-terminal half of the

central alanine-rich coiled-coil domain (designated as Block I,

residues 104–396) while the C-terminal portion of this domain

(designated Block II, residues 434–687) displays less variability

[26]. Block I may be deleted in some isolates while retention of the

relatively highly conserved Block II appears to be necessary. Due

to the relative conservation of Block II of the alanine rich domain

and the acidic C-terminal region, across a range of geographically

distinct isolates, it has been suggested that vaccine-based research

should focus on these regions [26]. PvMSP3a specific antibodies

have been detected in naturally exposed individuals resident in a

malaria endemic area of the Brazilian Amazon [21,27,28] and a

number of linear B cell epitopes defined, located primarily in the 2

blocks of repeats [27].

PvMSP9 is also expressed during schizogony and is associated

with the surface of the merozoite [29,30]. The deduced protein

contains a hydrophobic signal sequence, highly conserved N-

terminal domain with a cluster of 4 cysteines and a C-terminal

region containing 2 species-specific blocks of repeated amino

acids, designated PvMSP9-RI and PvMSP9-RII [29]. Its

importance as a vaccine candidate has been highlighted by

the ability of a PvMSP9 monoclonal antibody to block the entry

of P. vivax into erythrocytes [30]. Studies examining the

immunogenicity of different regions of PvMSP9 have demon-

strated the presence of both antibody and T cell responses

specific for this protein in individuals resident in malaria

endemic areas [12,31,32].

Recent cohort studies in Papua New Guinea (PNG), where

both P. falciparum and P. vivax co-exist, have identified an age-

dependent onset of immunity to the different Plasmodium species.

The incidence of P. vivax attributable illness peaks in the second

year of life, compared to P. falciparum where it continues to

increase until the 4th year of life, suggesting that immunity

against P. vivax appears to be acquired at a younger age than

that seen with P. falciparum [33]. This immunity is associated

with an increased ability to control parasite densities so that they

remain below the threshold above which symptoms are

apparent. Despite these observations, little is known about

immune responses against P. vivax antigens in young children

and how these may contribute to the acquisition of protective

immunity. To address this, we examined associations between

antibodies to different regions of the blood-stage antigens

PvMSP3a and PvMSP9 and prospective risk of P. vivax malaria

in a cohort of children aged 1–3 years residing in a malaria

endemic region of PNG.

Author Summary

Plasmodium vivax is the most geographically widespread
human malaria parasite. In highly endemic areas such as
Papua New Guinea, a very rapid onset of immunity against
vivax-malaria is observed. Although it is known that
numerous P. vivax merozoite antigens are targets of
naturally acquired antibodies, the role of many of these
antibodies in protective immunity is yet unknown. In a
cohort of 183 children aged 1–3 years, we now show that
the presence of antibodies to Merozoite Surface Protein 3a
(PvMSP3a) and Merozoite Surface Protein 9 (PvMSP9) are
associated with a significant reduction in the burden P.
vivax malaria. Antibodies increased with age and in the
presence of concurrent P. vivax infections. After adjusting
for both age and individual differences in exposure, the
strongest reductions in risk were seen in children with
antibodies to PvMSP3a Block II (41% reduction, p = 0.001)
and PvMSP9 N-terminal region. (32% reduction, p = 0.035).
These results indicate that PvMSP3a Block II and PvMSP9
N-terminus should be further investigated for their
potential as P. vivax vaccine antigens.

Natural Immunity to P. vivax MSP3a and MSP9
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Materials and Methods

Study description
This study was conducted in a rural area near Maprik, East

Sepik Province, Papua New Guinea. A detailed description of the

study is given elsewhere [33]. Briefly, 264 study participants aged

1–3 years (median 1.70; range 0.9–3.1 years) were enrolled

between March and September 2006 and venous blood collected.

Of these, 190 were enrolled at the study start and 74 over the

subsequent 6 months. Antibody assays were performed using

samples from 183 of the 190 children enrolled at the study start; all

data presented for the current analysis relates to these 183 children

only. Following enrolment, children were clinically examined

every 2 weeks for signs and symptoms of malaria for a period of up

to 16 months (until July 2007). In addition, children were actively

checked every 8 weeks, with visits scheduled over 2 consecutive

days (with 2 samples collected 24 hours apart) to improve

detection of low-level infection. A passive case detection system

was maintained at the local health centres and aid post throughout

the entire study period. At each episode of febrile illness, a blood

sample was collected, a rapid diagnostic test (RDT) was performed

and haemoglobin measured using Hemacue (Angholm, Sweden).

Anti-malarial treatment with CoartemH (Novartis, Switzerland)

was administered to any individual with a positive RDT or if

haemoglobin levels were ,7.5 g/dl. In children with a negative

RDT, blood slides were read within 24 hours and microscopy

positive children were treated with Coartem.

For the current analysis, a symptomatic episode of P. vivax

malaria was defined as the presence of fever plus parasitemia

.500 parasites/ml [34]. Parasitemia (ie absence/presence of

parasite) was determined by a semi-quantitative post-PCR ligase

detection reaction-fluorescent microsphere assay (LDR-FMA) [35]

and light microscopy was used to determine parasite density. All

analyses were performed using parasitemia determined by LDR-

FMA unless otherwise indicated.

Written informed consent was obtained from all parents or

guardians prior to recruitment of each child. Scientific approval

and ethical clearance for the study was obtained from the Medical

Research and Advisory Committee (MRAC) of the Ministry of

Health in PNG and the Human Research Ethics Committee, the

Walter and Eliza Hall Institute.

Antigens
PvMSP3a recombinant proteins, representing the N-terminal

(nucleotides 73–309), Block I (nucleotides 316–1242), Block II

(nucleotides 1246–2058) and the C-terminal (nucleotides 2059–

2353) regions were used. They were initially amplified from P.

vivax (Belem strain), expressed as His-tag recombinant proteins and

purified as previously described [27].

PvMSP9 recombinant proteins, representing the N-terminal

region (aa 34–193) and the C-terminal region containing the

repeated Blocks I and II (aa 729–972), were used. They were

initially amplified from P. vivax (Belem strain), expressed as GST

fusion proteins and purified as previously described [12,31].

The proteins were assessed on SDS-PAGE gels and via western

immunoblots using standard conditions. A single batch of each

protein was used for this was well as earlier Brazilian studies

[12,31].

Antibody assays
Samples collected from the enrolment bleed (n = 183) were used

in an enzyme linked immunosorbent assay (ELISA). All available

samples were tested for IgG. ELISAs were performed using

established methods [36]. Ninety-six well plates (Nunc, Roskilde,

Denmark) were coated with MSP3a and MSP9 recombinant

proteins in PBS and incubated overnight at 4uC. For MSP9

proteins, GST alone was used as a control antigen. Skim milk-

PBS-0.05% Tween was used for blocking and for diluting plasma

and antibodies. Plasma was added in duplicate at previously

determined dilutions. For measurement of total IgG, horseradish

peroxidase-conjugated sheep anti-human IgG (Chemicon, Mel-

bourne, Australia) was used at a dilution of 1, 2:500. Finally, o-

phenylenediamine dihydrochloride substrate (Sigma, Castle Hill,

Australia) was added and the reaction stopped using 3M HCl with

optical density determined at 492 nm. All samples were tested in

duplicate. Standardization of the plates was achieved using

positive control plasma pools on each plate. Background

(determined from the wells with no plasma) was deducted from

the mean of each sample and a cut-off threshold for positivity

determined as the mean plus 3 standard deviations of negative

control plasma samples (Australian residents) included in each

assay. For MSP9 proteins, final OD values were determined by

subtracting the mean OD value to GST alone from the mean OD

value of the same plasma for the recombinant proteins.

Measuring Force of Blood-stage infection (molFOB)
The molFOB was used to define the number of new P. vivax

blood-stage clones acquired during the study follow-up period

[37]. For genotyping individual P. vivax clones, the highly

polymorphic molecular markers Merozoite Surface Protein 1 F3

fragment and the microsatellite MS16 were typed using capillary

electrophoresis for precise fragment sizing. Details of the

genotyping techniques have been described elsewhere [38].

Statistical analyses
Antibody levels were not normally distributed, so non-

parametric tests (Mann-Whitney U tests) were used for analyses

of antibody titres. Differences in the prevalence of antibodies with

age and infection status as well as associations between antibodies

to different proteins were assessed using Chi-square test with the

strength of the association between antibodies of different

specificities measured by the phi coefficient (rw). The association

of antibody prevalence and parasite density were assessed using

generalised estimating equation (GEE) models.

Children were followed up for a maximum of 8 periods during

the study, each spanning 8–9 weeks and consisting of 3 fortnightly

surveillance visits and each concluding with the collection of 2

blood samples 24 hours apart for active detection of malaria

infection. Incidence of clinical malaria in each 8–9 week follow-up

interval was estimated as previously described, with P. vivax clinical

episodes defined as febrile illness (axillary temperature $37.5uC or

history of fever in preceding 48 hrs) with a concurrent P. vivax

parasitemia .500 parasites/ml. A negative binomial GEE model

(based on XTNBREG procedure in STATA 12.0), an exchange-

able correlation structure and semi-robust variance estimator were

used for the analysis of incidence of P. vivax malaria. For each

follow-up interval, children were considered at risk from the first

day after the second or only blood sample for active follow-up was

taken. Therefore, cross-sectional bleeds were considered as part of

the preceding 8–9 week interval and clinical episodes detected

during those cross-sectional bleeds (2 samples taken 24 hours

apart) were included in that interval. Children were not considered

at risk for 2 weeks after treatment with CoartemH.

Three different models were used to assess the association of

antibodies with protection: i) ‘crude’: adjustment only for seasonal

(month, year) and spatial variation (village or residence) as well as

for individual differences in exposure: aIRR(exp); ii) age-adjusted:

additional adjustment for age of child (as a correlate of overall

Natural Immunity to P. vivax MSP3a and MSP9
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immune status): aIRR(exp+age), iii) multivariate age-adjusted:

multivariate analyses of all antibodies univariately associated with

protection: aIRR(multi), with the best model determined by

backward elimination using Wald’s Chi-square tests for individual

variables.

Individual differences in exposure were described by the

number of genetically distinct P. vivax clones a child acquired

during 2 month intervals, expressed as the number of new blood-

stage infections per unit of time. Samples from scheduled bleeds as

well as morbidity surveillance were used. The force of infection for

each child was therefore defined as the number of new blood-stage

clones acquired per year at risk (i.e. the molecular force of

infection molFOB [39]). In order to improve the fit, molFOB was

cube-root transformed [37].

Results

P. vivax prevalence in the cohort
A total of 183 children 0.9–3.1 years (47.5% $21 months,

56.8% male) were enrolled in late March 2006 and actively

followed for 16 months for the development of malaria

infection. At enrolment, the prevalence of P. vivax was 39.9%

and 49.2% by light microscopy (LM) and post-PCR LDR-FMA,

respectively. During follow-up, P. vivax prevalence ranged from

59.9–79.2% by post-PCR LDR-FMA and 47.3–59.9% by LM.

Children experienced an average of 2.47 (CI95 [2.15, 2.85]) P.

vivax episodes with any level of parasitemia and 1.49 (CI95 [1.24,

1.79]) episodes with P. vivax .500 parasites/ml per year at risk.

The patterns of P. vivax infection and disease in the immunology

sub-cohort are therefore comparable to those observed in the

entire cohort [33,38].

Presence of IgG antibodies and their association with age
and infection status

The frequency of IgG responses at enrolment to the different

antigens ranged from 8.7%–65% (Table 1). When comparing

different regions of PvMSP3a, significantly more children had IgG

antibodies to the C-terminal than to the N-terminal, Block I and

Block II proteins of PvMSP3a (65.0% vs. 36.1–38.3%, p,0.001).

The presence of antibodies to the different protein constructs

derived from PvMSP3a were highly associated with each other

(p,0.0001 for any pair) with the strongest association found

between antibodies to Block II and Block I (rw = 0.67). Overall, 43

children (23.5%) had antibodies to all 4 PvMSP3a proteins while

51 (27.9%) had antibodies to none (Figure 1a).

Children $21 months were significantly more likely to have

antibodies to the PvMSP3a N-terminal protein (Odds ratio

(OR = 2.06, CI95 [1.08, 3.95], p = 0.019), Block I (OR = 2.53,

CI95 [1.30, 4.95], p = 0.003) and Block II (OR = 2.27, CI95 [1.18,

4.37], p = 0.008) but not to the C-terminal protein (Figure 1b).

Antibodies to Block I (OR = 2.06, CI95 [1.07, 4.00], p = 0.020)

were also significantly more common in children with concurrent

P. vivax infection (Figure 1c). There were no significant associations

with antibody levels and either age or infection status among

children that were antibody-positive for any of the PvMSP3a
proteins (p.0.26).

Eighty-four (45.9%) children had antibodies to the PvMSP9 N-

Terminal region, and 16 (8.7%) had antibodies to the MSP9

protein spanning RI-RII (Table 1). Children that were positive for

any of the PvMSP3a proteins were more likely to also be positive

for the PvMSP9 N-Terminus (OR = 2.30–4.78, p,0.009). Anti-

bodies specific for the PvMSP9 N-Terminus were more common

in children with concurrent P. vivax infection (OR = 2.38, CI95

[1.26, 4.51], p = 0.004). No other significant associations between

antibodies specific for PvMSP9 derived proteins and either age or

infection status were observed.

Association between presence of antibodies and
prospective risk of P. vivax malaria

When assessing associations between the presence of IgG

antibodies specific for the different PvMSP3a and PvMSP9

proteins and prospective risk of P. vivax clinical episodes (.500

parasites/ml, Table 2) during the 16 months of follow-up,

adjustments were made first for different measures of malaria

exposure as described in the materials and methods section,

designated aIRR(exp). This was followed by a further adjustment

for age, designated aIRR(exp+age).

After adjusting for malaria exposure, a significant decrease in

the risk of clinical P. vivax malaria was associated with the presence

of antibodies for PvMSP3a Block II (aIRR(exp) = 0.46, p,0.001),

PvMSP3a N-terminus (aIRR(exp) = 0.67, p = 0.048), and PvMSP9

N-Terminus (aIRR(exp) = 0.58, p = 0.004) (Table 2).

Following a further adjustment for age, a significantly decreased

risk remained for individuals who were antibody positive for

PvMSP3a Block II (aIRR(exp+age) = 0.53, p = 0.001) and PvMSP9

N-Terminus (aIRR(exp+age) = 0.60, p = 0.004) (Table 2). For

antibodies specific for both these proteins there was a tendency

for protection to increase with increasing levels of parasitaemia

(Figure 2). However, whereas the presence of antibodies for

PvMSP3a Block II was associated with protection against all

clinical episodes with a P. vivax parasitaemia $500/ml (p = 0.003–

0.057), antibodies against PvMSP9 N-Terminus were associated

only with significant protection against episodes with $2000/ml

(p = 0.001–0.002) but not those with densities ranging from 500–

1999/ml (p = 0.92).

To assess the effect of antibody levels on protection against risk

of P. vivax clinical episodes, children who were antibody positive

for PvMSP3a Block II or PvMSP9 N-Terminus were stratified

into 2 equal sized groups: those with high levels and those with low

levels of antibodies. High levels (OD.0.77) of PvMSP3a Block II

specific antibodies were significantly associated with protection

(aIRR = 0.42, p = 0.001) whereas, this was not observed with lower

levels (IRR = 0.68, p = 0.114). No such differences were observed

with antibodies to PvMSP9 N-Terminus.

In multivariate analyses, both antibodies to PvMSP3a Block II

(aIRR(multi) = 0.59, p = 0.011) and PvMSP9 N-Terminus (aIR-

R(multi) = 0.68, p = 0.035) remained significantly associated with a

reduced risk of P. vivax (Table 2). A significant interaction between

the presence of antibodies to PvMSP9 N-Terminus and concur-

rent P. vivax infection was observed (X2 = 4.55, p = 0.033) with

PvMSP9 N-Terminus antibodies associated with protection only

in children without concurrent P. vivax infection (aIR-

R(multi) = 0.48, CI95[0.28, 0.80], p = 0.006), while in children with

concurrent infection PvMSP9 N-Terminus, antibodies did not add

any extra protection (aIRR(multi) = 1.03, CI95[0.62, 1.71], p = 0.9)

besides that associated with concurrent infection itself (aIR-

R(multi) = 0.59, CI95[0.41, 0.87], p = 0.007).

As multivariate analyses examining the relationship between the

presence of antibodies and risk of clinical P.vivax malaria showed a

protective effect with only PvMSP3a Block II and MSP9 N-

terminus, further analyses examining the effect of antibody levels

were restricted to these 2 proteins. Antibody positive children were

stratified into 2 equal sized groups and designated as high or low

responders. Children with high antibody levels to both PvMSP3a
Block II (high: aIRR = 0.46, CI95[0.28, 0.77], low: aIRR = 0.72,

CI95[0.45, 1.17]) and PvMSP9 N-Terminus (without concurrent

infection, high: aIRR = 0.30, CI95[0.14, 0.62], low: IRR = 0.76,

CI95[0.40, 1.45]), had a lower risk of clinical P. vivax malaria

Natural Immunity to P. vivax MSP3a and MSP9
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compared to children with low antibody levels but that difference

was only significant for PvMSP9 N-Terminus (p = 0.04) and not

PvMSP3a Block II (p = 0.15).

There were no significant associations observed with antibodies

to any of the P. vivax proteins and risk of P. falciparum clinical

episodes (p.0.16).

Discussion

Antigens on the surface of the merozoite have long been

considered as promising vaccine candidates based on their

accessibility to the immune system. Antibodies against P. vivax

merozoite surface proteins and their P. falciparum orthologues are

Figure 1. IgG positivity to different PvMSP3a and PvMSP9 proteins. (a) Cumulative IgG positivity for different PvMSP3a proteins. Data are
plotted as the percentage of 183 individuals who are antibody positive for 0–4 of the proteins tested. (b) Associations between age and IgG positivity
to PvMSP3a and PvMSP9 proteins. Children were divided into two age groups (,21 mths: n = 96, $21 mths: n = 87) to examine associations with
age. P values#0.05 were considered significant and are shown. (c) Associations between P. vivax infection status (post-PCR LDR-FMA positive: n = 90,
negative: n = 93) and IgG positivity to PvMSP3a and PvMSP9 proteins. As indicated, the presence of P. vivax was determined by a semi-quantitative
post-PCR ligase detection reaction-fluorescent microsphere assay (LDR-FMA). P values#0.05 were considered significant and are shown.
doi:10.1371/journal.pntd.0002498.g001

Table 1. Optical density values (OD) as a measurement of total IgG to different PvMSP3a and PvMSP9 proteins.

PvMSP3a PvMSP9

N-terminal C-terminal Block I Block II N-terminal RI-RII

Median OD (IQR) 0.26 [0.07,0.67] 0.33 [0.15,0.62] 0.28 [0.12,0.74] 0.27 [0.09,0.67] 0.39 [0.18,0.98] 0.05 [0.02,0.14]

OD value ranges minimum-maximum 0.01–2.25 0.03–1.63 0.01–1.74 0.02–1.60 0.03–2.35 0.00–2.00

OD positivity cut-offa 0.43 0.21 0.43 0.44 0.48 0.43

Frequency of respondersb (n) 38.3% (70) 65.0% (119) 36.1% (66) 38.3% (70) 45.9% (84) 8.7% (16)

aThe cut-off for positivity was determined as the mean+3 standard deviations of negative control plasma samples (Australian residents) included in each assay.
bResponders defined as individuals whose plasma OD value was above the cut-off for positivity for a given antigen.
doi:10.1371/journal.pntd.0002498.t001
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thought to function by directly inhibiting invasion of erythrocytes,

opsonising merozoites for uptake by phagocytes and through

antibody-dependent cell-mediated immune mechanisms

[19,30,40,41,42,43,44,45]. Although studies have established the

immunogenicity of a number of P. vivax merozoite antigens

using serum from malaria exposed individuals

[10,12,21,27,28,31,46,47,48], few have examined the contribu-

tion of antibodies to protective immune responses against P.

vivax infection in malaria exposed populations [15,27,31,49,50].

Our results demonstrate that IgG specific responses against

Table 2. Association between antibody positivity and protection against subsequent P. vivax malaria (density.500/ml).

Models used to assess the association of antibodies with protection

‘Crude’a Age-adjustedb Multivariatec

aIRR(exp) CI95 p -value aIRR(exp+age) CI95 p -value aIRR(multi) CI95 p -value

PvMSP3a N-term 0.67 [0.44,1.00] 0.048 0.79 [0.54,1.15] 0.222

C-term 0.77 [0.54,1.12] 0.172 0.82 [0.58,1.16] 0.267

Block I 0.72 [0.50,1.04] 0.077 0.75 [0.53,1.07] 0.116

Block II 0.46 [0.31,0.68] ,0.001 0.53 [0.36,0.77] 0.001 0.59 [0.40,0.89] 0.011

PvMSP9 N-term 0.58 [0.40,0.84] 0.004 0.60 [0.42,0.85] 0.004 0.68 [0.47,0.97] 0.035

RI-RII 0.81 [0.42,1.54] 0.515 0.97 [0.51,1.82] 0.915

aAdjustment for season (month, year), spatial variation (village or residence) and individual differences in exposure (as measured by molecular force of blood-stage
infection (molFOB).
bAdjustment for age of child, season (month, year), spatial variation (village or residence) and individual differences in exposure (as measured by molecular force of
blood-stage infection (molFOB).
cAdjustment as performed for age-adjusted b. Multivariate analyses of antibodies univariately associated with protection.
doi:10.1371/journal.pntd.0002498.t002

Figure 2. Association between antibodies to PvMSP3a(Block II) and PvMSP9(N-terminal) proteins and risk of P. vivax malaria. Data
are plotted as exposure and age adjusted incidence rate ratios (aIRR(exp)) 6 95% confidence intervals for febrile episodes with different levels of
concurrent P. vivax parasitaemia.
doi:10.1371/journal.pntd.0002498.g002
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defined regions of PvMSP3a and PvMSP9 are significantly

associated with protection from symptomatic P. vivax infection in

young children resident in a malaria endemic region of PNG.

Antibody responses against these proteins have been previously

examined in malaria-exposed populations [27,31] however,

these studies were limited in their ability to precisely define the

role of these antibodies. We employed a longitudinal study

design with active screening for re-infection and morbidity and

related antibody responses at baseline with prospective risk of

developing symptomatic P. vivax infection over the 16-month

follow-up period.

Overall, the prevalence of IgG specific responses to the different

PvMSP3a and PvMSP9 antigens was low. Patterns of responsive-

ness to the recombinant proteins were different to that observed in

previous studies [27,31]. This is likely to reflect differences in age

ranges, malaria transmission levels and potentially population

genetics. However, we cannot rule out that differences in the

reactivities of the non-exposed donors that were used to establish

the threshold for seropositivity in the different studies may have

contributed to disparity between studies. Although the age range

of this cohort was narrow, the prevalence of antibodies against all

PvMSP3a proteins and the PvMSP9 RI-RII domain increased

with age (and presumably exposure). This was only significant

however for antibodies against the N-terminal and the Block I and

II regions of PvMSP3a. Interestingly, there was no apparent effect

of age on the prevalence of antibodies against the PvMSP9 N-

terminus. As this region of PvMSP9 is known to be highly

conserved [29,30] this may reflect the presence and recognition of

conserved epitopes. Antibodies against all of the PvMSP3a and

PvMSP9 antigens were also more commonly found in individuals

with concurrent P. vivax infection, although this difference was only

significant for Block I PvMSP3a and the PvMSP9 N-terminus.

This effect of active parasite infection on antibody positivity

reflects the induction and/or boosting of existing antibody

responses.

After adjusting for age and exposure, associations with

protection from symptomatic P. vivax malaria were seen for

antibodies against the PvMSP3a Block II and the PvMSP9 N-

terminal domains. This association remained following multivar-

iate analyses. Additionally, antibodies against these proteins were

associated with stronger reduction in risk of high compared to low

infections. This density-dependent effect is in keeping with the

proposed mechanism of action of these antibodies (i.e., to prevent/

interfere with merozoite invasion of red blood cells and/or

opsonisation of merozoites). This is most evident for PvMSP3a
Block II, where higher levels of antibodies were associated with a

significantly stronger protection compared with lower levels.

Although PvMSP9 specific antibodies were more prevalent in

children with concurrent infections, these antibodies were only

associated with protection in children who did not have

concurrent P. vivax infections at the time of antibody measurement.

This indicates the existence of at least two separate types of

antibodies targeting the PvMSP9 N-terminal domain: one that is

easily boosted by infection and another that is longer lasting and

continues to be present after an infection is cleared. Only the latter

appear to be associated with protection against clinical P. vivax

malaria. Whether these differential antibody types indicate the

induction of different IgG subclass responses or target different

epitopes is yet unknown.

A recent study demonstrated that the majority of sequences

containing linear B cell epitopes within PvMSP3a are localised

within the Block I and II repeat regions, although a few epitopes

were detected in the more conserved N- and C-terminal flanking

regions [27]. While the central domain of PvMSP3a is highly

polymorphic, the C-terminal half containing the Block II repeat

region is relatively conserved with only 2 major regions of

polymorphism [26]. The PvMSP9 N-terminus is also known to

be highly conserved across Plasmodium species [29,30]. The

conservation of these antigens amongst P. vivax isolates

highlights their potential as vaccine candidates. Additionally, it

has recently been shown that anti-sera generated against

individual recombinant proteins representing the central

alanine-rich domain of different PvMSP3 family members

(including PvMSP3a), contain antibodies capable of recognising

the central domain of other PvMSP3 family members [18].

While this suggests that an immune response generated against a

single PvMSP3 protein may consist of a broad antibody

response against multiple antigenic targets, further studies are

required to determine whether the B cell epitopes recognised by

these cross-reactive antibodies are contained within the C-

terminal half of this domain. Studies to identify and characterise

B cell epitopes that are targets of protective antibodies would

inform the development and use of these molecules. Further-

more, investigating the functionality of antibodies against the

PvMSP9 N-terminus and PvMSP3a Block II would confirm the

utility and importance of these proteins as vaccine candidates.

Undertaking ex vivo invasion assays with affinity purified serum

containing antibodies specific for these proteins together with a

range of P.vivax isolates would also shed light on the strain-

transcending nature of the antibody response. In conclusion,

these findings have significant implications for the development

of a P. vivax specific vaccine. Controlling for molFOB ensures

that the observed associations of antibodies specific for the

PvMSP9 N-terminus and PvMSP3a Block II with protection

against P. vivax malaria in this study are not confounded by

individual differences in exposure. Our results support further

investigation of the PvMSP9 N-terminus and PvMSP3a Block II

as vaccine candidates.
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