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Abstract

Ribosome biogenesis underpins cell growth and division. Disruptions in ribosome biogenesis and translation initiation are
deleterious to development and underlie a spectrum of diseases known collectively as ribosomopathies. Here, we describe a
novel zebrafish mutant, titania (ttis450), which harbours a recessive lethal mutation in pwp2h, a gene encoding a protein
component of the small subunit processome. The biochemical impacts of this lesion are decreased production of mature
18S rRNA molecules, activation of Tp53, and impaired ribosome biogenesis. In ttis450, the growth of the endodermal organs,
eyes, brain, and craniofacial structures is severely arrested and autophagy is up-regulated, allowing intestinal epithelial cells
to evade cell death. Inhibiting autophagy in ttis450 larvae markedly reduces their lifespan. Somewhat surprisingly, autophagy
induction in ttis450 larvae is independent of the state of the Tor pathway and proceeds unabated in Tp53-mutant larvae.
These data demonstrate that autophagy is a survival mechanism invoked in response to ribosomal stress. This response may
be of relevance to therapeutic strategies aimed at killing cancer cells by targeting ribosome biogenesis. In certain contexts,
these treatments may promote autophagy and contribute to cancer cells evading cell death.
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Introduction

The generation of new ribosomes is the most energy-consuming

process in the cell [1]. It requires the coordinated transcription and

maturation of 4 different ribosomal RNA (rRNA) molecules and

70 small nucleolar RNAs (snoRNAs) together with the synthesis of

approximately 80 ribosomal proteins (RPs) and an additional 170

associated proteins [2]. The regulation of this complex, multi-step

process is the major factor determining the potential of a cell to

grow and divide [3]. In times of nutrient availability and/or

hormonal and growth factor signalling, the onset of ribosome

biogenesis is tightly coupled to the translational requirements of a

rapidly proliferating cell. In contrast, ribosome biogenesis is down-

regulated to conserve energy and restrict unwarranted cell growth
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and division when the cellular environment is nutrient poor or

challenged by harmful stimuli such as hypoxia, reactive oxygen

species or genotoxic stress. Inherited impairment mutations in

genes that encode components of the ribosome biogenesis

machinery or ribosome structure underlie a number of human

syndromes, collectively known as ribosomopathies, with a broad

range of clinical phenotypes [4]. There is a growing appreciation

that sporadically acquired mutations in genes that contribute to

ribosome function also increase susceptibility to human cancer,

particularly leukemia and lymphoma, although the precise

mechanisms involved are only just beginning to emerge [5].

The process of human ribosome biogenesis initiates in the

nucleolus with the transcription by RNA polymerase (Pol) I of a

45S pre-rRNA precursor (35S in yeast), which contains the mature

28S, 18S and 5.8S rRNAs interspersed by spacer sequences. A

series of processing and chemical modification events mediated by

discrete multiprotein/RNA complexes known as the 90S, 66S and

43S pre-ribosomal particles generate the mature 18S, 28S and

5.8S species, respectively and assembles them into the 40S and

60S ribosomal subunits prior to their export from the nucleus to

the cytoplasm where they associate to form the functional 80S

ribosomes [6]. In yeast, the 90S particle, also known as the small-

subunit processome, has been shown to be strictly required for the

production of 40S ribosomal subunits containing 18S rRNA [7].

One of the mechanisms through which ribosome biogenesis is

coupled to cell growth and proliferation is the Target of rapamycin

(Tor) pathway, which is activated by cell surface growth factor and

insulin receptors and other growth promoting sensors that detect

when nutrients such as amino acids are plentiful. Activation of the

Tor pathway stimulates the phosphorylation of S6 kinase (S6K)

and 4E-Binding Protein 1 (4EBP1), which regulate ribosome

biogenesis and mRNA translation [8,9]. Activation of Tor also

inhibits macroautophagy (hereafter referred to as autophagy), an

evolutionarily conserved process that provides a survival mecha-

nism during periods of cell starvation by promoting intracellular

recycling of organelles, such as mitochondria and ribosomes

[10,11].

Autophagy describes a complex multi-step process whereby cells

sequester a portion of their cytoplasm inside double-membrane

vesicles called autophagosomes, which then fuse with lysosomes to

form autolysosomes [12]. Inside these vesicles, the captured

material, together with the inner membrane, is digested and the

released nutrients are recycled. In metazoa, autophagy mediates

the catabolic turnover of malfunctioning, damaged or superfluous

proteins and organelles to maintain cellular homeostasis during

development and in adult life [13]. It is activated in response to

multiple forms of cellular stress, including nutrient deprivation,

endoplasmic reticulum (ER) stress, accumulation of reactive

oxygen species, DNA damage, invasion by intracellular patho-

gens and intense exercise [14,15]. Some of these triggers induce

autophagy through activation of Tumour protein 53 (Tp53),

which increases the expression of the b1 and b2 subunits of AMP-

activated protein kinase (AMPK), an evolutionarily conserved

sensor of cellular energy levels [16]. AMPK responds to

reductions in the ratio of ATP:AMP nucleotides by phosphory-

lating multiple targets with functions related to energy metabo-

lism, including the Tuberous sclerosis complex (Tsc) protein,

Tsc2 and Raptor. These phosphorylation events indirectly inhibit

the Torc1 complex, which in its active state inhibits autophagy by

negatively regulating the protein kinase, Ulk1 (mammalian

orthologue of yeast Atg1). Ulk1, together with Atg13, Fip200

and Atg101, are the key components of a complex that initiates

mammalian autophagosome formation [17,18]. Recent work

proposes that AMPK may also induce autophagy independently

of Torc1 inhibition by directly phosphorylating Ulk1 [19–21].

However, a clear understanding of the AMPK-Ulk1-Torc1

network is yet to emerge [22].

In this study, we employed a zebrafish intestinal mutant,

titanias450 (ttis450), as an in vivo model to examine the connection

between rRNA processing and autophagy. ttis450 was identified on

the basis of its hypoplastic intestinal morphology at 96 hours post-

fertilization (hpf) in a focused ENU mutagenesis screen designed to

identify mutants with defects in the size and morphology of the

endoderm-derived organs [23]. Using positional cloning we

identified periodic tryptophan protein 2 homologue (pwp2h) as the mutated

gene in ttis450. In yeast, Pwp2 has been shown to be an essential

scaffold component of the 90S pre-ribosomal particle, facilitating

the binding of proteins such as the U3 snoRNP to the 59 end of the

35S rRNA precursor [24]. Depletion of Pwp2 in yeast cells results

in reduced production of mature 18S rRNA and 40S ribosomal

subunits [24,25]. In agreement with these results, we show that

zebrafish Pwp2h plays a conserved role in rRNA processing and

ribosome biogenesis. Moreover, we use this in vivo model system to

demonstrate a connection between rRNA processing and autoph-

agy which has, to our knowledge, been hitherto unappreciated.

Results

ttis450 larvae exhibit defects in intestinal, liver, pancreas,
and craniofacial development

ttis450 is one of several intestinal mutants identified in an ENU

mutagenesis screen (the Liverplus screen) conducted on a transgenic

line of zebrafish (Tg(XlEef1a1:GFP)s854) harbouring a GFP

transgene (‘‘gutGFP’’) expressed specifically in the digestive organs

[23,26,27]. Abnormalities in the gross morphology of ttis450 larvae

are first detectable at 72 hpf and became more severe with time.

At 120 hpf, the wildtype (WT) intestinal epithelium exhibits a

columnar morphology and starts to elaborate folds; in contrast, the

intestinal epithelium in ttis450 remains thin and unfolded (Figure 1A

and 1B). ttis450 larvae also exhibit smaller eyes (microphthalmia), a

smaller, misshapen head, an uninflated swim bladder and

impaired yolk absorption (Figure 1A). At 120 hpf, the ttis450

pancreas and liver are both substantially smaller than in WT

(Figure 1C).

Author Summary

Autophagy is an act of self-preservation whereby a cell
responds to stressful conditions such as nutrient depletion
and intense muscular activity by digesting its own
cytoplasmic organelles and proteins to fuel its longer-
term survival. An understanding of the wide spectrum of
physiological stimuli that can trigger this beneficial cellular
mechanism is only just starting to emerge. However, this
process also has a negative side, since autophagy is
exploited in certain pathological conditions, including
cancer, to extend the lifespan of cells that would otherwise
die. Our analysis of a new zebrafish mutant, titania (ttis450),
with defective digestive organs and abnormal craniofacial
structure, sheds further light on the physiological and
pathological ramifications of autophagy. In (ttis450), an
inherited mutation in a gene required for ribosome
production provides a powerful stimulus to autophagy in
affected tissues, allowing them to evade cell death. The
phenotypic consequences of impaired ribosome biogen-
esis in our zebrafish model are reminiscent of some of the
clinical features associated with a group of human
syndromes known as ribosomopathies.

Disrupted Ribosome Biogenesis Stimulates Autophagy
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By 120 hpf, the rostral intestine (intestinal bulb region) in ttis450

larvae is markedly smaller than in WT and the intestinal epithelial

cells (IECs) are cuboidal rather than columnar in shape (Figure 1C,

1D). The intestinal lumen appears clear of cellular debris. Cells in

the mid and posterior intestine are also smaller and less polarized

than in WT (Figure 1D). The mean apicobasal height of the cells

in the intestinal bulb region of ttis450 larvae is approximately 40%

less than that in WT (Figure 1E). However, cellular differentiation

Figure 1. The ttis450 phenotype encompasses craniofacial defects, smaller endodermal organs, and microphthalmia. (A, B) Differential
interference contrast (DIC) images of WT and ttis450 larvae at 120 hpf. (A) The black arrows indicate, from left to right, the 3 regions of the intestine:
the intestinal bulb, mid-intestine and posterior intestine. (B) The intestinal epithelium in WT larvae is extensively folded (upper panel) and is thinner
and unfolded in ttis450 larvae (bottom panel). In ttis450, yolk resorption is incomplete and the swim bladder does not inflate. Microphthalmia is evident
and the head is slightly smaller and misshapen. (C, D) Transverse (C) and sagittal (D) histological sections of WT and ttis450 larvae at 120 hpf stained
with alcian blue periodic acid-Schiff reagent. The anterior part of the intestine (intestinal bulb) is expanded and the epithelium is elaborated into folds
in WT larvae (C, left panel). In ttis450 the intestinal bulb, liver and pancreas are smaller than in WT and the epithelium is relatively thin and flat (C, right
panel). (D) The intestinal epithelial cells of the entire intestinal tract are columnar in shape in WT larvae (left panels) and are cuboidal in ttis450 (right
panels). Goblet cells containing acidic mucins (turquoise staining) are present in approximately equal numbers (white arrows) in the WT and ttis450

mid-intestine. sb, swim bladder; b, brain; ib, intestinal bulb; y, yolk; e, eye; s, somite; P, pancreas; L, liver; (E) The average apicobasal length of the IECs
in the intestinal bulb region of ttis450 larvae at 120 hpf is approximately half that of WT IECs. Measurements were performed on 10 cells in 3
independent sections. (F) Fluorescent activated cell sorting analysis of the cell cycle in cells derived from the GFP-positive, endoderm derived organs
(liver, pancreas, intestine) of ttis450 and WT larvae on the gutGFP background at 96 hpf. Data are represented as the mean +/2 SD (n = 3), *p,0.05.
doi:10.1371/journal.pgen.1003279.g001

Disrupted Ribosome Biogenesis Stimulates Autophagy
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is not inhibited as similar numbers of mucin-producing goblet cells

are found in the mid-intestinal region of ttis450 larvae as in WT

(Figure 1D).

The reduction in cell size is accompanied by changes in the

proportion of cells in different phases of the cell cycle. At 72 hpf,

the intestinal epithelium is the most rapidly proliferating tissue in

the zebrafish embryo [28,29]. Using BrdU incorporation analysis,

we detected fewer ttis450 IECs in S phase than WT IECs (Figure

S1A, S1B). Fluorescent activated cell sorting (FACS) of cells

disaggregated from WT and ttis450 larvae carrying the gutGFP

transgene allowed us to analyze the proliferation of cells derived

specifically from the liver, pancreas and intestine. We observed a

significant accumulation of ttis450 cells in the G1 phase of the cell

cycle at 96 hpf (88% in ttis450 compared to 70% in WT) and a

corresponding reduction of ttis450 cells in S phase (8% in ttis450

compared to 28% in WT). No significant difference in the number

of cells in G2 was observed (Figure 1F).

The ttis450 phenotype is completely penetrant, and the animals

die at 8–9 days post-fertilization (dpf). Heterozygous ttis450 carriers

are phenotypically indistinguishable from WT siblings.

ttis450 harbours a mutation in pwp2h
We identified the mutated gene responsible for the abnormal

digestive organ development in ttis450 by mapping the ttis450 locus

to a 260-kilobase interval on chromosome 1 encompassing 5 genes

(Figure 2A). One of these genes, pwp2h, comprises 21 exons

spanning 2928 base pairs (Figure 2B) and encodes a protein of 937

amino acids containing 13 WD-40 repeat domains. WD-40

repeats generally serve as platforms for the assembly of proteins in

multi-protein complexes and are conserved from yeast to

mammals. We identified an A to T base change in the conserved

splice acceptor site in intron 9 of pwp2h in ttis450 mutants

(Figure 2C) resulting in utilization of a cryptic splice site 11 bp

upstream of exon 10, thereby generating a frame-shift and

nonsense mutation in codon 421 (Figure S2A) and truncating

the Pwp2h protein in the seventh WD domain (Figure S3).

The tti phenotype is recapitulated by microinjection of 1–4 cell

zebrafish embryos with an antisense morpholino oligonucleotide

targeted to pwp2h mRNA (Figure S2B, S2C). That mutant pwp2h is

responsible for the ttis450 phenotype was confirmed by non-

complementation with an independent allele of pwp2h, ttis927

(Figure S2D–S2G). ttis927 was identified in an ENU mutagenesis

screen (the 2-CLIP screen) [30] conducted on the (in-

ins:dsRed)m1081;Tg(fabp10:dsRed;ela3l:GFP)gz12 transgenic back-

ground [31] to facilitate assessment of pancreas and liver

development. ttis927 harbours a missense mutation in pwp2h: a T

to A transversion in exon 5 (Figure S2H) resulting in the

replacement of a valine with glutamic acid (Figure S2I) in the

second WD-40 domain (Figure S3). The phenotypes of ttis450 and

ttis927 larvae are essentially indistinguishable.

The pwp2h mRNA expression pattern delineates the
tissues that are abnormal in ttis450

In order to assess the expression pattern of pwp2h during

zebrafish embryogenesis, we performed wholemount in situ

hybridization (WISH). In WT embryos pwp2h mRNA is ubiqui-

tously expressed between 4–12 hpf and then becomes restricted to

the brain and eyes at 24 hpf (Figure 2D–2G). By 48 hpf pwp2h

mRNA is expressed in the pharyngeal cartilages and primitive gut,

including the liver and pancreas anlagen (Figure 2H). By 72 hpf

expression in the eye is largely extinguished and restricted to the

pharyngeal cartilages, liver, intestine and pancreas (Figure 2I). By

96 hpf, pwp2h expression in the intestine is diminishing but is

sustained in the pharyngeal cartilages, liver and pancreas

(Figure 2J). By 120–144 hpf, the pancreas is the only tissue in

which pwp2h mRNA is detected (Figure 2K, 2L). Expression of

pwp2h is absent in ttis450 embryos from 24 hpf onwards (Figure 2M,

2N) indicating that upon exhaustion of maternally deposited

supplies of WT pwp2h mRNA, the zygotically expressed mutant

mRNA probably undergoes nonsense-mediated decay (NMD).

These expression data are consistent with the eye, brain,

pharyngeal cartilages and digestive organs being the most severely

affected organs in ttis450 larvae.

pwp2h deficiency leads to impaired ribosome biogenesis
in ttis450 larvae

In all species, rRNA is transcribed as a large pre-rRNA

transcript which undergoes a series of enzymatic cleavage steps

within the nucleolus by large ribonucleoprotein complexes to

produce mature 18S, 28S and 5.8S rRNAs (Figure 3B). To

investigate rRNA processing in ttis450 larvae, we conducted

Northern blot analysis (Figure 3A) using probes designed to

hybridize to the external (59ETS) and internal-transcribed (ITS1

and ITS2) spacer regions of zebrafish 45S pre-rRNA (Figure 3B).

These probes detect the full-length rRNA precursor and all

intermediate species but not the fully mature forms of rRNA. This

analysis revealed a 2.5 fold accumulation of the full-length

precursor ‘a’ in ttis450 and an accumulation of the intermediates

‘b’ and ‘c’ (4.6 fold and 1.3 fold, respectively). These observations

are consistent with a block in the processing of the full-length

rRNA precursor. We also noted a 2.6 fold decrease in ttis450 larvae

in the level of ‘d’, the immediate precursor of 18S rRNA

(Figure 3A). Furthermore, E-bioanalyser analysis revealed a

marked reduction in the production of mature 18S rRNA in

ttis450 larvae (Figure 3C); however, the production of mature 28S

rRNA was unaffected (Figure 3C). These changes altered the ratio

of 28S/18S rRNA in ttis450 larvae, which is 2.8 at 120 hpf,

compared to 1.8 in WT (Figure 3D).

To investigate the impact of Pwp2h deficiency on ribosome

formation, we prepared extracts of WT and tti zebrafish larvae at

96 hpf and fractionated the ribosomal subunits on sucrose density

gradients (Figure 3E). The areas under the peaks corresponding to

the 40S subunits and 80S monosomes in ttis450 lysates are

markedly smaller compared to those in WT (reduced approxi-

mately 4 fold and 2-fold, respectively). Meanwhile, the area under

the peak corresponding to the 60S subunits is increased by

approximately 4.5 fold (Figure 3F). Collectively, these data are

consistent with Pwp2h deficiency primarily impacting on 40S

subunit formation.

Intestinal epithelial cells in ttis450 larvae undergo
autophagy

To determine the impact of impaired ribosome biogenesis at the

ultrastructural level, we used transmission electron microscopy

(TEM) (Figure 4A–4H). While WT intestinal epithelium is folded

and the cells exhibit apicobasal polarity and a highly elaborated

apical brush border (Figure 4A, 4C, 4E, 4G), IECs in ttis450 are

smaller and the microvilli are shorter and relatively sparse

(Figure 4B, 4D, 4F, 4H). The ttis450 nuclei contain prominent

condensed nucleoli, suggesting ribosomal stress [32]. Also

conspicuous at 96 hpf in the IECs of ttis450 larvae, but essentially

absent in WT, are cytoplasmic vesicles containing debris

(Figure 4B, 4B9). At 120 hpf, these structures are bigger in size

and electron dense (Figure 4D, 4D9). At 144 hpf, vesicles more

akin to those observed at 96 hpf are present (Figure 4H, 4H9,

4H0). Similar transient structures have been previously identified

in cells undergoing autophagy. We therefore pursued the

Disrupted Ribosome Biogenesis Stimulates Autophagy
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hypothesis that the cytoplasmic vesicles in ttis450 larvae correspond

to autophagosomes and autolysosomes: vesicles that sequester and

digest organelles.

Autophagy is a dynamic process comprising autophagosome

synthesis, delivery of autophagic substrates to lysosomes and

substrate degradation in autolysosomes [10,12]. In order to

investigate whether the electron dense vesicles observed at

120 hpf (Figure 4D) correspond to autolysosomes, we exposed

WT and ttis450 larvae at 106 hpf for 14 h to chloroquine, an

autophagy inhibitor that blocks the fusion of autophagosomes with

Figure 2. Positional cloning reveals that pwp2h is the mutated gene in ttis450. (A) Physical map of chromosome 1 in the region
encompassing the ttis450 locus. Analysis of recombinants from 7376 meioses narrowed the genetic interval containing the mutation to a region
flanked by 2 BACs (green boxes) and encompassed by 2 scaffolds zv945445 and zv945446 (blue bars) containing 5 genes (arrows). (B) Schematic
representation of the pwp2h gene and the location of the sequence variation in intron 9. (C) The nucleotide sequence of pwp2h cDNA from ttis450

larvae contains an ART transversion. Wholemount in situ hybridization (WISH) reveals the pwp2h mRNA expression pattern from 4–144 hpf in WT
larvae (D–L). pwp2h expression is ubiquitous from 4–12 hpf (D–F), restricted to the retina at 24 hpf (G; black arrow) and encompasses the pharyngeal
cartilages (black arrowhead), liver (white arrow), intestine (bracket) and pancreas (white arrowhead) at 48 hpf (H), 72 hpf (I) and 96 hpf (J). From 120–
144 hpf pwp2h expression is restricted to the pancreas (K–L; white arrowhead). pwp2h expression is barely detectable at 24 hpf (M) and 72 hpf (N) in
ttis450 larvae. Staining is absent in the sense control at 72 hpf (O) and at all other time points (data not shown).
doi:10.1371/journal.pgen.1003279.g002

Disrupted Ribosome Biogenesis Stimulates Autophagy
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lysosomes and thereby prevents digestion of the vesicle contents

[33]. After chloroquine treatment few, if any, electron dense

cytoplasmic vesicles (autolysosomes) are found in the intestinal

epithelium of ttis450 larvae (Figure 4F). Instead, the IECs in ttis450

larvae contain vesicles more reminiscent of autophagosomes

(Figure 4F, 4F9, 4F0). We counted .3 autophagosomes/cell

(3.2560.144, n = 60) in the IECs of ttis450 larvae, compared to ,1

(0.660.058, n = 60) in WT IECs. Thus chloroquine inhibition of

autophagic flux results in a significantly higher number of

autophagosome-like structures in ttis450 larvae compared to WT.

To investigate this further, we examined LC3 localisation in

WT and ttis450 larvae using wholemount immunocytochemistry

(Figure 5A–5G). LC3, the mammalian orthologue of yeast Atg8, is

a robust marker of autophagosomes. Upon induction of autoph-

agy, the cytoplasmic form of LC3 (LC3I) is converted by cleavage

and lipidation to a transient, autophagosomal membrane-bound

Figure 3. ttis450 larvae display defects in ribosome biogenesis. (A) Northern analysis of RNA isolated from WT and ttis450 larvae at 120 hpf
using 59ETS, ITS1, and ITS2 probes to detect precursor forms of rRNA. Elf1a is a loading control. a–d correspond to the rRNA intermediates depicted in
Figure 3B. (B) Schematic diagram showing the rRNA processing pathway in zebrafish [60]. The sites of hybridization of the 59ETS, ITS1 and ITS2 probes
are indicated. (C) Representative E-Bioanalyser analysis of total RNA isolated from WT and ttis450 larvae at 120 hpf demonstrates a reduction in the 18S
peak in ttis450 larvae resulting in an elevated 28S/18S rRNA ratio in ttis450 (D). Graphical representation of the experiment shown in C. Data are
represented as mean +/2 SD (n = 5). (E) Representative polysome fractionation analysis performed on WT and ttis450 larvae at 96 hpf demonstrates
reduced levels of 40S ribosomal subunits and 80S monosomes and an increase in free 60S subunits in ttis450 larvae compared to WT. (F) Graphical
representation of the experiment shown in E. Data are represented as mean +/2 SD (n = 5) *p,0.05.
doi:10.1371/journal.pgen.1003279.g003

Disrupted Ribosome Biogenesis Stimulates Autophagy
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Figure 4. The intestinal epithelial cells (IECS) in ttis450 larvae contain autophagosome- and autolysome-like structures. (A–H)
Transmission electron micrographs of WT and ttis450 larvae at 96 hpf (A, B), 120 hpf (C–F) and 144 hpf (G, H). Sections are transverse through the yolk
in the region of the intestinal bulb. WT IECs demonstrate well-developed apicobasal polarity as evidenced by basally positioned nuclei (n) and the
elaboration of microvilli (mv) projecting from the apical surface into the intestinal lumen. Mitochondria (m) are abundant and plasma membranes

Disrupted Ribosome Biogenesis Stimulates Autophagy
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form of LC3 (LC3II). Disrupting the fusion of autophagosomes

with lysosomes with chloroquine prolongs the half-life of LC3II

and facilitates the accumulation of LC3II-containing autophago-

somes, which appear as punctate structures using LC3 immuno-

cytochemistry. We observed more puncta in the IECs of

chloroquine-treated WT larvae (Figure 5C) compared to untreated

WT larvae (Figure 5A). Consistent with impaired ribosome

biogenesis stimulating autophagy, we counted approximately 5

times more puncta in the IECs of chloroquine-treated ttis450 larvae

(Figure 5D) compared to the IECs of chloroquine-treated WT

siblings (Figure 5C; compare 2nd and 4th bars in Figure 5G). We

next exposed WT and ttis450 larvae to rapamycin, which through

its specific inhibition of Torc1 [34,35] provides a powerful

stimulus to autophagy in yeast, zebrafish and mice. We found

that the number of puncta in WT larvae treated with rapamycin

and chloroquine together (Figure 5E, 5G) was similar to the

number of puncta in ttis450 larvae treated with chloroquine alone

(Figure 5D, 5G). Finally, treating ttis450 larvae with rapamycin and

chloroquine together (Figure 5F) resulted in more abundant

puncta than in both chloroquine-treated ttis450 larvae and

rapamycin and chloroquine-treated WT larvae (Figure 5G). Upon

Western blot analysis of whole larval lysates (Figure 5H, 5I), we

found that LC3II levels in chloroquine-treated ttis450 larvae were

significantly higher than in chloroquine-treated WT larvae but not

significantly different from those in WT larvae treated with

rapamycin and chloroquine together (Figure 5I). Together these

experiments demonstrate that the vesicles identified in the IECs of

ttis450 larvae are autophagosomes, and, to the best of our

knowledge, provide the first evidence for a link between impaired

ribosome biogenesis and autophagy.

To determine the extent of autophagy in ttis450 larvae, we

injected RNA encoding a mCherry-LC3 fusion protein into the

yolk of 1–4 cell stage zebrafish embryos and evaluated the

formation of puncta after prior treatment with chloroquine for

14 h at three time-points (Figure S4). At 72 hpf, abundant puncta

are present in the eye (Figure S4B) and brain (Figure S4B9) of ttis450

larvae compared to WT larvae (Figure S4A, S4A9). At this time-

point, there are very few puncta in the digestive organs (Figure

S4C, S4D). A similar picture was observed at 96 hpf (data not

shown). At 120 hpf, the number of puncta in the brain (Figure

S4F9) in ttis450 larvae is now comparable to that observed in WT

(Figure S4E9), while higher numbers of puncta are still found in the

eye (Figure S4F). At 120 hpf there are more abundant puncta in

the intestine and pancreas of ttis450 larvae (Figure S4H) compared

to these organs in WT (Figure S4E and S4G, respectively). This

pattern of autophagy induction mirrors the tempero-spatial

expression of pwp2h during zebrafish development, and is

consistent with these tissues being the most affected by impaired

ribosome biogenesis in ttis450 larvae.

To determine whether autophagy is a specific response to

impaired ribosome biogenesis, we conducted LC3 analysis of two

additional zebrafish intestinal mutants, setebos (sets453) and caliban

(clbns846), which exhibit phenotypes that are essentially indistin-

guishable from that of ttis450 when viewed under the light

microscope or upon histological analysis. Whereas sets453 harbours

a mutation in a gene which impairs 28S rRNA production and

ribosome biogenesis (APB et al., in preparation), the mutation in

clbns846 lies in a gene encoding an essential mRNA splicing factor

(SJM et al., in preparation). We observed that sets453 larvae, like

ttis450 larvae, contain higher LC3II levels compared to WT siblings

in the presence of chloroquine (Figure S5A, S5B) and their IECs

contain abundant autophagosome-like structures when analysed

by TEM (data not shown). In contrast, the LC3II levels in clbns846

larvae are indistinguishable from those in WT siblings (Figure

S5A, S5B) and the intestinal epithelium of clbns846 mutants do not

contain autophagosomes or autolysosomes when inspected at the

ultrastructural level (Figure S5C–S5H). These data suggest that

the induction of autophagy in IECs is a specific response to

impaired ribosome biogenesis, rather than a non-specific response

to impaired cell growth.

Autophagy induction in ttis450 larvae prolongs their
survival

We followed the morphological changes in the intestinal

epithelium and liver of ttis450 larvae until 7 dpf, just before the

larvae die at 8–9 dpf. At 7 dpf, the IECs are substantially smaller

in ttis450 larvae than in their WT counterparts and neither ttis450

nor WT larvae contain detached cells in the intestinal lumen

(Figure S6A–S6D). The ttis450 IECs no longer contain conspicuous

autophagosomes, though electron dense vesicles are present in

abundance in adjacent liver cells (Figure S6E–S6F). To investigate

the impact of inhibiting autophagy in ttis450 larvae, we blocked

autophagosome formation by injecting 1 ng of an antisense

morpholino oligonucleotide (MO), which targets the translation

start-site of atg5 mRNA [36], into 1–4 cell stage embryos derived

from pair-wise matings of heterozygous ttis450 adults. At 72 hpf,

uninjected, vehicle-injected and atg5 MO-injected ttis450 larvae

were identified and subjected to LC3 analysis. We found

significantly lower LC3II levels in the atg5 MO-injected ttis450

larvae compared to uninjected and vehicle-injected controls

(Figure 6A). Moreover, from 72–120 hpf, we noticed that atg5

MO-injected ttis450 larvae start to develop oedema around the

head, eye, heart and intestine (Figure S7D). As a consequence,

50% of atg5 MO-injected ttis450 larvae die by 5 dpf and all atg5

MO-injected ttis450 larvae are dead by 7 dpf (Figure 6B). This

contrasts markedly with untreated or vehicle-injected ttis450 larvae,

which survive until 8–9 dpf (Figure 6B). The longevity of WT

larvae injected with the atg5 MO is not affected. Ultrastructural

analysis at 120 hpf revealed detached, shrunken cells in the

intestinal lumen of atg5 MO-treated tis450 larvae (Figure 6D–6F)

that were never seen in the intestinal lumen of ttis450 larvae injected

with vehicle or WT siblings injected with atg5 MO (Figure 6C).

Together these data demonstrate that autophagy extends the

lifespan of ttis450 larvae and prolongs the survival of IECs.

Autophagy induction in ttis450 larvae is independent of
Tor pathway activity and p-RPS6

To explore the relationship between the Tor pathway and

autophagy in ttis450 larvae, we analysed the levels of phosphory-

lated RPS6 (p-RPS6), a downstream target of Torc1 activity.

Using Western blot analysis, we found that p-RPS6 levels decrease

(pm) are well defined. The intestinal epithelium in ttis450 is highly disorganized, with shorter and relatively sparse apical microvilli compared to WT.
Vesicles resembling autophagosomes (white arrowhead in B) are present in the intestinal epithelial cells of ttis450 larvae (B9 [boxed area in B], H0
[boxed area in H]) but not in WT (A, A9 [boxed area in A] and G). At 120 hpf, electron-dense structures, likely to correspond to autolysosomes, are
present in ttis450 larvae (white arrowheads in D, D9 [boxed area in D]), but not WT (C, C9 [boxed area in C]). When ttis450 larvae are treated with
chloroquine to block the fusion of autophagosomes with lysosomes, the electron-dense structures are no longer apparent at 120 hpf; instead vesicles
more typical of autophagosomes are found (white arrowheads in F). The boxed areas in F (F9 and F0) show vesicles containing debris, including one
(white arrow in F0), with a clear double membrane. Scale bars = 10 mm (A–H) and 1 mm (all insets).
doi:10.1371/journal.pgen.1003279.g004
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markedly in WT larvae between 72–120 hpf as previously

reported [37] (Figure 7A, 7B). Somewhat surprisingly, p-RPS6

levels persist in ttis450 larvae until 120 hpf, when they are 4-fold

higher than in WT siblings (Figure 7A, 7B). We also noticed that

the overall level of RPS6 protein is less in ttis450 larvae compared to

WT, perhaps reflecting the fact that RPS6 is a structural

Figure 5. Comparable autophagic flux in the IECs of ttis450 larvae and WT larvae treated with rapamycin. (A–F) Transverse sections
(200 mm) through the intestinal bulb region of untreated WT (A) and ttis450 (B) larvae at 120 hpf or larvae previously treated for 14 h with rapamycin
and/or chloroquine (C–F) stained with rhodamine phalloidin to detect F-actin (red), Hoechst 33342 to detect DNA (blue) and the LC3B antibody to
detect LC3II–containing autophagosomes (green puncta). (G) The numbers of autophagosomes are increased in chloroquine-treated WT and ttis450

larvae compared to the corresponding untreated larvae. Chloroquine-treated ttis450 larvae contain significantly more puncta than chloroquine-treated
WT larvae and similar numbers to WT larvae treated with rapamycin and chloroquine. Rapamycin and chloroquine-treated ttis450 larvae contain
significantly more puncta per IEC than the IECs in chloroquine-treated ttis450 larvae and chloroquine and rapamycin-treated WT larvae. Puncta were
counted in 20 cells from 3 independent sections using Metamorph. (H) Representative Western blot analysis of whole cell lysates of WT and ttis450

larvae (96 hpf) previously treated for 14 h with rapamycin (10 mM) and/or chloroquine (2.5 mM) using antibodies to LC3B and Actin (loading control).
(I) Graphical representation of the data shown in H and two independent analyses. The LC3II signals were quantitated by densitometry. ttis450 larvae
treated with chloroquine contain more LC3II than their chloroquine-treated WT siblings and comparable levels to WT larvae treated with rapamycin
and chloroquine. Data are represented as mean +/2 SD, *p,0.05.
doi:10.1371/journal.pgen.1003279.g005
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component of the 40S subunits, which are fewer in ttis450 larvae.

Using immunocytochemistry we examined p-RPS6 expression in

histological sections of WT and ttis450 larvae. At 96 hpf, we

observed robust p-RPS6 expression in the intestinal epithelium

and liver of WT and ttis450 larvae (Figure 7C). The high p-RPS6

levels in the ttis450 intestinal epithelium raise the possibility that

elevated p-RPS6 stimulates autophagy directly in ttis450 larvae, as

this occurrence has been recognised previously, including in the

Figure 6. Disrupting autophagy in ttis450 larvae results in the death of IECs and a reduced lifespan. (A) Western blot analysis of lysates of
ttis450 larvae (72 hpf) that had been injected at the 1–4 cell stage with an antisense morpholino oligonucleotide (MO) targeted to the start codon of
atg5 mRNA reveals decreased levels of LC3II compared to untreated and vehicle controls, both in the presence and absence of chloroquine. Data are
represented as mean +/2 SD, *p,0.05. (B) Survival curve of untreated WT and ttis450 larvae compared to WT and ttis450 larvae that had been injected
at the 1–4 cell stage with vehicle or atg5 MO (n.85 larvae per group). The lifespan of WT embryos/larvae is completely unaffected by injection with
the atg5 MO since all three groups of WT larvae (untreated, vehicle-treated and atg5 MO-treated) progress normally through the first 10 days of
development, when the experiment was terminated. The horizontal line represents untreated WT embryos (maroon squares), vehicle-injected WT
embryos (green triangles) and atg5 MO-injected WT embryos (blue triangles). In contrast, ttis450 embryos respond to microinjection of the atg5 MO by
impaired survival. Whereas all untreated (yellow diamonds) or vehicle-injected (purple circles) ttis450 larvae are still alive at 7 dpf, all the atg5 MO-
injected ttis450 larvae are dead at this time-point (red squares). Indeed, 20% of the atg5 MO-injected ttis450 larvae have already succumbed by 3 dpf.
(C–F) TEMs of WT (C) and ttis450 larvae at 120 hpf (D–F), injected at the 1–4 cell stage with the atg5-targeted MO. Inhibiting autophagy in ttis450 larvae
results in the appearance of detached and shrunken IECs in the intestinal lumen (black arrow in D, E and F [boxed area in D]) but has no impact on WT
IECs (C). Scale bars = 10 mm.
doi:10.1371/journal.pgen.1003279.g006
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Figure 7. ttis450 larvae exhibit elevated levels of Torc1 activity. (A) Western blot analysis of RPS6, p-RPS6 and Actin (loading control) in whole
cell lysates of WT and ttis450 larvae between 72–120 hpf. (B) Graphical representation of the data shown in A combined with two additional
experiments (each bar represents the mean +/2 SD, *p,0.05). ttis450 larvae exhibit increased levels of p-RPS6 at 96–120 hpf and decreased levels of
total RPS6 between 72–120 hpf compared to WT siblings. (C) Immunohistochemical analysis of transverse sections of ttis450 and WT larvae at 96 hpf
reveals robust p-RPS6 expression in the digestive organs. Scale bars = 50 mM. (D) The persistent expression of p-RPS6 expression in ttis450 larvae at
96 hpf compared to WT is due entirely to up-regulated Torc1 activity as shown by the disappearance of the p-RPS6 signal when larvae are pre-treated
with rapamycin. (E) Inhibiting the Tor pathway in ttis450 larvae with rapamycin in the presence of chloroquine reduces p-RPS6 expression and at the
same time increases autophagic flux as shown by the increase in LC3II level. In the graphical representation of the data, each bar represents the mean
+/2 SD (n = 3), *p,0.05.
doi:10.1371/journal.pgen.1003279.g007

Disrupted Ribosome Biogenesis Stimulates Autophagy

PLOS Genetics | www.plosgenetics.org 11 February 2013 | Volume 9 | Issue 2 | e1003279



Drosophila fat body during starvation [38,39]. To test this, we

blocked p-RPS6 accumulation using rapamycin. We found that

prior exposure to rapamycin for 14 h eliminated the p-RPS6

signal in both WT and ttis450 larvae at 96 hpf (Figure 7D), thereby

unequivocally linking the persistent and elevated p-RPS6 signal in

ttis450 larvae to Torc1 activity. Moreover, rapamycin treatment of

ttis450 larvae in the presence and absence of chloroquine results in

elevated levels of LC3II (Figure 7E) and LC3II-containing

autophagosome formation (Figure 5F, 5G). These augmented

levels of autophagy, achieved through rapamycin blockade of

RPS6 phosphorylation, exclude the possibility that elevated p-

RPS6 is responsible for the induction of autophagy in ttis450 larvae.

Indeed, these data suggest that autophagy induction in ttis450

larvae is independent of the level of activation of the Tor pathway

and the levels of p-RPS6.

We corroborated this finding with a genetic approach by

crossing ttis450 onto the tsc2vu242/vu242 background [40]. Tsc2 is a

negative regulator of Torc1 and tsc2vu242/vu242 zebrafish larvae

exhibit a variety of defects including an enlarged liver at 7 dpf

[40], consistent with Tor playing a positive role in digestive organ

growth. The development of the ttis450 phenotype, including the

induction of autophagy, is not perturbed on the tsc2vu242/vu242

background (Figure S8A–S8F). Interestingly, ttis450 larvae at

96 hpf contain higher levels of pRPS6 than tsc2vu242/vu242 larvae

(Figure S8E, S8F) and the levels of p-RPS6 are higher still in

compound ttis450;tsc2vu242/vu242 mutants (Figure S8E, S8F). In

conclusion, these data show that impaired ribosome biogenesis

induces autophagy in ttis450 larvae through a mechanism that does

not require inhibition of the Tor pathway and is independent of p-

RPS6 levels.

Autophagy induction in ttis450 larvae is independent of
Tp53

Defects in 18S and 28S rRNA processing have been shown to

activate Tp53 [41], which in turn can stimulate autophagy [42].

While WT larvae contained negligible levels of Tp53 protein at

96 hpf, ttis450 larvae display readily detectable levels of Tp53

protein at this time-point (Figure 8A) and increased transcription

of Tp53 target genes, including DN113p53, p21, cyclinG1 and

mdm2 (Figure 8B–8E). To determine whether Tp53 plays a role in

the induction of autophagy in ttis450, we generated ttis450 larvae

expressing a mutant form of Tp53 (Tp53M214K) with negligible

DNA-binding activity [43]. While this mutation severely dimin-

ished the elevated DN113p53, p21, cyclinG1 and mdm2 expression

levels in ttis450 larvae at 96 hpf as expected (Figure 8B–8E), the

level of LC3II in compound ttis450;tp53M214K/M214K mutants in the

presence of chloroquine was significantly higher than in

tp53M214K/M214K mutants (Figure 8F–8H). In addition, ultrastruc-

tural analysis revealed similar numbers of autolysosomes in ttis450

mutants at 120 hpf, independent of whether they were on the

tp53M214K/M214K background or not (Figure 8H). Therefore the

induction of autophagy in response to Pwp2h depletion proceeds

unabated in ttis450 larvae that are devoid of functional Tp53

protein.

Discussion

This study shows, in the context of an intact vertebrate

organism, that Pwp2h is critical for the production of mature

18S rRNA, an integral component of the 40S ribosomal subunit.

In zebrafish, as in yeast, Pwp2h depletion results in reduced levels

of the immediate precursor to mature 18S rRNA and a

concomitant decrease in the production of mature 18S rRNA

and assembly of 40S ribosomal subunits. Thus the role of Pwp2h

in the 90S pre-ribosomal particle or small subunit processome is

conserved from yeast to vertebrates.

In our pwp2h-deficient model, titania (ttis450), the growth of the

endodermal organs, eyes, brain and craniofacial structures is

severely arrested and autophagy is markedly up-regulated. To the

best of our knowledge, this is the first time that a link between

impaired ribosome biogenesis and autophagy has been demon-

strated. We further show that elevated rates of autophagy support

the survival of intestinal epithelial cells and increase the lifespan of

ttis450 larvae, thereby demonstrating that autophagy is a survival

mechanism invoked in response to ribosomal stress. In our

zebrafish model, autophagy induction does not depend on

inhibition of the Tor pathway or activation of Tp53.

The death of ttis450 larvae at 8–9 dpf demonstrates that pwp2h

encodes a protein that is indispensable for life. However, the

development of ttis450 larvae until 72 hpf is supported by the

deposition of maternal, wild-type pwp2h mRNA (and/or protein)

into oocytes by their heterozygous mother. At 72 hpf, the tissues in

which pwp2h is most highly expressed are the intestinal epithelium,

pharyngeal arches, liver, dorsal midbrain, cerebellum, dorsal

hindbrain, retinal epithelium and pancreas. These tissues are also

the most rapidly proliferating tissues in WT larvae at 72 hpf [28]

and the most severely affected tissues in ttis450 larvae. Thus the

tissue-specific phenotype of ttis450 larvae may be explained by

maternally-derived WT pwp2h mRNA being exhausted first in

developing organs containing highly proliferative cells.

In WT zebrafish larvae there is a transient spike in Torc1

activity (as measured by p-RPS6) at around 72 hpf that is

coincident with the activation of anabolic pathways required for

cell growth and proliferation during the endoderm to intestine

transition [37]. Torc1 is thought to play a role in developing

organisms as an organ size checkpoint, potentiating growth signals

that promote the rapid expansion of organs until they reach a

genetically programmed cell size [44]. Therefore the persistent

and robust activity of Torc1 we observe in the intestinal epithelium

and liver of ttis450 larvae at 96 hpf may be a consequence of these

organs being markedly smaller than their WT counterparts at this

stage.

The gross phenotype of ttis450 is highly reminiscent of another

zebrafish mutant, nil per os (npo), in which the morphogenesis of the

intestinal epithelium is also arrested. In npo the failure of the

primitive gut endoderm to transform into a monolayer of

polarized and differentiated epithelium is caused by a mutation

in rbm19, a gene encoding a protein with six RNA recognition

motifs that is also thought to play a role in ribosome biogenesis

[45]. The same authors showed that essentially the same

hypoplastic intestinal phenotype was recapitulated by exposure

of WT zebrafish larvae to the Torc1 inhibitor, rapamycin [46],

which presumably stimulated autophagy. It would be interesting to

determine whether the growth arrest of the digestive organs in the

npo mutant is also accompanied by autophagy.

The degree of activation of the Tor pathway is thought to be

one of the major factors governing autophagy. However, Tor

inhibition is not the mechanism responsible for autophagy in ttis450

larvae and recent work suggests that autophagy regulation is a very

complex process involving the integration of signals from many

diverse signalling pathways [47]. Indeed, proteomic analysis of

binding partners of components of the autophagy machinery

suggests that several hundred molecules participate in the

regulation of the human autophagy network [48]. While much

recent attention has been focused on the direct phosphorylation of

Ulk1/Atg1 by AMPK, acting either cooperatively or indepen-

dently of Tor to exert autophagy control [19–21], there are many

reports of other kinases capable of controlling autophagy by a
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variety of Tor-independent mechanisms [49–51]. The dissociation

of the key BH3 domain-containing autophagy protein, Beclin 1

(mammalian orthologue of yeast Atg6) from its inhibitors Bcl2 and

Bcl-XL as a result of phosphorylation of one or other components

is also a critical determinant in the induction of autophagy [52]. In

the case of ttis450 larvae, it is plausible that autophagy induction

may involve a targeted pathway, selective for ribosomes [11],

which by analogy with mitophagy [53], is invoked to digest

damaged cargo such as non-functional organelles.

Somewhat surprisingly, we also ruled out involvement of Tp53

in the induction of autophagy in ttis450 larvae, even though Tp53

protein is active in ttis450 larvae at 96 hpf. However, we believe the

increased expression of Tp53 target genes such as p21 and cyclinG1

may be responsible, at least in part, for the reduction in the

number of cells in the S phase of the cell cycle we observed at this

time-point. To explain this, we surmise that as ribosome biogenesis

is progressively impaired, the ttis450 larvae mount a two-stage

response to Pwp2h depletion. Initially, the cells undergo a Tp53-

mediated cell cycle arrest. However, as the synthesis of new

proteins, including Tp53 and its targets, is progressively impaired,

the cells invoke autophagy to prolong their survival.

The notion of the existence of a second type of programmed cell

death, distinct from apoptosis, which emanates from catastrophic

levels of autophagy, is a hotly debated topic [54]. Using TEM, we

did not see any evidence of cell death in the IECs of ttis450 larvae,

even at 7–8 dpf just before the larvae die, affirming that the levels

of autophagy induced in the IECs of ttis450 larvae prolong cell

survival rather than trigger cell death. We proved this by

disrupting the formation of the early autophagosome by inhibiting

the translation of atg5 mRNA. This resulted in the death of IECs in

ttis450 larvae and a markedly reduced lifespan.

As mentioned previously, ttis450 larvae exhibit impaired

development of the craniofacial cartilages, exocrine pancreas

and brain, tissues that are often clinically abnormal in patients

with certain human ribosomopathies, including Diamond Black-

fan anaemia and Schwachman Diamond syndrome [4]. Recently,

two new zebrafish models of dyskeratosis congenita (DC) based on

mutations in components of the H/ACA RNP complex were

described [55,56]. Like ttis450, these mutants display impaired

production of 18S rRNA and induction of Tp53 target genes,

consistent with previous studies demonstrating that defects in

ribosome biogenesis induce Tp53 activation and cell cycle arrest

[41]. Moreover, hematopoietic stem cells in these mutants were

depleted via a Tp53-dependent mechanism, providing a plausible

explanation for why DC patients are susceptible to bone marrow

failure [55,56]. In one of these mutants, the gut and craniofacial

structures were also reported to be underdeveloped and, as

observed in ttis450, these defects persisted on a Tp53 mutant

background [55]. We speculate that the p53-independent features

of this model of DC may be caused by elevated rates of autophagy.

If so, and these findings are confirmed in human DC, it will be

important to determine whether elevated autophagic activity

contributes to prolonged cell survival prior to considering clinical

interventions to limit this process.

There is currently a great deal of interest in the development of

novel therapeutics that target the cancerous translation apparatus

through the combined inhibition of ribosome biogenesis, trans-

lation initiation and translation elongation [5]. To avoid

inadvertently prolonging cancer cell survival, these approaches

could benefit from a detailed understanding of the mechanisms

and cellular contexts that induce autophagy in response to

ribosomal stress. While such insights may be forthcoming from

studies performed on cell lines, it is likely that complementary

experiments carried out in the context of an entire vertebrate

organism, such as the zebrafish model introduced here, may also

be fruitful.

Materials and Methods

Ethics statement
All experimental procedures on zebrafish embryos and larvae

were approved by the Ludwig Institute for Cancer Research/

Department of Surgery - Royal Melbourne Hospital Animal

Ethics Committee.

Zebrafish strains and embryo collection
Zebrafish embryos were obtained from pair-wise matings of

heterozygous ttis450, seteboss450 and calibans846 zebrafish on the

Tg(XlEef1a1:GFP)s854 (gutGFP) background and from ttis450 hetero-

zygotes carrying two mutant alleles of Tp53 (ttis450;Tp53M214K/M214K)

[43] and raised at 28.5uC. ttis927 was propagated on the

Tg(ins:dsRed)m1081;Tg(fabp10:dsRed;ela3l:GFP)gz12 (2-CLIP) back-

ground [31]. The Tp53M214K/M214K line (gift of Thomas Look

and David Lane) and tsc2vu24 line were obtained through TILLING

[40,43]. The tsc2 and pwp2h loci in zebrafish are both on

chromosome 1 so in order to generate sufficient ttis450;tsc2vu24

compound mutants for analysis, we identified and in-crossed

recombinants harbouring the two mutations in a cis configuration.

To prevent melanization and maintain transparency, embryos

were treated with 0.003% 1-phenyl-2-thiourea (PTU; Sigma

Aldrich) in embryo medium. Imaging of live larvae was carried

out using a LeicaM2 FLIII microscope after anaesthetizing with

200 mg/L benzocaine (Sigma-Aldrich, St. Louis, MO) in embryo

medium. All images were imported into CorelDRAWX4 (Corel

Corporation, Ottawa, Ontario, Canada). Image manipulation was

limited to levels, hue and saturation adjustments.

Histology and whole-mount in situ hybridisation
Histology was performed as described [27]. Mucins and other

carbohydrates secreted by intestinal goblet cells were stained using

alcian blue-periodic acid-Schiff reagent [27]. For WISH, larvae

were processed as described [57,58] To generate pwp2h riboprobes

Figure 8. Autophagy in ttis450 larvae is not due to Tp53 activation. (A) Western blot analysis of Tp53 protein in whole cell lysates of WT (lane
1) and ttis450 (lane 2) larvae at 96 hpf reveals up-regulation of Tp53 expression in ttis450. Larvae treated with roscovotine (ROS; lane 3) to induce Tp53
protein expression or untreated larvae (lane 4) are positive and negative controls, respectively. The Actin signal provides a loading control. (B–E)
Relative expression of DN113p53 (B), mdm2 (C), cyclinG1 (D) and p21 (E) mRNAs in WT, ttis450 (pwp2h2/2), tp53M214K/M214K (tp532/2) and
ttis450;tp53M214K/M214K (pwp2h2/2;tp532/2) larvae at 96 hpf (n = 3) demonstrates that the expression of Tp53 target genes is increased in ttis450

compared to WT larvae (compare first 2 bars in all graphs). The Tp53 response is diminished on the tp53M214K/M214K background, as expected
(compare 2nd and 4th bars). Data were normalised by reference to Elongation factor alpha (Elf-a) expression. (F) Western blot analysis of LC3 in whole
cell lysates of tp53-mutant (tp53M214K/M214K) and ttis450;tp53M214K/M214K larvae at 96 hpf. The elevated autophagic flux in ttis450 larvae due to ribosomal
stress is not diminished on a tp53-mutant background. (G) Graphical representation of the data shown in F and two additional experiments. Bars
represent the mean +/2 SD (n = 3), *p,0.05. (H) Transmission electron micrographs of IECs of ttis450;tp53M214K/M214K larvae at 120 hpf (right panel)
reveal electron dense vesicles, resembling autolysosomes (white arrowhead), in comparable numbers to those found in ttis450 larvae with WT Tp53
expression (left panel).
doi:10.1371/journal.pgen.1003279.g008
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a cDNA template was amplified by RT-PCR. For primer

sequences see Text S1. These were then transcribed using the

digoxigenin DNA Labelling Kit (Roche Diagnostics) according to

the manufacturer’s instructions. Hybridized riboprobes were

detected using an anti-DIG antibody conjugated to alkaline

phosphatase according to the manufacturer’s instructions (Roche

Diagnostics). Larvae were imaged on a Nikon SMZ 1500

microscope.

Fluorescence-activated cell sorting (FACS)
100–200 WT and ttis450 larvae were rinsed in PBST (PBS

containing 0.5% Tween 20) three times prior to incubating in

1 mL Hank’s Balanced Salt Solution containing 0.25% trypsin,

0.1% EDTA, 40 mg/mL Proteinase K and 10 mg/mL collagenase

for 30 min at 37uC. Larvae were then homogenised in 7 mL PBS

containing 5% FBS. The cell suspension was strained through a

40 mM nylon cell strainer (BD Falcon) and spun at 2000 rpm for

10 min at 4uC. The pellet was washed twice with cold PBS/5%

FBS and resuspended in 500 ml PBS. Ice-cold methanol (900 ml)

was added to the pellet and cells were left on ice for 1 h prior to

centrifugation as above. The pellet was resuspended in 0.5 mL

PBS containing 40 mg/mL propidium iodide and 0.5 mg/mL

RNaseA for 30–60 min at room temperature (RT). GFP positive

cells were sorted on a FACSCaliburTM Optics instrument (Benton

Dickinson) and analysis was performed using the ModFit LT

program.

Detection of cells in the S-Phase of the cell cycle and cell
height determination

To identify cells in the S-phase of the cell cycle, the

incorporation of bromodeoxyuridine (BrdU) by live larvae was

analysed as described [27]. To measure cell height, images of

sagittal histological sections were captured on a Nikon Eclipse 80i

microscope and then analysed using MetaMorph Microscopy

Automation & Image Analysis Software.

Genetic mapping and positional cloning of ttis450

For genetic mapping, ttis450 heterozygotes on the gutGFP

background were crossed onto the polymorphic WIK strain.

Mutant larvae were identified by craniofacial and intestinal defects

visible at 96 hpf under brightfield and fluorescence illumination.

Subsequent mapping was performed as described [28].

Sequence alignment and domain determination
Protein sequence alignment of Pwp2h from zebrafish, yeast,

mouse and human was performed using the clustalW2 program

with default parameters. WD domains were identified using the

Simple Modular Architecture Research Tool (SMART) software.

Genotyping
A novel EcoN1 restriction enzyme site created by the ttis450

mutation produced a restriction fragment length polymorphism

(RFLP) that was exploited for genotyping. Primers were used to

amplify a 653-base pair (bp) fragment spanning exons 9 to 11

containing the ttis450 mutation. For primer sequences see Text

S1.

RNA preparation and Northern blot analysis
Total cellular RNA was prepared from WT and ttis450 larvae

(120 hpf) by homogenizing 20–50 larvae in Solution D (4.2 M

guanidinium thiocyanate, 25 mM NaCitrate, 30% Sarkosyl BDH

NL30) as described [59]. Northern blot analysis was conducted on

2 mg samples using a-32P-labelled probes designed to hybridize to

zebrafish 59ETS, ITS1 and ITS2 sequences, which were PCR-

amplified from genomic DNA using previously described primers

[60]. Radioactive signals were detected using a Phosphorimager

and Storm 820 scanner (Amersham Biosciences) and analysed

using ImageQuant TL software.

Analysis of 18S and 28S rRNA levels
Solutions of total RNA extracted from WT and ttis450 larvae

were analysed on an Agilent 2100 E-Bioanalyser according to the

manufacturer’s instructions.

Polysome fractionation
50–100 WT and ttis450 larvae at 96 hpf were resuspended in

cold lysis buffer (50 mM Tris-HCl pH 7.4, 150 mM KCl,

2.5 mM MgCL2, 1% Triton X-100, 0.5% sodium deoxycholate,

3 mM DTT) containing 120 U/mL RNase inhibitor (Invitrogen)

and Complete Protease Inhibitor Cocktail (Roche) and sheared

through a 23G needle. Lysates were incubated on ice for 30 min

and centrifuged (12,000 rpm, 20 min at 4uC) to pellet nuclei and

cellular debris. Cytoplasmic extract (2 mg) was loaded onto a

continuous low salt (80 mM NaCl) 3.1–30.1% (w/v) sucrose

gradient (14 mL) [61] generated using an ISCO gradient maker.

Samples were separated by centrifugation using a SW41 rotor at

40000 rpm for 4 h at 4uC, and fractionated (1 mL) using a Foxy

Jr fraction collector. Absorbance at 260 nM was determined

with an ISCO UA-6 absorbance detector. In each case,

quantitation of 40S, 60S, and 80S was performed by measuring

the area under the relevant peak using Metamorph Image

Analysis Software.

Transmission electron microscopy (TEM)
For TEM, larvae were fixed in 2.5% glutaraldehyde, 2%

paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA) in

PBS for 2 h at R.T, rinsed in 0.08 M Sorensen’s Phosphate buffer

pH 7.4 and then stored in 0.08 M Sorensen’s buffer with 5%

sucrose. Post-fixation was with 2% osmium tetroxide in PBS

followed by dehydration through a graded series of alcohols, 2

acetone rinses and embedding in Spurrs resin [62]. Sections

approximately 80 nm thick were cut with a diamond knife

(Diatome, Switzerland) on a Ultracut-S ultramicrotome (Leica,

Mannheim, Germany) and contrasted with uranyl acetate and

lead citrate. Images were captured with a Megaview II cooled

CCD camera (Soft Imaging Solutions, Olympus, Australia) in a

JEOL 1011 TEM. Transverse sections were obtained through the

anterior intestinal region known as the intestinal bulb.

Immunocytochemistry
For transverse sections, embryos were fixed in 2% paraformal-

dehyde overnight at 4uC, embedded vertically in 4% low melting

temperature agarose (Cambrex BioScience, East Rutherford, NJ)

in disposable cryomolds (Sakura Finetek, Torrance, CA), and

sectioned at 200 mm intervals using a Leica (Solms, Germany)

VT1000S vibrating microtome. Floating sections were transferred

to the wells of a 24-well plate containing PBD (PBS containing

0.1% Tween-20 and 0.5% Triton-X) and then replaced with

antibody blocking solution (PBD containing 1% (w/v) BSA and

1% (v/v) FCS) for 2 h at RT. The blocking solution was removed

and the sections incubated with LC3B primary antibody diluted to

1:500 in PBD containing 0.2% (w/v) BSA at 4uC overnight. The

sections were rinsed three times in PBST (PBS containing 0.1%

Tween-20) for 20 min at RT, followed by antibody blocking

solution for 2 h at RT. The sections were then incubated

overnight at 4uC in PBD containing 0.2% (w/v) BSA, Alexa
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Fluor 488 (1:500), rhodamine-phalloidin (1:150; Biotium, Hay-

ward, CA) and 5 mg/mL Hoechst33342 (Sigma Aldrich). Sections

were rinsed three times in PBST for 20 min at RT prior to

imaging on an Olympus FV1000 scanning confocal microscope.

Enumeration of LC3 puncta was performed using Metamorph.

Details of antibodies and stains are available in Text S1.

Western blot analysis
Larvae were lysed (2 mL per embryo) in cold RIPA cell lysis

buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 2 mM EDTA,

1% NP-40, 0.1% SDS) containing Complete Protease Inhibitor

Cocktail (Roche) and sheared through a 23G needle. Lysates

were incubated on ice for 30 min and then centrifuged for

20 min at 13,000 rpm at 4uC to pellet nuclei and cellular debris.

Samples containing 40–80 mg of protein were heated to 95uC for

5 min with 5 X Protein Loading Dye (0.03 M Tris-HCl, pH 6.8,

13.8% glycerol, 1% SDS, 0.05% bromophenol blue, 2.7% b-

mercaptoethanol) and loaded onto a 12% polyacrylamide gel.

The proteins were transferred to PVDF membranes using an

iBlot Gel Transfer Device (Invitrogen) according to the manu-

facturer’s instructions. For RPS6, p-RPS6, LC3 and Actin,

subsequent blocking, antibody incubation and membrane expo-

sure were performed using the Odyssey system (LI-COR

Biosciences). For Tp53, blocking and antibody incubation were

performed in PBST/5% skim milk powder and membranes

developed using the SuperSignal West Femto Chemilluminescent

Substrate (Thermo Scientific). Signals were quantitated by

densitometry and expressed as relative levels by reference to the

level in untreated WT larvae, which was set at 1. Details of

antibodies are provided in Text S1.

Expression of mCherry-LC3 fusion protein
DNA encoding the fluorophore mCherry fused to the N

terminus of LC3 was PCR amplified and transcribed into mRNA

using the mMessage mMachine SP6 kit (Ambion Life Technol-

ogies, Mulgrave, Australia). For primer sequences see Text S1.

mRNA (400 pg) was injected into the yolk of 1–4 cell stage

embryos and exposed to 2.5 mM chloroquine (Fluka Sigma-

Aldrich, Sydney, Australia) in embryo medium for 14 h at various

time-points during development prior to mounting in 1.5% low

melting point agarose for imaging with an Olympus FV1000

scanning confocal microscope.

Drug treatment
Live WT, ttis450, sets453 clbns846 larvae were exposed to 2.5 mM

chloroquine and/or 10 mM rapamycin in embryo medium at

28uC. Larvae were collected 14 h later for protein extraction and

Western blot analysis of LC3II levels as described above.

Knockdown of Pwp2h and Atg5 protein expression
Antisense morpholino oligonucleotides (MOs) targeted to the

initiation of translation codons of pwp2h or atg5 mRNA were

injected into the yolk of 1–4 cell stage WT or ttis450 embryos. 2 nL

of MO at a concentration of 120610215 mol (total = 1 ng) and

180610214 mol (total = 15 ng) were used to knockdown atg5 and

pwp2h mRNA translation, respectively. For MO sequences see

Text S1.

Quantitation of autophagosomes
Using immunocytochemical analysis, LC3II-containing autop-

hagosomes were identified as puncta in thick transverse sections of

ttis450 larvae. Puncta in 20 cells in 3 independent sections were

counted using Metamorph. For TEM sections, the numbers of

autophagosome-like structures in 20 cells in 3 independent sections

were counted manually.

Quantitative reverse transcription polymerase chain [61]
reaction (qRT–PCR)

cDNA was reverse transcribed from total RNA (1–2 mg)

extracted from WT and ttis450 larvae at 96 hpf using the

Superscript III First Strand Synthesis System (Invitrogen) accord-

ing to manufacturer’s instructions. qRT-PCR was performed

using the SensiMix SYBR Kit (Bioline) according to manufactur-

er’s instructions. For primer sequences see Text S1.

Statistical methods
Student’s t-test was used to compare the means of two

populations in Graphpad Prism 5.0. Error bars represent the

mean +/2 standard deviation (n$3). A P value,0.05 was used to

define statistical significance.

Supporting Information

Figure S1 ttis450 larvae contain fewer replicating IECs than WT

larvae. (A) Sagittal sections of the intestine of WT and ttis450

zebrafish larvae at 72 hpf showing cells that accumulated BrdU

(black arrows) during a 30 min exposure to this thymidine

analogue at 72 hpf. BrdU-positive nuclei (brown) indicate cells

in the S-phase of the cell cycle. Scale bars = 50 mm. (B)

Quantitation of BrdU-positive IECs in three independent sagittal

sections of WT and ttis450 larvae at 72 hpf reveals that ttis450 larvae

contain approximately 50% fewer S-phase IECs than WT.

*p,0.05. Data are represented as mean +/2 SD.

(TIF)

Figure S2 pwp2h is the mutated gene in ttis450. (A) Sequence of

pwp2h in WT and ttis450 cDNA reveals that ttis450 larvae utilize a

cryptic splice site in exon 10 due to a mutation in the splice

acceptor site in intron 9. This results in an 11 bp deletion (bracket)

which causes a frame-shift in the pwp2h coding sequence resulting

in 13 aberrant amino acids and a premature stop codon in exon

10. (B, C) Upon microinjection into the yolk of 1–4 cell WT

zebrafish embryos, a pwp2h-targeted MO (15 ng) produces a

robust ttis450 phenotype at 120 hpf (C). Vehicle-injected controls

appear WT (B). (D–G) Non-complementation of 2 independent

pwph2 alleles confirms that pwph2 is the mutated gene in ttis450.

Heterozygous ttis450 carriers were crossed with heterozygous

carriers of s927, an independent pwph2 allele identified in the 2-

CLIP screen [30]. One quarter of the offspring are compound

ttis450;ttis927 mutants (E) and exhibit the ttis450 phenotype (F) at

120 hpf including impaired development of the digestive organs,

eye and craniofacial structures. Other panels show WT (D) and

ttis927 mutant (G) larvae at 120 hpf. These data indicate that both

alleles correspond to the same genetic locus. e, eye; ib, intestinal

bulb; sb, swim bladder; y, yolk. (H) The nucleotide sequence of

pwp2h cDNA generated from ttis927 larvae contains a TRA

transversion (arrow). (I) The base change in ttis927 results in a

highly conserved branched amino acid (valine, shaded blue) being

replaced by glutamic acid. Alignment was performed using

ClustalW.

(TIF)

Figure S3 Alignment of human, mouse, zebrafish and yeast

Pwp2h protein sequences. Zebrafish Pwp2h protein comprises 937

amino acids, compared with 919 in human and mouse and 923 in

yeast. WD domains are highly conserved (shaded in blue). The

position of the amino acid change in ttis927 larvae occurs at amino

acid 113 in the 2nd WD domain (red box). The position where the
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frame-shift occurs in ttis450 is indicated (red arrow) as is the position

of the premature stop codon (red star). Sequences used: human

(Homo sapiens) NP_005040.2; mouse (Mus musculus) NP_083822.1;

zebrafish (Danio rerio) NP_998212.1; yeast (Saccharomyces cerevisiae)

NP_009984.1.

(TIF)

Figure S4 LC3II-containing autophagosomes are found in

multiple tissues in ttis450 larvae at 72 hpf and 120 hpf. (A–H)

RNA encoding a mCherry-LC3 fusion protein was injected into

the yolk of 1–4 cell zebrafish embryos derived from a pairwise

mating of ttis450/+ heterozygotes (on the gutGFP background) and

allowed to develop until the indicated time-point in the presence of

chloroquine for the final 14 h. Maximum intensity projection

images of a z series of confocal sections through WT [A, A9 (boxed

area in A), C, E, E9 (boxed area in E) and G] and ttis450 larvae [B,

B9 (boxed area in B), D, F, F9 (boxed area in F) and H] showing

accumulated autophagosomes (red puncta) in the brain, eye and

digestive organs (marked by GFP fluorescence in C, D) at 72 hpf

(A–D) and 120 hpf (E–H). Scale bars = 50 mM. b, brain; e, eye; ib,

intestinal bulb; f, fin; y, yolk; p, pancreas.

(TIF)

Figure S5 Up-regulated autophagy is not a shared feature of all

zebrafish intestinal mutants. (A) Western blot analysis of LC3 in

protein extracts of WT, setebos (sets453) and caliban (clbns846) larvae.

Actin was used as a loading control. (B) The levels of LC3II were

quantitated by densitometric analysis of three independent

Western blots. Chloroquine-treated sets453 larvae at 96 hpf contain

significantly higher LC3II levels compared to their chloroquine-

treated WT siblings; meanwhile, LC3II levels are similar in

chloroquine-treated sets453 larvae and WT larvae treated with

rapamycin and chloroquine. There are no significant differences

between LC3II levels in clbns846 larvae and their WT siblings at

120 hpf, in the presence and absence of chloroquine. Data are

represented as mean +/2 SD (n = 3), *p,0.05. (C–H) Transmis-

sion electron micrographs of transverse sections of WT (C, E, G)

and clbns846 larvae (D, F, H) through the intestinal bulb region at

120 hpf. There are negligible numbers of autophagosomes/

autolysosomes in the IECs of WT and clbns846 larvae. Scale

bars = 50 mm (C, D); 10 mm (E, F); 5 mm (G–H). ib, intestinal bulb;

n, nucleus; m, mitochondria; mv, microvilli.

(TIF)

Figure S6 Absence of dead cells in the intestinal lumen of WT

and ttis450 larvae at 7 dpf. (A–F) Transmission electron micro-

graphs of transverse sections of WT and ttis450 larvae at 168 hpf

(7 dpf). The number of conspicuous autophagosome-like struc-

tures in the IECs of ttis450 larvae has diminished by 7 dpf and there

are no dead cells in the lumen (D). Meanwhile, liver cells of ttis450

larvae contain abundant autolysosome-like structures at this time-

point (F, white arrows). Scale bars = 50 mm (A, B); 10 mm (C–F). ib,

intestinal bulb; n, nucleus; m, mitochondria; mv, microvilli; l, liver;

bd, bile duct; a, arteriole.

(TIF)

Figure S7 Disruption of autophagy in ttis450 larvae results in

severe oedema. Upon microinjection into the yolk of 1–4 cell WT

and ttis450 zebrafish embryos, an atg5-targeted MO (1 ng) produces

severe oedema around the organs of ttis450 larvae at 120 hpf (D),

while WT larvae are unaffected (C). WT and ttis450 larvae injected

at the 1–4 cell stage with vehicle (A, B) are also unaffected.

(TIF)

Figure S8 Autophagic flux in ttis450 larvae is not abrogated by

Tor pathway activation. (A–D) Enhancing Torc1 activity by

ablating Tsc2 activity in ttis450 larvae does not change their gross

morphology at 120 hpf. Compound mutants (ttis450;Tsc2vu242/vu242)

(D) are essentially indistinguishable from ttis450 larvae (C). Other

panels show WT (A) and Tsc2vu242/vu242 mutant (B) larvae. (E,F)

Western blot analysis of p-RPS6 and LC3 demonstrates that

ttis450;Tsc2vu242/vu242 compound mutants at 96 hpf contain higher

levels of p-RPS6 than ttis450 mutants due to increased Tor activity,

yet LC3II levels are comparable between the two genotypes (refer

to right hand half of the Western blot, where the larvae were pre-

treated with chloroquine). p-RPS6 and LC3II levels are not

significantly different between WT and tsc2vu242/vu242 larvae in the

presence of chloroquine. Actin was used as a loading control. The

levels of LC3II were quantitated by densitometric analysis of three

independent Western blots. Data are represented as mean +/2

SD, *p,0.05.

(TIF)

Text S1 Sequences of primers and morpholinos and additional

antibody information.

(PDF)
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